TY - CHAP A1 - Grimm, Simon A1 - Freudenberger, Jürgen T1 - A phase reference for a multichannel Wiener filter by a delay and sum beamformer T2 - Fortschritte der Akustik : DAGA 2015, Nürnberg : 16.-19. März 2015 : 41. Jahrestagung für Akustik, Tagungsband KW - Sprachverarbeitung Y1 - 2015 UR - http://pub.dega-akustik.de/DAGA_2015/data/index.html SN - 978-3-939296-089 SP - 1027 EP - 1030 PB - Dt. Gesellschaft für Akustik e.V. CY - Berlin ER - TY - CHAP A1 - Freudenberger, Jürgen A1 - Wegmann, Thomas A1 - Spinner, Jens T1 - An efficient hardware implementation of sequential stack decoding of binary block codes T2 - IEEE 5th International Conference on Consumer Electronics - Berlin, (ICCE-Berlin), 6-9 Sept. 2015 N2 - This work proposes an efficient hardware Implementation of sequential stack decoding of binary block codes. The decoder can be applied for soft input decoding for generalized concatenated (GC) codes. The GC codes are constructed from inner nested binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer Reed-Solomon (RS) codes. In order to enable soft input decoding for the inner BCH block codes, a sequential stack decoding algorithm is used. KW - sequential decoding KW - BCH codes KW - binary codes KW - block codes KW - concatenated codes Y1 - 2015 SN - 978-1-4799-8748-1 U6 - http://dx.doi.org/10.1109/ICCE-Berlin.2015.7391215 N1 - Volltextzugriff für Hochschulangehörige via Datenbank IEEE Xplore SP - 135 EP - 138 ER - TY - JOUR A1 - Spinner, Jens A1 - Freudenberger, Jürgen T1 - Datenrettung für die Speicherkarte BT - Fehlerkorrekturverfahren für Flash-Speicher JF - horizonte N2 - Flash-Speicher wurden ursprünglich als Speichermedium für Digitalkameras entwickelt, finden inzwischen aber in vielen Bereichen Anwendung. Die in Konstanz ansässige Firma Hyperstone GmbH ist ein führender Anbieter von Flashcontrollern für Anwendungen mit erhöhten Anforderungen an Zuverlässigkeit und Datenintegrität. Bereits seit April 2011 kooperiert die Firma Hyperstone mit der HTWG Konstanz bei der Entwicklung von Fehlerkorrekturverfahren für einen zuverlässigen Einsatz von Flash-Speichern. Aufgrund der rasanten Entwicklung bei Flashspeicherbausteinen ist auch eine stetige Weiterentwicklung der Korrekturverfahren notwendig. Im Rahmen dieser Kooperation wurde inzwischen zwei Flashcontroller mit sehr leistungsfähiger Fehlerkorrektur entwickelt. Der folgende Artikel gibt Einblick in den Einsatz von Flash-Speichern und erläutert die Notwendigkeit für eine leistungsfähige Fehlerkorrektur. Y1 - 2015 UR - https://www.koord.hs-mannheim.de/deutsch/horizonte.html SN - 1432-9174 IS - 45 SP - 18 EP - 20 ER - TY - CHAP A1 - Spinner, Jens A1 - Freudenberger, Jürgen T1 - Soft input decoding of generalized concatenated codes using a stack decoding algorithm T2 - BW-CAR Symposium on Information and Communication Systems, SInCom 2015, 13. November 2015, Konstanz N2 - This work investigates soft input decoding for generalized concatenated (GC) codes. The GC codes are constructed from inner nested binary Bose-Chaudhuri-Hocquenghem (BCH)codes and outer Reed-Solomon (RS) codes. In order to enable soft input decoding for the inner BCH block codes, a sequential stack decoding algorithm is used. Ordinary stack decoding of binary block codes requires the complete trellis of the code. In this work a representation of the block codes based on the trellises of supercodes is proposed in order to reduce the memory requirements for the representation of the BCH codes. Results for the decoding performance of the overall GC code are presented. Furthermore, an efficient hardware implementation of the GC decoder is proposed. Y1 - 2015 UR - https://opus.htwg-konstanz.de/frontdoor/index/index/docId/444 SN - 978-3-00-051859-1 SP - 1 EP - 6 ER - TY - JOUR A1 - Freudenberger, Jürgen A1 - Shavgulidze, Sergo T1 - New Four-Dimensional Signal Constellations From Lipschitz Integers for Transmission Over the Gaussian Channel JF - IEEE Transactions on Communications N2 - Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations is presented. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations. In addition, we present multilevel code constructions for the new signal constellations. Y1 - 2015 U6 - http://dx.doi.org/10.1109/TCOMM.2015.2441691 SN - 1558-0857 VL - Volume 63 IS - Issue 7 SP - 2420 EP - 2427 ER - TY - JOUR A1 - Spinner, Jens A1 - Freudenberger, Jürgen T1 - Decoder architecture for generalised concatenated codes JF - IET Circuits, Devices & Systems N2 - This paper proposes a pipelined decoder architecture for generalised concatenated (GC) codes. These codes are constructed from inner binary Bose-Chaudhuri-Hocquenghem (BCH) and outer Reed-Solomon codes. The decoding of the component codes is based on hard decision syndrome decoding algorithms. The concatenated code consists of several small BCH codes. This enables a hardware architecture where the decoding of the component codes is pipelined. A hardware implementation of a GC decoder is presented and the cell area, cycle counts as well as the timing constraints are investigated. The results are compared to a decoder for long BCH codes with similar error correction performance. In comparison, the pipelined GC decoder achieves a higher throughput and has lower area consumption. KW - CONCATENATED codes KW - REED-Solomon codes KW - CONVOLUTION codes KW - TURBO codes KW - ERROR-correcting codes Y1 - 2015 U6 - http://dx.doi.org/10.1049/iet-cds.2014.0278 SN - 1751-858X VL - 9 IS - 5 SP - 328 EP - 335 ER - TY - CHAP A1 - Freudenberger, Jürgen A1 - Beck, Alexander A1 - Rajab, Mohammed T1 - A data compression scheme for reliable data storage in non-volatile memories T2 - IEEE 5th International Conference on Consumer Electronics - Berlin, (ICCE-Berlin), 6-9 Sept. 2015 N2 - This contribution presents a data compression scheme for applications in non-volatile flash memories. The objective of the data compression algorithm is to reduce the amount of user data such that the redundancy of the error correction coding can be increased in order to improve the reliability of the data storage system. The data compression is performed on block level considering data blocks of 1 kilobyte. We present an encoder architecture that has low memory requirements and provides a fast data encoding. KW - Redundancy KW - Data compression KW - Error correction codes KW - Flash memories Y1 - 2015 SN - 978-1-4799-8748-1 SN - 978-1-4799-8749-8 U6 - http://dx.doi.org/10.1109/ICCE-Berlin.2015.7391216 N1 - Volltextzugriff für Hochschulangehörige via Datenbank IEEE Xplore SP - 139 EP - 142 ER - TY - CHAP A1 - Freudenberger, Jürgen A1 - Shavgulidze, Sergo T1 - New signal constellations for coding over Lipschitz integers T2 - SCC 2015; 10th International ITG Conference on Systems, Communications and Coding, 2-5 Feb. 2015, Hamburg, Germany N2 - Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers is presented that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations. Y1 - 2015 UR - http://ieeexplore.ieee.org/document/7052102/ SN - 978-3-8007-3659-1 N1 - Volltextzugriff für Hochschulangehörige via Datenbank IEEE Xplore SP - 1 EP - 6 ER -