TY - CHAP U1 - Konferenzveröffentlichung A1 - Scherz, Wilhelm Daniel A1 - Baun, Jannik A1 - Seepold, Ralf A1 - Martínez Madrid, Natividad A1 - Ortega, Juan Antonio T1 - A portable ECG for recording and flexible development of algorithms and stress detection T2 - 24rd International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES2020), 16 - 18 September 2020, Verona, Italy, virtual; (Procedia Computer Science) N2 - Cardiovascular diseases are directly or indirectly responsible for up to 38.5% of all deaths in Germany and thus represent the most frequent cause of death. At present, heart diseases are mainly discovered by chance during routine visits to the doctor or when acute symptoms occur. However, there is no practical method to proactively detect diseases or abnormalities of the heart in the daily environment and to take preventive measures for the person concerned. Long-term ECG devices, as currently used by physicians, are simply too expensive, impractical, and not widely available for everyday use. This work aims to develop an ECG device suitable for everyday use that can be worn directly on the body. For this purpose, an already existing hardware platform will be analyzed, and the corresponding potential for improvement will be identified. A precise picture of the existing data quality is obtained by metrological examination, and corresponding requirements are defined. Based on these identified optimization potentials, a new ECG device is developed. The revised ECG device is characterized by a high integration density and combines all components directly on one board except the battery and the ECG electrodes. The compact design allows the device to be attached directly to the chest. An integrated microcontroller allows digital signal processing without the need for an additional computer. Central features of the evaluation are a peak detection for detecting R-peaks and a calculation of the current heart rate based on the RR interval. To ensure the validity of the detected R-peaks, a model of the anatomical conditions is used. Thus, unrealistic RR-intervals can be excluded. The wireless interface allows continuous transmission of the calculated heart rate. Following the development of hardware and software, the results are verified, and appropriate conclusions about the data quality are drawn. As a result, a very compact and wearable ECG device with different wireless technologies, data storage, and evaluation of RR intervals was developed. Some tests yelled runtimes up to 24 hours with wireless Lan activated and streaming. KW - ECG KW - Biovital signal KW - Signal processing KW - Stress detection Y1 - 2020 SN - 1877-0509 SS - 1877-0509 U6 - https://doi.org/10.1016/j.procs.2020.09.265 DO - https://doi.org/10.1016/j.procs.2020.09.265 VL - 176 SP - 2886 EP - 2893 PB - Elsevier CY - Amsterdam u.a. ER -