TY - JOUR U1 - Zeitschriftenartikel, wissenschaftlich - begutachtet (reviewed) A1 - Boiko, Andrei A1 - Martínez Madrid, Natividad A1 - Seepold, Ralf T1 - Contactless Technologies, Sensors, and Systems for Cardiac and Respiratory Measurement during Sleep: A Systematic Review JF - Sensors N2 - Sleep is essential to physical and mental health. However, the traditional approach to sleep analysis—polysomnography (PSG)—is intrusive and expensive. Therefore, there is great interest in the development of non-contact, non-invasive, and non-intrusive sleep monitoring systems and technologies that can reliably and accurately measure cardiorespiratory parameters with minimal impact on the patient. This has led to the development of other relevant approaches, which are characterised, for example, by the fact that they allow greater freedom of movement and do not require direct contact with the body, i.e., they are non-contact. This systematic review discusses the relevant methods and technologies for non-contact monitoring of cardiorespiratory activity during sleep. Taking into account the current state of the art in non-intrusive technologies, we can identify the methods of non-intrusive monitoring of cardiac and respiratory activity, the technologies and types of sensors used, and the possible physiological parameters available for analysis. To do this, we conducted a literature review and summarised current research on the use of non-contact technologies for non-intrusive monitoring of cardiac and respiratory activity. The inclusion and exclusion criteria for the selection of publications were established prior to the start of the search. Publications were assessed using one main question and several specific questions. We obtained 3774 unique articles from four literature databases (Web of Science, IEEE Xplore, PubMed, and Scopus) and checked them for relevance, resulting in 54 articles that were analysed in a structured way using terminology. The result was 15 different types of sensors and devices (e.g., radar, temperature sensors, motion sensors, cameras) that can be installed in hospital wards and departments or in the environment. The ability to detect heart rate, respiratory rate, and sleep disorders such as apnoea was among the characteristics examined to investigate the overall effectiveness of the systems and technologies considered for cardiorespiratory monitoring. In addition, the advantages and disadvantages of the considered systems and technologies were identified by answering the identified research questions. The results obtained allow us to determine the current trends and the vector of development of medical technologies in sleep medicine for future researchers and research. KW - Contactless technologies KW - Sensors KW - Cardiac activity KW - Sleep measurements KW - Health monitoring systems KW - Sleep monitoring systems Y1 - 2023 UN - https://nbn-resolving.org/urn:nbn:de:bsz:kon4-opus4-36284 SN - 1424-8220 SS - 1424-8220 U6 - https://doi.org/10.3390/s23115038 DO - https://doi.org/10.3390/s23115038 N1 - Corresponding author: Andrei Boiko N1 - Supported by the Open Access Publication Fund of the HTWG Hochschule Konstanz University of Applied Sciences VL - 23 IS - 11 SP - 27 S1 - 27 PB - MDPI CY - Basel, CH ER -