TY - CHAP
A1 - Garloff, Jürgen
A1 - Adm, Mohammad
A1 - Al Muhtaseb, Khawla
A1 - Ghani, Ayed Abedel
T1 - Relaxing the nonsingularity assumption for intervals of totally nonnegative matrices
T2 - MAT TRIAD 2019 Book of Abtracts, International Conference on Matrix Analysis and its Applications, September 8-13, Liblice, Czech Republic (IUUK-CE-ITI series 2019)
Y1 - 2019
UR - https://mattriad.math.cas.cz//programme/
SP - 23
EP - 23
ER -
TY - CHAP
A1 - Ghani, Ayed Abedel
A1 - Adm, Mohammad
A1 - Al Muhtaseb, Khawla
A1 - Fallat, Shaun M.
A1 - Garloff, Jürgen
T1 - A novel method for determining the rank of a matrix
T2 - Sixth Palestinian Conference on Modern Trends in Mathematics and Physics (PCMTMP-VI), 5. - 8. August 2018, Palestine Technical University Kadoorei, Palästina
KW - Rank
KW - Linear independence
KW - Cauchon algorithm
Y1 - 2018
ER -
TY - CHAP
A1 - Al Muhtaseb, Khawla
A1 - Adm, Mohammad
A1 - Ghani, Ayed Abedel
A1 - Garloff, Jürgen
T1 - Recent applications of the Cauchon algorithm to intervals of totally nonnegative matrices
T2 - Sixth Palestinian Conference on Modern Trends in Mathematics and Physics (PCMTMP-VI), 5. - 8. August 2018, Palestine Technical University Kadoorei, Palästina
KW - Totally nonnegative matrix
KW - Matrix interval
KW - Checkerboard partial ordering
KW - Cauchon algorithm
Y1 - 2018
ER -
TY - JOUR
A1 - Adm, Mohammad
A1 - Al Muhtaseb, Khawla
A1 - Ghani, Ayed Abedel
A1 - Fallat, Shaun M.
A1 - Garloff, Jürgen
T1 - Further applications of the Cauchon algorithm to rank determination and bidiagonal factorization
JF - Linear Algebra and its Applications
N2 - For a class of matrices connected with Cauchon diagrams, Cauchon matrices, and the Cauchon algorithm, a method for determining the rank, and for checking a set of consecutive row (or column) vectors for linear independence is presented. Cauchon diagrams are also linked to the elementary bidiagonal factorization of a matrix and to certain types of rank conditions associated with submatrices called descending rank conditions.
KW - Rank
KW - Cauchon matrix
KW - Cauchon diagram
KW - Cauchon algorithm
Y1 - 2018
U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bsz:kon4-opus4-14604
SN - 0024-3795
SN - 1873-1856
VL - 545
SP - 240
EP - 255
ER -