

Automotive Information Engineering

Bachelor of Engineering

Bachelor Thesis

Analysis of the USB-Stack to create and execute

test cases USB-enabled devices and MTP

Author:

Alan Koschel

August 31st, 2017

Advisors:

Prof. Dr. Werner Kleinhempel
Hochschule Konstanz

Department of Electrical Engineering and Information Technology

Albert Schaaf, M.Sc.
Marquardt Verwaltungs GmbH

TDS-SC – Software Design

Alan Koschel:
Analysis of the USB-Stack to create and execute test cases USB-enabled devices and MTP

Bachelor Thesis, Hochschule Konstanz, 2017

Bachelor Thesis Statutory Declaration

Alan Koschel I

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the

declared sources / resources, and that I have explicitly marked all material which has been quoted

either literally or by content from the used sources.

 Konstanz, August 31st, 2017 Alan Koschel

Bachelor Thesis Preface

Alan Koschel II

Preface

Section 1 will introduce the topic of the thesis and explain why it was necessary to deal with the

issue.

Section 2 will describe the objectives.

Section 3 will mention the test and evaluation environment to demonstrate what kind of tools

were used to execute the tasks and reach the objective.

Section 4 deals with the concept of Windows drivers. It is explained why drivers are important

and how device drivers will be allocated to devices by INF files. This is necessary and an integral

part of the following sections.

Section 5 clarifies the Universal Serial Bus, which is basically one of the main and largest topics of

this thesis. It begins by explaining the basic builds and is followed by the operating principles.
Therefore, the Universal Serial Bus communicates by means of specific packets, which will be

transmitted through various transfer types. Each device starts with transmitting various

descriptors to inform the host about itself. Due to, that the host controls the bus, the device only

responds to the host's transmissions. At the end of this section, the enumeration will be illustrated,

that comprise the process the host learns about the device.

Section 6 gives an understanding of the Media Transfer Protocol that was running on a

development board. First the main characteristics and some comparisons to similar methods will

be mentioned, followed by the operating principles. These principles comprise basic operations

on a device, in fact execute operations such as renaming, deleting and copying files.

Section 7 is about the test environment that was set up to set a HMI device under test that provides

the USB MTP responder stack. First of all, the concept of the testing will be described and followed

by the arranged test environment. In case of USB and MTP, the specific test categories will be

mentioned. Lastly, the test results of the HMI device were discussed and recommendations were

made to run the failed tests successfully.

Section 8 describes the outcome of this thesis and how subsequent works can expand on this

thesis.

Section 9 comprises a summary that resurvey the thesis. It gives an overview about the concrete

task, how the separate tasks were carried out to achieve the outcome and a summary of the

outcome itself.

Bachelor Thesis List of Figures

Alan Koschel III

List of Figures

Figure 1: STM32F429IDISCOVERY Development Board .. 3

Figure 2: USB to Serial Cable ... 4

Figure 3: HTerm Terminal Software .. 4

Figure 4: Teledyne LeCroy Mercury T2 USB Analyzer [1] .. 5

Figure 5: USB Analyzer MTP Data Packets .. 5

Figure 6: STM32 USB Device Library Architecture [2] ... 6

Figure 7: USB Device Class Description of WPD in INF File ... 7

Figure 8: USB Device Vendor and Product ID in INF File ... 7

Figure 9: USB Device MTP Protocol Class Codes in INF File .. 7

Figure 10: Host and Device Arrangement (USB) ... 8

Figure 11: USB Type-A Plug Pins .. 9

Figure 12: USB Micro-B Plug Pins .. 9

Figure 13: USB Endpoint Communication Model, inspired by [4] ... 11

Figure 14: Communication in Setup Stage .. 12

Figure 15: IN and OUT Transfer in Data Stage ... 12

Figure 16: Host and Device Confirmation by Zero-Length-Packet .. 13

Figure 17: Bulk Transfer IN and OUT ... 13

Figure 18: Interrupt Transfer IN .. 14

Figure 19: Hierarchical Structure of Descriptors ... 14

Figure 20: Enumeration Process with Focus on the STM32F429IDISCOVERY 18

Figure 21: MTP Responder Stack STM32F429IDISCOVERY, inspired by [6] .. 22

Figure 22: MTP Read Memory Instructions ... 23

Figure 23: MTP Delete Object Instructions ... 24

Figure 24: MTP Rename Object Instructions ... 25

Figure 25: MTP Download Object from Device Instructions ... 25

Figure 26: MTP Upload Object to Device Instructions .. 26

Figure 27: HCK Test Environment .. 29

Figure 28: HCK Studio Machine State .. 29

Figure 29: HCK Studio Available Systems .. 30

Figure 30: HCK Studio Test Status & Client ... 30

Figure 31: HCK Studio Test Results Tab ... 31

Figure 32: HCK Manager Operating Principle .. 32

Figure 33: HMI Device Marquardt GmbH .. 33

Figure 34: Device Manager, USB Class Codes from DUT ... 36

file:///C:/Users/Alan/Dropbox/BA/Bachelor_of_Engineering/MQ_Bachelor_Thesis.docx%23_Toc491943091
file:///C:/Users/Alan/Dropbox/BA/Bachelor_of_Engineering/MQ_Bachelor_Thesis.docx%23_Toc491943092
file:///C:/Users/Alan/Dropbox/BA/Bachelor_of_Engineering/MQ_Bachelor_Thesis.docx%23_Toc491943094
file:///C:/Users/Alan/Dropbox/BA/Bachelor_of_Engineering/MQ_Bachelor_Thesis.docx%23_Toc491943098
file:///C:/Users/Alan/Dropbox/BA/Bachelor_of_Engineering/MQ_Bachelor_Thesis.docx%23_Toc491943107

Bachelor Thesis List of Tables

Alan Koschel IV

List of Tables

Table 1: USB Packet Fields ... 9

Table 2: USB Packet Types ... 10

Table 3: Format of Request Data [5] ... 15

Table 4: Standard Device Requests [5] .. 16

Table 5: HCK Test Levels [7] ... 28

Table 6: HMI Device List of Failed Tests .. 34

Bachelor Thesis List of Tables

Alan Koschel V

Contents

Statutory Declaration .. I

Preface .. II

List of Figures .. III

List of Tables .. IV

1 Introduction ... 1

2 Concrete Task .. 2

3 Test and Evaluation Environment .. 3

3.1 STM32F429IDISCOVERY Development Board ... 3

3.2 USB to Serial Cable .. 4

3.3 HTerm .. 4

3.4 Teledyne LeCroy Mercury T2 USB Analyzer .. 5

4 Windows Driver Concept ... 6

4.1 INF File ... 7

4.1.2 INF File Recognition .. 7

5 Universal Serial Bus ... 8

5.1 USB Topology... 8

5.2 USB Plug and Role Allocation .. 8

5.3 USB Packet Fields and Types ... 9

5.3.1 Packet Fields ... 9

5.3.2 Packet Types ... 10

5.4 Endpoints ... 10

5.5 USB Transfer Types .. 12

5.5.1 Control Transfer ... 12

5.5.2 Bulk Transfer ... 13

5.5.3 Interrupt Transfer ... 14

5.6 Descriptors .. 14

5.6.1 Device Descriptor ... 14

5.6.2 Configuration Descriptor .. 14

5.6.3 Interface Descriptor.. 15

5.6.4 Endpoint Descriptor ... 15

5.7 Requests .. 15

5.7.1 bmRequestType .. 16

5.7.2 bRequest ... 16

5.7.3 wValue .. 16

Bachelor Thesis List of Tables

Alan Koschel VI

5.7.4 wIndex .. 16

5.7.5 wLength .. 16

5.7.6 Standard Device Requests .. 16

5.8 Vendor and Product ID .. 17

5.9 Enumeration .. 17

6 Media Transfer Protocol ... 20

6.1 Comparison to PTP .. 20

6.2 Comparison to Mass Storage Device Class .. 20

6.3 Windows Driver for MTP ... 21

6.4 Object Handles .. 21

6.5 Operating Principle .. 21

6.5.1 MTP Responder .. 22

6.5.2 Read Memory ... 23

6.5.3 Delete Objects .. 24

6.5.4 Rename Objects ... 25

6.5.5 Download Object from Device ... 25

6.5.6 Upload Object to Device ... 26

7 Windows Hardware Certification Kit ... 27

7.1 Test Concept .. 27

7.1.1 HCK Test Server .. 27

7.1.2 Test Computer .. 27

7.1.3 Deployment .. 27

7.1.4 Test Levels .. 28

7.2 Test Environment .. 29

7.2.1 HCK Test Server and HCK Client ... 29

7.2.2 HCK Studio .. 29

7.2.3 HCK Manager .. 32

7.2.4 HCK Client ... 32

7.2.5 Windows Server.. 32

7.2.6 DUT ... 33

7.3 Hardware Test Categories ... 33

7.3.1 Device Connectivity Tests ... 33

7.3.2 Device Fundamentals Tests .. 33

7.3.3 Device Fundamentals Reliability Tests ... 33

7.3.4 Device Portable Tests ... 34

7.4 HMI Device Test Analysis ... 34

7.4.1 DF – Reinstall with IO Before and After .. 36

Bachelor Thesis List of Tables

Alan Koschel VII

7.4.2 WDF – Check UMDF Coinstaller Version Test .. 36

7.4.3 WDF – Check KMDF Coinstaller Version Test ... 37

7.4.4 USB Serial Number ... 37

7.4.5 WPD – Compliance Tests – Events (Manual) .. 37

7.4.6 WPD – Compliance Stress Tests ... 37

7.4.7 MTP Compliance Test – Core – Service Operations ... 38

7.4.8 MTP Compliance Test – Requirements – Core ... 38

8 Conclusion .. 39

9 Summary ... 40

Bibliography .. V

Bachelor Thesis 1 Introduction

Alan Koschel 1

1 Introduction

The Universal Serial Bus (USB) is a worldwide standard for communication between peripherals.

Nowadays USB interfaces are integrated in almost every device. It will be used to connect

peripherals and computers. USB devices communicate between pieces of hardware, i.e., cable,

plug and socket. Thus, there exists different standardized communication protocols depending on

the application. In case of different communication protocols, it is necessary to verify them, that

devices, no matter of country, can communicate to each other.

The verifying process is very important in order that companies can sell products with such

interfaces and their designated logo, to guaranty a certain standard, which is provided all over the

world. Devices have to complete various test procedures to get certified. Otherwise a company is

not allowed to use logos ore designations, i.e., USB or information about data rates, i.e.,

SuperSpeed. Furthermore, successfully completed test procedures prove that a device works

properly based on a professional method.

The Human-Machine-Interface (HMI) device family from the company Marquardt Verwaltungs

GmbH, is using the USB interface for service and data exchange purposes. The service application

is realized through a Virtual COM Port (VCP), based on the Communication Device Class (CDC) of

USB. On the other side they want to use the Media Transfer Protocol (MTP) based on the Still

Image Capture Device class for data exchange between the HMI device and a computer. Of course,

the integrated circuit, which implements the USB interface on the circuit board of the HMI device

has to be verified, too. The verification will be performed through an external company. In

contrast, the communication protocols do not need a verification but must be examined. The

identification of an USB class in an operating system does neither guaranty a proper functionality

nor comply with a professional scientific method.

To accelerate the development of a project as well as to reduce the production costs, it is a

significant advantage to own a test environment. Microsoft provides the possibility to verify

devices on Windows operating systems. Therefor they invented the Windows Certification

Program, which contains software that can be used for verification purposes. One of them is the

Windows Hardware Certification Kit (HCK) we want to set up and set the HMI device under test,

to examine the implementation of MTP.

Thus, it is possible to use the HCK test setup during a development process to examine a current

implementation without a big effort, i.e., cooperation with an external company or similarly

approaches, which delays the whole development process by far.

Bachelor Thesis 2 Concrete Task

Alan Koschel 2

2 Concrete Task

Vendors must fulfill several requirements when they want to develop USB applications.

Understand the USB stack, as well as their classes, is one of the first challenge. Besides from that,

it is necessary to verify these applications to guarantee a proper functionality, as well as it is

compatible all over the world.

Windows provides a Hardware Certification Kit to test various devices and is accessible by each

vendor.

The objective of this thesis is to provide an overview about the USB stack and MTP that explains

their functioning in a clear manner. Based on the new findings, a HMI device, running MTP, must

be tested to verify a proper functionality. Therefor the Windows Hardware Certification Kit must

be set up. The device must be set under test and the test results must be analyzed and documented.

Bachelor Thesis 3 Test and Evaluation Environment

Alan Koschel 3

3 Test and Evaluation Environment

To achieve the understanding of USB and MTP, several tools were used in combination. On the one

hand a development board was used to implement USB functionalities and on the other hand some

tools were used to analyze and understand those implementations and to illustrate the

communication.

3.1 STM32F429IDISCOVERY Development Board

This is a development board (Figure 1) from STMicroelectronics, based on the STM32F429ZITx

microcontroller unit that is in turn based on the ARM Cortex-M4 core1. It supports several

input/output (IO) types, but rather within the scope of this paper it is used to implement MTP and

to handle the programmable USB 2.0 receptacle. Its USB interface supports FullSpeed in device

and host mode as well as HighSpeed in device and host mode, in turn simulated through a

FullSpeed physical layer.

Figure 1: STM32F429IDISCOVERY Development Board

By means of the Integrated Development Environment (IDE) µVision from Keil, embedded

software was implemented on the development board.

1 http://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-eval-
tools/stm32-mcu-eval-tools/stm32-mcu-discovery-kits/32f429idiscovery.html

Bachelor Thesis 3 Test and Evaluation Environment

Alan Koschel 4

3.2 USB to Serial Cable

This cable is used to receive serial Universal Asynchronous Receiver Transmitter (UART)

communication via USB. On the one hand the cable provides basically at least access to UART

transmit (Tx), receive (Rx), ground (GND) and integrated circuit (IC) power-supply (VCC)

connections as seen in Figure 2. For serial data transmission we will only use the Tx and Rx pin

because the device is already power supplied.

Figure 2: USB to Serial Cable

On the other hand, the USB connector contains an IC which allows to appear as a VCP. By attaching

the USB connector to a computer, then a serial port will be emulated and allows to communicate

through serial data with the USB interface.

Each USB to serial cable needs a specific driver to be functional, which is provided by its vendor.

3.3 HTerm

HTerm is a terminal software that provides to read data from a serial interface. Before receiving

data, the COM port must be selected and connected. Additional settings are provided to select one

or more data formats at the same time to show up while receiving (Figure 3).

Figure 3: HTerm Terminal Software

Bachelor Thesis 3 Test and Evaluation Environment

Alan Koschel 5

3.4 Teledyne LeCroy Mercury T2 USB Analyzer

The hardware is based on the USB 2.0 protocol, bus powered and also operable by using any

Windows PC (Figure 4).

Figure 4: Teledyne LeCroy Mercury T2 USB Analyzer [1]

The analyzer came in use for comprehensive and visualization purposes. It detects each frame and

plot them. It decodes several USB classes, among them MTP. Logical protocol events are displayed

where each frame is divided in the several transmitted packets (Figure 5).

Figure 5: USB Analyzer MTP Data Packets

Bachelor Thesis 4 Windows Driver Concept

Alan Koschel 6

4 Windows Driver Concept

Understanding driver functionalities is essential to understand USB. Drivers are necessary to

handle the communication between the computer and attached peripherals. Basically, Windows

provides a bunch of drivers2 to support a great variety of devices that there is no need to develop

a custom driver. Windows drivers, concerning USB, are divided in USB Device Classes. These

specific classes are providing support for certain USB devices, i.e., mice and keyboard, processors,

sensors and especially portable devices like smartphones that are described in the Windows

Portable Devices (WPD) class driver.

To develop a driver, Microsoft provides the Windows Driver Frameworks (WDF). This is for

development purposes. It provides some libraries to develop drivers for devices that are fully

compatible to Windows.

Development of drivers was not issue of this thesis so we will not have an in-depth discussion of

this issue. WDF will be differentiated in two models, User-Mode Driver Framework (UMDF) and

Kernel-Mode Driver Framework (KMDF). KMDF is focused on native Kernel calls and hides most

of the operating system programming aspects. UMDF is built on KMDF and has the benefits of user

mode programming compared to kernel mode programming. In conclusion a KMDF or UMDF

driver is a piece of software that will be used as interface between the associated device and the

computer to guaranty a proper functionality. UMDF drivers have to communicate with KMDF

components to access the hardware.

In Figure 6 the USB device library architecture of STM is illustrated. The MTP responder stack

(Section 6) operates in that way. An UMDF driver can be compared to the application and USB

library module, referred as USB device core and USB device class. They are used to initialize any

functioning the device must fulfill. Then the USB hardware abstraction layer driver module,

compared to KMDF drivers will be used to pass data from the upper levels to force the hardware

to operate, based on the general functioning.

Figure 6: STM32 USB Device Library Architecture [2]

2 https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/do-you-need-to-write-a-driver-

Bachelor Thesis 4 Windows Driver Concept

Alan Koschel 7

4.1 INF File

An INF file is basically a text file that contains information about a device and the components to

install the specific driver during the enumeration of USB devices. Each INF file is related to an USB

device class, which is described as a Global Unique Identifier (GUID) (Figure 7). The INF file

contains the specific vendor ID (VID) and product ID (PID), which identify a certain device and

initiate the driver install process (Figure 8). Furthermore, it contains the specific class codes

concerning a protocol, e.g., MTP that helps to identify the driver, too (Figure 9).

Figure 7: USB Device Class Description of WPD in INF File

Figure 8: USB Device Vendor and Product ID in INF File

Figure 9: USB Device MTP Protocol Class Codes in INF File

By developing a custom driver, it is necessary to create a custom INF file but in most cases, it is

recommended to use a driver provided by Windows. Using a custom driver does not guaranty a

proper functionality of a device and operating system. If a device provides more functionalities

than a driver can support, it is possible to implement an extended driver. MTP driver3 is provided

by Windows and does not need any custom drivers and INF files as well.

4.1.2 INF File Recognition

Windows detects the suitable driver for an USB device through an INF file on two ways.

First, the device transmits an unique combination of VID and PID. This ID can be recognized in the

specific INF file as seen in Figure 8. In case of MTP, the provided INF file does not contain a great

variety of ID's and does not represent an expedient solution.

Last, the device transmits additionally the USB class code (Figure 9) to identify the used protocol.

This specific class code will be recognized in the INF file and the driver will be loaded.

3 wpdmtp.inf, wpdmtp.dll

Bachelor Thesis 5 Universal Serial Bus

Alan Koschel 8

5 Universal Serial Bus

Meanwhile USB experienced a big evolution since its release in 1996. Beginning from USB 1.0

version, providing maximum transfer rates of 1.5 Mbit/s, up to currently 20 Gbit/s in the USB 3.2

version. Apart from transfer rates, improved charging possibilities surpass the standards by USB

Type-C interface, providing up to 100 W with the Power Delivery standard. The USB specifications

are full of such information. The objective here is to supply a clear overview of USB 2.0 to sum up

its functioning without reading the whole specification, covered in over 600 pages. It provides a

transfer rate up to 480 Mbit/s and is called HighSpeed mode. HighSpeed mode is necessary to

support imaging and storage features, e.g., MTP, due to USB 2.0 specification.

Furthermore, an USB stack implementation in a device is essential and defines the role it plays.

Therefore, different configurations are possible and contain specific settings about descriptors,
endpoints and the related communication protocol. The following outcomes were achieved

through executing and analyzing the MTP responder stack [3].

But first we want to start to make clear the general structure of USB and go on with the workflow.

5.1 USB Topology

USB is arranged kind of a network comprising at least and maximum one host to which

peripherals, also called devices, can be connected. The host will be generally represented by a

computer, that always come into force as host and is not negotiable. A bunch of different devices,

with different functionalities, e.g., mice, keyboards, printers were used by connecting through USB

interface with a host. Moreover, a hub can be placed between the host and one or more devices.

Hubs that are embedded in the host are also called root hub. In Figure 10 is visualized how devices

are connected to a host and how host ports can be expanded.

Figure 10: Host and Device Arrangement (USB)

Hubs are used to enlarge the limit of connected devices. By connecting a hub to a port on the host

side, the port will be converted into multiple ports. All in all, the connection is organized through

a star topology and each device is attached by one wire, called the bus, to its host.

In the end the bus is controlled by the host and triggers the whole communication whereby the

connected device only response.

5.2 USB Plug and Role Allocation

We will limit this part and only mention USB type-A and micro-B plugs to clarify how devices get

recognized by its host.

Bachelor Thesis 5 Universal Serial Bus

Alan Koschel 9

Type-A plugs are the most commonly used plugs and fit into the USB receptacles

in each computer that takes the role of the host or any other computer-like

device. It has four pins, D- and D+ for data transmission. The third and fourth pin,

VCC and GND, provide bus power.

Micro-B plugs are used to connect devices with a host. Common smartphones

have a micro-B receptacle to which the plug can be attached. Then, the

smartphone acts as device. The plug has five pins. Equal to type-A plug, the D+ and

D- pins provide data transmission and power supply is provided through VCC and

GND. Additionally it has an ID pin which defines the role of the attached device

either as device or host (Figure 12). Actually, the ID pin in this cable is always

connected to GND, so the role as device is predefined.

In conclusion, then, it is clear that peripherals, attached to USB micro-B connectors are always

recognized as device. On the other side, that means that it cannot operate as host with this type of

cable. It is not possible to connect two host devices with each other. Host and device detection will

be realized by electrical properties. Therefor the host and the device are pulling the data lines with

different resistance. Devices with an USB micro-B receptacle are predefined to act as a device. In

case of an USB micro-AB receptacle, the device is able to act as host as well as a device. But in the

end, it depends on the connector. If both devices provide an USB micro-AB receptacle, the Host

Negotiation Protocol4 of the USB On-The-Go specification arrange the roles, which additionally

depends on the application of both devices.

5.3 USB Packet Fields and Types

Transmitted USB messages, which are subdivided in packets, always begin with the least

significant bit. A message consists of various fields and is defined as a specific type.

5.3.1 Packet Fields

The following field types can occur in a message but the appearance of each field type in one

message is not mandatory (Table 1).

Table 1: USB Packet Fields

Packet Field Description

Sync The Sync field is 32-Bit long for High Speed
and synchronize the clock of the receiver with
the clock of the transmitter.

PID This is the Packet ID and indicates the type of
the packet which is being sent.

ADDR The address specified which device is intend
to receive the packet. It consists of 7 Bit
which leads to that up to 127 devices are
addressable. Devices that are not assigned are
bound to respond on packets addressed to
zero.

ENDP This field addresses the device related
endpoint.

CRC The Cyclic Redundancy Check is placed in
token packets as well as in data packets.

EOP This packet announces the end of a packet.

4 http://www.usb.org/developers/onthego/USB_OTG_and_EH_2-0.pdf

Figure 11: USB
Type-A Plug Pins

Figure 12: USB
Micro-B Plug Pins

Bachelor Thesis 5 Universal Serial Bus

Alan Koschel 10

5.3.2 Packet Types

Transmitted messages are distinguished in different packet types (Table 2).

Table 2: USB Packet Types

Packet Type Description

Token This is always the first packet in a transaction
determines the address, endpoint and
purpose of the following transaction. The
purpose is either indicated as IN, OUT or
SETUP.
The IN token informs the device that the host
wants to read information.
The OUT token informs the device that the
host wants to send data to the device.
The SETUP token introduces a control
transfer.
The message is structured as follows:

SYNC PID ADDR ENDP CRC5 EOP

Data The data packet is going to be send after an
IN or OUT packet. Its length depends on the
data size and is limited by 1024 bytes in High
Speed mode. If the admissible data size is
bigger than the limit, the data will be
separated and send over various messages.
Then each data packet comprises the full data
size except the last one.
The message is structured as follows:

SYNC PID DATA CRC16 EOP

Handshake A handshake packet signals the status of an
endpoint, i.e., transaction passed or failed.
The handshake is subdivided into three types.
An ACK is an acknowledgement and signals a
successful received message as well as the
endpoint is ready to receive new data.
A NAK signals that the endpoint is currently
not able to send or receive new data, due to it,
it is still processing data or does not
processed the data before yet.
A STALL signals that the endpoint remains in
a state where it is halted.
The message is structured as follows:

SYNC PID EOP

5.4 Endpoints

An endpoint (EP) is comparable to a buffer. It buffers data that comes from the host or will

consumed by the host. The endpoint operates between host and device, but is logically placed on

the device. If the host sends data to the bus, it reaches not directly the device but its EP OUT buffer.

Then the software of the device will read the received data on EP OUT buffer. In case that the

device wants to response to the host on the received data, it cannot write data to the bus

immediately, because the bus is host controlled. Furthermore, it cannot write data to the same

Bachelor Thesis 5 Universal Serial Bus

Alan Koschel 11

buffer, in case the host sends again data to the bus that will end up in the same buffer. Therefore,

the device needs a second buffer, called EP IN buffer. This buffer is responsible to store data that

is going to be consumed by the host.

By means of Figure 13 we want to illustrate how a communication process could look like. First,

the host needs to determine to send or receive data. In case of sending data, the host is going to

send a token packet, including an OUT token. Based on the address, the device recognize that the

incoming data is for itself and buffers it in the EP OUT buffer. Then an ACK will be send to notify

the host that the message was successfully received. The Interrupt Handler of the device is going

to trigger an interrupt to notify the software application that data had arrived.

After the data was processing, the device can send a response if required. First the response data

will be stored in the EP IN buffer. The data will remain in the buffer until the host is going to send
a token packet, including an IN token. Due to the address, related to the device, it recognizes the

IN token and reply with the data placed in the EP IN buffer. According to this procedure the host

will be reply with an ACK.

Referring to receive and buffer data and also triggering an interrupt, this takes place in hardware,

usually processed by an USB controller.

Figure 13: USB Endpoint Communication Model, inspired by [4]

No matter how many endpoints a device provides, it must provide at least one control endpoint,

which is referred as EP0. The control endpoint is reserved for setup configurations, called control

transfer (Section 5.5.1). By connecting a device to a host, the host requests device information,

configure the device or process control tasks. The control endpoint will be used during the

enumeration process (Section 5.9) and while the device operates on the bus.

To sum up, an endpoint usually contains two buffers, i.e., one for read and one for write operations

related to the bus. In contrast, the unique EP0 must be supported by every device as soon as a

connection is established without any configuration and is independent from the device class as

well as from other endpoints. EP0 is bidirectional, which means that it communicates through one

buffer. The whole transaction stage is usually handled by hardware. Interrupt endpoints can

contain either an IN buffer or an OUT buffer or both.

Bachelor Thesis 5 Universal Serial Bus

Alan Koschel 12

5.5 USB Transfer Types

USB provides four different transfer types, also referred as endpoint types. Which transfer type is

going to be used depends on the functionalities of the device. For example, a bulk transfer is used

to transmit insensitive data, e.g., media files on storage devices or data for printers. There are four

different transfer types, but with regard to MTP we will mention three of them, the control, bulk

and interrupt transfer. Otherwise the isochronous transfer guaranty a specific bandwidth and

occurs continuously, specifically for audio or video streams.

The following transfer types were logged and analyzed by means of the STM32F429IDISCOVERY

development board (Section 3.1) and its MTP responder stack (Section 6.5) that we put into

operation [3].

5.5.1 Control Transfer

The control transfer is used for command and status operations on the default EP0, each device

must provide. To enumerate a device (Section 5.9) the control transfer is used, too. A control

transfer is divided in three stages.

Setup Stage

In the setup stage, three packets will be transmitted by the host. First,

a packet with a SETUP token where address and endpoint number

will be sent to the device. Next, a data packet will be sent containing

a PID type of DATA0 and contains a setup packet that defines the type

of request. The third and last packet is usually an ACK as handshake.

In case of any failures, the setup packet will be ignored because it

cannot be replied with a NAK or STALL. In the following Figure 14 the

setup stage is illustrated.

Data Stage

This stage describes IN and OUT transfers. Depending on the direction

of the data transfer, there are two scenarios. As illustrated in Figure 15, the host sends an IN token

which signals a read command. Then the expected data in the IN EP buffer will be send to the host.

A NAK packet indicates that the endpoint has no data and a STALL packet indicates an error. In

the end the host will send an ACK. In case of an OUT token, the host wants to transmit data to the

device. Thereupon the host will send the data in expectation of a handshake. The device replies

with an ACK, NAK or STALL.

Figure 15: IN and OUT Transfer in Data Stage

Figure 14: Communication in
Setup Stage

Bachelor Thesis 5 Universal Serial Bus

Alan Koschel 13

Status Stage

Some packets must be confirmed. An ACK packet from an endpoint is sometimes not enough to

confirm a received packet. Therefore, it is important to send a zero-length-packet (ZLP). For

example, when the host sends a SET_ADDRESS request (Section 5.7), the device must confirm the

received request by sending back a ZLP. This packet contains no data with a length of zero.

Additionally, a ZLP can be used to indicate the end of the transfer on other endpoints. For example,

when a packet will be send with the maximum of 1024 Bytes, it is necessary to send a ZLP to

indicate that the last packet was the last packet containing the requested data. As seen in Figure

16, the device confirms with a ZLP after the host sends an IN token to the specific endpoint,

followed by an ACK of the host. If the endpoint has no data to transfer, it sends a NAK packet, or

in case of an error, it sends a STALL packet. The host confirms by sending first an OUT token to

indicate the transfer of data. Then the host transmits a ZLP, followed by a handshake from the

endpoint.

Figure 16: Host and Device Confirmation by Zero-Length-Packet

5.5.2 Bulk Transfer

Bulk transfer is used by bulk endpoints which are subdivided in IN and OUT endpoints. This

transfer type is used to transmit a large amount of data, e.g., media files but in general insensitive

data, because there is no bandwidth reserved on the bus. In case of multiple transactions, this type

of data will be transmitted when there is bandwidth left. In conclusion, there is no guaranty of

latency for bulk transfers. When there is no traffic on the bus, the transfer is fast. The bulk has a

low priority on the bus. The bulk transfer operates on IN and OUT endpoints as seen in Figure 17.

To initiate a bulk transfer the host first sends an OUT token in case of sending data to the device.

Then the OUT token is followed by a DATA packet and will be committed by either an ACK, NAK

to signal that the endpoint is not empty or a STALL in case of an error. When the host wants to

read data, an IN token will be sent in order to receive data from the associated endpoint. The

device can reply with the data, a STALL or a NAK to signal that there is no data to send. Finally, the

host replies with an ACK.

Figure 17: Bulk Transfer IN and OUT

Bachelor Thesis 5 Universal Serial Bus

Alan Koschel 14

5.5.3 Interrupt Transfer

Therefor a specific bandwidth will be guaranteed. An interrupt

endpoint can consist of either an IN or OUT endpoint or both. On

the development board STM32F429IDISCOVERY (Section 3.1) only

an IN interrupt endpoint is implemented. Due to the bus, which is

host controlled, the device must wait until the host queries it, that

it can report its issues. As mentioned in Figure 18, the host sends

an IN token to the IN interrupt endpoint to query the device for

data. In case of issues, the device replies with data. Otherwise it

replies with a NAK, because there is no data to send, or a STALL

when the endpoint is halted.

5.6 Descriptors

Each device is described through a hierarchical structure of descriptors as seen in Figure 19. The

host learns through descriptors what kind of device it is, i.e., about the vendor, number of

configurations and endpoints as well as their types. To request descriptors the host uses control

transfers to transmit various standard control requests, which are described in Section 5.7.

Figure 19: Hierarchical Structure of Descriptors

5.6.1 Device Descriptor

As seen in Figure 19 the device descriptor is on top of the hierarchical structure and will be

requested first. The device descriptor releases first information about itself. This includes details

like PID and VID, the number of configurations the device provides and the max packet size which

can be transmitted.

5.6.2 Configuration Descriptor

The second and last descriptor that is going to be requested after the device descriptor is the

configuration descriptor (Figure 19). It contains at once all the data about the followed

descriptors, the interface and endpoint descriptor. It releases information about the maximum

current and power supply, also the number of interfaces. A device can have more than one

configuration at once, though only one can be used at a time. In case of various configurations,

they will differ by current or power supply settings but it is not common to provide more than one

configuration descriptors.

Figure 18: Interrupt Transfer IN

Bachelor Thesis 5 Universal Serial Bus

Alan Koschel 15

5.6.3 Interface Descriptor

An interface descriptor defines the function the device fulfills. Primarily it contains information

about the various class codes, as described in Section 4.1, which define the usage of MTP. One

configuration can provide various interfaces (Figure 19). For example, a printer provides one

interface for each function, e.g. scanning, printing and faxing.

5.6.4 Endpoint Descriptor

Each endpoint is associated with an interface. The MTP responder stack [3] we put into operation

on the STM32F429IDISCOVERY (Section 3.1) contains three endpoints to its interface. As

illustrated in Figure 19, an IN interrupt endpoint for issues and bulk endpoints, consisting of IN

and OUT buffer. An endpoint descriptor delivers information to the host about its address, type of

endpoint and the max packet size of transmission. Interrupt endpoints provide additionally

information about the exact interval the endpoint can be used to initiate transfers. This means

that the host will send IN tokens periodically to the interrupt endpoint of the device, to read out

its data that the device put into the buffer to signal any complications. Commonly interrupts will

be triggered by devices itself, but in this case the host has to query a device for interrupts because

the bus is host controlled.

For detail information about how descriptors can be implemented in software, the MTP responder

stack [3] of the STM32F4IDISCOVERY is appended to this paper, specifically in the files usbd_desc.c

and usbd_mtp.c.

5.7 Requests

Requests will be used in setup packets to request certain data. This is the method the host learns

about the device through control transfer (Section 5.5.1). Each request must be replied by the

device in a certain amount of time, otherwise the transfer will be aborted and the connection will

fail. For example, when the host requests the device descriptor, the device must reply within 500

milliseconds to maintain the connection. In the following Table 3 the format of a request packet,

also setup data, is illustrated.

Table 3: Format of Request Data [5]

Offset Field Size [Byte] Description

0 bmRequestType 1 Characteristics of request:
D7: Data transfer direction
 0 = Host-to-device
 1 = Device-to-host
D6-5: Type
 0 = Standard
 1 = Class
 2= Vendor
 3 = Reserved
D4-0: Recipient
 0 = Device
 1 = Interface
 2 = Endpoint
 3 = Other
 4-31 = Reserved

1 bRequest 1 Section 5.7.2
2 wValue 2 Varies according to request (Section

5.7.3)

Bachelor Thesis 5 Universal Serial Bus

Alan Koschel 16

Offset Field Size [Byte] Description

4 wIndex 2 Varies according to request (Section
5.7.4)

6 wLength 2 Number of bytes to transfer if there is
a Data stage

5.7.1 bmRequestType

This field describes the type of request. It identifies the direction of data transfer. Usually the host

transmits standard requests (Table 4). In the first five bits it is defined who is the recipient.

5.7.2 bRequest

This field defines the specific request (Table 4).

5.7.3 wValue

For example, when the host wants to set the address of the device during the enumeration (Section

5.9), the address will be passed in the wValue field.

5.7.4 wIndex

It is used to assign an interface or endpoint. In Table 4 is seen how the data is going to be passed

on.

5.7.5 wLength

This field describes the length of data containing the data packet. If the host transmits an OUT

packet, wLength specify the exact amount of data. But in case of an IN packet, the device can reply

either with exact the same length as defined in wLength or less than wLength. If wLength is equal

to zero, there is no data stage followed.

5.7.6 Standard Device Requests

They are used to request the various requests to learn about the device and choose configurations.

Furthermore, they request the current status, i.e., it is self-powered or bus-powered. The standard

device requests as seen in Table 4 are used during the enumeration (Section 5.9).

Table 4: Standard Device Requests [5]

bmRequest
Type

bRequest wValue wIndex wLength
[Byte]

Data

10000000B GET_CONFIGURATION Zero Zero One Configurat
ion Value

10000000B GET_DESCRIPTOR Descriptor
Type and
Descriptor
Index

Zero Descriptor
Length

Descriptor

10000001B GET_INTERFACE Zero Interface One Alternate
Interface

10000000B
10000001B
10000010B

GET_STATUS Zero Zero
Interface
Endpoint

Two Device,
Interface,
or
Endpoint
Status

Bachelor Thesis 5 Universal Serial Bus

Alan Koschel 17

bmRequest
Type

bRequest wValue wIndex wLength
[Byte]

Data

00000000B SET_ADDRESS Device
Address

Zero Zero None

00000000B SET_CONFIGURATION Configuration
Value

Zero Zero None

00000000B SET_DESCRIPTOR Descriptor
Type and
Descriptor
Index

Zero Descriptor
Length

Descriptor

00000001B SET_INTERFACE Alternate
Setting

Interface Zero None

5.8 Vendor and Product ID

The VID and PID inform the host about the device' vendor. A company can use the same VID for

all the USB products. But each product must use a different PID. Different PID's are necessary to

differ devices while connected to the same host. For example, when an USB memory stick is

connected to a host and the same stick, with the same VID and PID, is going to be attached to the

same host, the host cannot distinguish them and the second one would be unusable. In case of

using the same combination of VID and PID, the USB class should be the same to avoid driver

issues, referring to Section 4.1. VID's and PID's can be requested at the USB Implementers Forum5.

5.9 Enumeration

When a device will be attached to a host, the host needs to gather information about the device in

order to subsequently load the appropriate driver. This process is called enumeration. During the

enumeration, the host communicates through control transfer by transmitting setup packets

(Section 5.5.1) to learn about the attached device. With the MTP (Section 6) responder stack on

the STM32F429IDISCOVERY (Section 3.1) we want to clarify the enumeration. A complete and in-

depth sequence diagram about the enumeration of the STM32F429IDISCOVERY will be appended

to this thesis. The device does not know anything exactly about the enumeration. It is obligated to

reply the requests, send by the host, that the host can successfully enumerate the device. By

attaching a device into an USB port, the port provides power supply to the device and reports the

host that a device was attached to it. When the host knows where the device is attached and at

which speed it operates, the enumeration starts as shown in Figure 20. The host recognize the

attached device by finding out, which line has a higher voltage when idling, performed by the port.

5 www.usb.org/developer/vendor/

Bachelor Thesis 5 Universal Serial Bus

Alan Koschel 18

Figure 20: Enumeration Process with Focus on the STM32F429IDISCOVERY

Bachelor Thesis 5 Universal Serial Bus

Alan Koschel 19

First, the host is going to send a GET_DEVICE_DESCRIPTOR request to EP0, in order to figure out

the maximum packet size of the default EP0. Therefore, EP0 initiate an interrupt to signal that a

setup packet arrived. The EP0 buffer will be read out and the device descriptor (Section 5.6.1) will

be written into the EP0 buffer. In case of several simultaneously attached devices, only one device

will reply to address 00h because the host can enumerate only one device at a time.

Second, after the host received the device descriptor, the host prompts the port to reset the device

to ensure that it is in a known state when proceeding. Although it is not required by the USB 2.0

specification.

Third, the host will assign an unique address to the device by sending a SET_ADDRESS request.

Until the request was processed, the communication takes place through the default address. EP0

generates an interrupt. Then the buffer will be read out and regarding to this request, the new
address will be set. Subsequently a zero-length-packet will be loaded into the EP0 buffer to

confirm the transaction. The new address will be used until the device is going to be attached or

rebooted.

Fourth, by means of sending a GET_DEVICE_DESCRIPTOR request again, the host starts to learn

about the device properties, i.e., basic information and number of possible configurations the

device can have as mentioned in Section 5.6. The procedure on device side is the same as the first

GET_DEVICE_DESCRIPTOR request.

Fifth, the host sends a GET_CONFIGURATION_DESCRIPTOR request to select a suitable driver for

the device. On the device side an EP0 interrupt will be triggered, then the EP0 buffer will be read

out. According to the request, the configuration descriptor (Section 5.6.2) will be loaded into the

EP0 buffer. The configuration descriptor contains also the interface (Section 5.6.3) and endpoint

(Section 5.6.4) descriptors.

Sixth, the host is looking for a suitable driver on the basis of the descriptors. If the device is already

known by the host, the host will find its information in the Microsoft Windows Registry and load

the assigned driver. Otherwise an INF file will assign a driver as mentioned in Section 4.1.

Seventh, the host sends a SET_CONFIG request to select a configuration, e.g., MTP or scanning.

Therefore the EP0 buffer initiate an interrupt and then the buffer will be read out. According to

the request, the appropriate configuration, in our case MTP, will be initialized. The bulk and

interrupt endpoints, described in Section 5.5, will be activated and the device can fulfill its

function. In conclusion, a zero-length-packet will be loaded into the IN EP1 buffer.

Bachelor Thesis 6 Media Transfer Protocol

Alan Koschel 20

6 Media Transfer Protocol

MTP was developed as an extension of the Picture Transfer Protocol (PTP) and makes it possible

to exchange a bunch of different file types between different devices. MTP acts as an interface and

is associated with the storage of a device. Commonly smartphones and digital cameras are the

main target where MTP operates as software deployment. The main objective is to release only

insensitive data, e.g., videos or music files to the host without exposing the physical file system.

This is part of the thesis because Marquardt GmbH wants to integrate MTP into their HMI device

family. The objective is to demonstrate the basic functioning of MTP by running the associated

MTP responder stack [3] on the STM32F429IDISCOVERY development board (Section 3.1). In case

of USB it is not possible to simply debug the running software, because the host expects responds

in a certain period of time which takes place in a range of milliseconds. To gather some more
detailed information during the execution of the whole functioning, some outputs where placed

between the code lines. The outputs were made through UART over an USB to serial cable, which

was used to connect the development board with the computer. Therefor see Section 3.

6.1 Comparison to PTP

MTP is based on PTP and extend it in a way that is capable to operate with much more different

data types. PTP was designed to copy photos from a digital camera and store them for example on

a computer. It is only able to provide photographic images such as JPEG files. Moreover, MTP

provides a bunch of different file types, e.g., different music, video or text file types and much more.

MTP, as well as PTP, is standardized by the USB Implementers Forum as Still Image Capture Device

class for USB.

6.2 Comparison to Mass Storage Device Class

The Mass Storage Device Class (MSC) takes the lead at compatibility. Whereas MTP has a lack of

supported devices, MSC is nearly supported everywhere. Devices like DVD players or car stereos

do not support MTP and are only capable to read files from a MSC device, e.g., USB memory sticks.

Some operating systems, e.g., Windows 7 and later versions support MTP natively. Other

operating systems, e.g., Linux or MacOS, can be updated to support MTP.

MSC devices represent the storage itself and expose it to the host. That means that data will be

read or written directly on the storage system. Before MTP was integrated into mobile devices,

their storage was handled as USB MSC. Therefor commonly a mobile device had two different

storages. One storage for sensitive data and applications and the second storage for media data,

accessible by the host. From the beginning, a vendor had to define how much storage the device
will provide for sensitive data and on the other side for media data. Those limitations can lead to

storage problems and since MTP, the storage will be represented as one storage for all data. MTP

does not represent the storage itself but provides an interface to it. In contrast to MSC, the user of

a portable device can access to it while it is connected to a host.

Besides the MSC device, a MSC host exists, too. The MSC host operates as a system to which a MSC

device can be attached. Then the MSC host is able to read data from the device as well as to write

data on the device.

Bachelor Thesis 6 Media Transfer Protocol

Alan Koschel 21

6.3 Windows Driver for MTP

Windows provides natively the Windows Portable Device drivers to support MTP in Windows 7

and later versions, referring to Section 4. For previous versions of Windows, Microsoft provides

the Media Transfer Protocol Porting Kit6. This driver supports communication over USB, IP and

Bluetooth. Moreover, the WPD driver supports communication with storage devices and music

players.

6.4 Object Handles

Object handles represent a logical object on the device, using the UINT32 type. They will be created

on-demand, by establishing a connection. In case of disconnection, the object handles expire and

have to be created each time the device will be connected to a host. The device, also responder, is

responsible to provide these object handles, allocated to logical objects on the device. An object

handle is unique, related to the logical storage of the device.

6.5 Operating Principle

MTP operations occur between an initiator and a responder. In our case, the host is the initiator

and the device is the responder. The host initiates all actions with the responder and controls the

flow of operations. Furthermore, the initiator enumerates (Section 5.9) the responder. On the

other side, the responder only sends responses to operations sent by the initiator. The whole

communication is based on what was considered in Section 5.

The following operating principles were logged and analyzed by means of the

STM32F429IDISCOVERY development board (Section 3.1) and its MTP responder stack that we

put into operation [3].

6 https://www.microsoft.com/en-in/download/details.aspx?id=19153

Bachelor Thesis 6 Media Transfer Protocol

Alan Koschel 22

6.5.1 MTP Responder

The MTP responder stack on the STM32F429IDISCOVERY (Section 3.1) development board

complies with the MTP responder stack described in [6]. As seen in Figure 21, the commands were

transmitted over USB. As described in Section 5.4, the endpoints will trigger interrupts to signal

incoming data. Then the data will be processed by the MTP responder stack, which is running in

a loop. It examines incoming data by means of a lookup table for proper commands or if some

specific flags have been set. Such flags indicate if the device is ready to receive new messages or

has to prepare further data packets to send. In case of proper commands, which are defined in the

MTP Responder Codes [6] and operate as clear commands to initiate activities on the device, the

commands will be processed and when necessary interact with the coupled storage to prepare

new data for transmission or execution of activities, e.g., deleting, renaming or copying data.

Figure 21: MTP Responder Stack STM32F429IDISCOVERY, inspired by [6]

Bachelor Thesis 6 Media Transfer Protocol

Alan Koschel 23

6.5.2 Read Memory

Figure 22 illustrates how the initiator wants to learn about the content of the device. Usually the

initiator wants to know about the device' content after the enumeration (Section 5.9). The

command GetObjectHandles queries the responder to identify the number of objects and confirm

with a MTP_OK packet. Then the initiator wants to know about where the storage directory begins,

by sending a GetObjectPropValue command. Therefor the responder replies with a data packet,

containing the directory in an array with the number of objects. Next the initiator requests the

data format of the objects by sending a GetObjectPropDesc command. The responder then starts

at the beginning of the directory and gathers information about the specific object on the device

and replies with the data. Lastly, a GetObjectInfo command queries the responder to retrieve the

whole binary data and reply to the initiator.

Figure 22: MTP Read Memory Instructions

Bachelor Thesis 6 Media Transfer Protocol

Alan Koschel 24

6.5.3 Delete Objects

As seen in Figure 23, the initiator sends a DeleteObject command to delete data on the device. The

responder releases the allocated storage and confirm with a MTP_OK packet. Next the initiator

sends a GetStorageInfo command to learn about a storage area on the device, therefore the

responder replies with a data packet containing the information.

Figure 23: MTP Delete Object Instructions

Bachelor Thesis 6 Media Transfer Protocol

Alan Koschel 25

6.5.4 Rename Objects

First of all, the initiator sends a SetObjectPropValue command to indicate that the next data packet

will contain the value to change a specific property of an object, as seen in Figure 24. Subsequently

the initiator sends the ObjectPropName. The responder receives the new object name to change

the specific object and executes the operation. To confirm the operation the responder replies

with a MTP_OK packet. By means of a GetObjectPropValue command, the initiator queries the

responder to confirm the change, by sending a packet with the new object name. Lastly, the

initiator wants to gather all binary data about the specific object by sending the GetObjectInfo

command. Then the responder gathers all data and loads them into the EP IN buffer.

Figure 24: MTP Rename Object Instructions

6.5.5 Download Object from Device

As illustrated in Figure 25, the initiator sends a GetObject command to download a specific object

from the device. Therefor the responder prepares a data packet and loads the binary data into the

EP IN buffer.

Figure 25: MTP Download Object from Device Instructions

Bachelor Thesis 6 Media Transfer Protocol

Alan Koschel 26

6.5.6 Upload Object to Device

First, the initiator initiates to upload a specific object, by sending a SendObjectInfo command. By

sending the second SendObjectInfo command with object data, the responder creates a new

directory as well as a new object to store the information and confirms with a MTP_OK packet.

Then, more binary data will be send by the initiator, indicated by SendObject command. The binary

data will be stored in the new object. The responder confirms with a MTP_OK packet.

Furthermore, the initiator sends a SetObjectPropValue to change specific properties of the specific

object and the responder confirms with a MTP_OK packet again. Lastly, the initiator wants to learn

about the uploaded object in the storage area of the device and sends a GetObjectInfo command to

gather the new information about the object. The responder prepares a data packet with all binary

data and loads it into the EP IN buffer.

Figure 26: MTP Upload Object to Device Instructions

Bachelor Thesis 7 Windows Hardware Certification Kit

Alan Koschel 27

7 Windows Hardware Certification Kit

The Windows HCK is designed to test different systems, e.g., devices and drivers, based on the

Windows Requirements. Succeeded tests guaranty a reliable and compatible system on the

operating system which was tested against. To minimize development effort, costs and errors, it

would be an advantage to develop hardware, software and drivers among the Windows

Requirements concerning the system in development.

While a device is connected to the HCK set-up, it recognizes all available functions. By means of

the available functions, the HCK determine which tests must run to verify them. Each test is bound

to a requirement that specify which functionality a system must provide to fulfill the standard.

The HCK was designed to verify systems with Windows 7 and 8.1 operating system and is operable

on Windows Server releases from Windows Server 2008 R2 to Windows Server 20127.

The latest version is called Hardware Lab Kit and provides, besides various updates and

improvements, a test environment for Windows 10 and Windows Server 2016 Operating system.

We have chosen the HCK because Windows 7 was already available and the development

department was developing on Windows 7.

7.1 Test Concept

The Windows HCK test setup consist at least of two components, the HCK test server and one or

more test computers. This is required because the test computer is not operable while running

tests.

7.1.1 HCK Test Server

It comprises two components. Windows HCK Studio and Windows HCK Manager. The HCK Studio,

which is a management tool, is capable to select and run tests on the selected test computer.

The Manager software manages the tests that runs on test computers. A test server can be

associated with many test computers.

7.1.2 Test Computer

The test computer is responsible for running the tests, selected by the test server. Each one can

be differently configured, e.g., operating system, hardware setups or drivers which depends on

the test scenarios. For example, a test computer can be running Windows 10 and a printer is

connected to it while another test computer can be running Windows 8 and sets a self-written

driver under test. Additionally, a HCK Client, which is stored on the test server, must be installed

on the test computer for connectivity and identification purposes. In case of testing devices, the

device under test (DUT) must be connected to the test computer. Test computers can only be

associated with one test server.

7.1.3 Deployment

The number of computers those are necessary for the setup, depends on the deployment scenario.

There are two different deployment scenarios, a domain-joined environment and a workgroup

environment.

7 https://msdn.microsoft.com/en-us/library/windows/hardware/jj124068(v=vs.85).aspx

Bachelor Thesis 7 Windows Hardware Certification Kit

Alan Koschel 28

A domain-joined environment consists at least of three computers. Those are a test server and a

test computer which are connected to a domain controller. In a workgroup environment there is

no domain controller and it consists at least of two computers. A test server and a test computer

which are connected to each other. The used test set-up is built up in a workgroup environment

that we will bring into focus in Section 7.2. We proceed with a workgroup environment because

it was not necessary to set up the environment on a network to operate with a distant computer.

Thus, the workgroup was set up on two computers on one spot. Additionally, it was not necessary

to provide the test environment to external offices or other developers.

7.1.4 Test Levels

HCK tests are subdivided in six levels. In Table 5 are four of them mentioned, because level five

and six are not essential and just comprise optional tests.

Table 5: HCK Test Levels [7]

Test Level Description

Basic These are simple and direct tests for developers to run quickly and catch
fundamental issues early on.

For example, developers are actively working on their device/driver/systems
and are in the process of adding functionality. Developers are expected to test
their drivers intermittently during development with regression style tests.

Functional These are feature level test. At this stage, all functionality should be complete.

For example, partners are required to run more rigorous testing at this stage
to test the full functionality of their device/driver/system. If their
device/driver/system passes all feature tests, then the device/driver/system
is considered feature-complete.

Reliability These are stress level test. These tests may require special setup and
requirements.

At this stage, your device/driver/systems are fully functional and should be
tested under stress scenarios. The goal here is to ensure the reliability of the
drivers/devices/systems.

Certification These are all test required for Windows Certification.

At this stage, you are ready to submit your drivers/devices/systems for
certification. If you passed all previous levels (basic, functional, reliability),
this stage should be simple.

Bachelor Thesis 7 Windows Hardware Certification Kit

Alan Koschel 29

7.2 Test Environment

Two computers were connected directly via an Ethernet crossover cable, which will be used to

connect the same type of devices. The DUT was attached to the test computer via micro USB 2.0

(Figure 27).

The task concerning the test environment, comprise to install and set up the HCK test server, HCK

Studio, and HCK Manager and on the other side the HCK Client on the test computer.

7.2.1 HCK Test Server and HCK Client

The HCK test server is set up on a machine running Windows Server 2008 R2 Standard 64-Bit that

runs HCK Studio and HCK Manager. On the other side the test computer is running Windows 7

Professional 64-Bit that runs the HCK Client. It is necessary that the operating system running on

the HCK test server is a version of Windows Server. As mentioned before in Section 7, depending

on the Windows Server version, there are more or less compatible Windows versions to test

against.

7.2.2 HCK Studio

The HCK Studio and HCK Manager can be downloaded from Microsoft8 directly from the test

server. To install the programs, it is necessary and important that the operating system is running

the English version of Windows Server. Within the machine pool in HCK Studio, the test computer

should be visible and in the Ready state for interaction as seen in Figure 28.

Figure 28: HCK Studio Machine State

8 https://developer.microsoft.com/en-us/windows/hardware/windows-hardware-lab-kit

Figure 27: HCK Test Environment

Bachelor Thesis 7 Windows Hardware Certification Kit

Alan Koschel 30

Besides the default machine pool, it is possible to create additional machine pools. Each test

computer can only be assigned to one machine pool. The first step, to initiate a test, is to create a

project with a specific name. A test computer can be assigned in more than one project. Second, a

list from the test computer, with attached hardware and their assigned driver become available,

to select which system should be tested. Figure 29 shows the project Loop Holzer that concerns

the DUT. Display Premium and USB-Verbundgerät were selected and concerning MTP and USB

related to the DUT.

Figure 29: HCK Studio Available Systems

In the Tests tab, all tests for a selected system will be listed. By running one or more tests, they

will get into a schedule and assigned to all machines that are included in the machine pool.

Moreover, the tests can be separated by selecting a specific test level. The Graphical User Interface

(GUI) comprise current information about the tests and the test computer, the current system

settings and the test status as seen in Figure 30.

Figure 30: HCK Studio Test Status & Client

Bachelor Thesis 7 Windows Hardware Certification Kit

Alan Koschel 31

Furthermore, when a test completes, the results are shown in the Results tab. Each test case can

be opened up and contains a listed view about each time the test was running. Inside each test

case is a detailed view about the test sequence, information if the test has passed or failed and a

created log with detailed information about the results, referring to.

Figure 31: HCK Studio Test Results Tab

All in all, the HCK Studio software is only the GUI to manage the machine pool and control which

test is supposed to run on a machine pool.

Bachelor Thesis 7 Windows Hardware Certification Kit

Alan Koschel 32

7.2.3 HCK Manager

On the other side, the HCK Manager takes care of the operable part concerning the HCK test server.

First of all, the Manager collects all information from the test computer about systems and

attached devices. It is responsible for scheduling the executed tests by HCK Studio and distribution

of each test computer in a machine pool. Second, the tests, which are referred to as jobs, will be

sending to the test computer. Its GUI provides the functionality to handle already scheduled jobs

or create new jobs. Otherwise the Manager will be triggered from the Studio to execute selected

tests. The test computer collects the results of a job in a log and sends it back to the Manager on

the test server after the job completed (Figure 32).

Figure 32: HCK Manager Operating Principle

Finally, the whole test process in the logs can be analyzed within the HCK Manager. They can be

accessed through the HCK Studio as mentioned before in Section 7.2.2. Nevertheless, it is not

necessary to interact directly with the Manager, in case of selecting and executing tests.

7.2.4 HCK Client

The HCK client is going to be installed from a shared network location which is located on the test

server. The location path is \\<NameOfYourTestServer>\HCKInstall\Client\Setup.exe and can be

called directly from the test computer. After the HCK Client installed successfully, the test

computer is going to be visible in the HCK Studio and in Ready state as seen in Figure 28.

7.2.5 Windows Server

"Windows Server is a group of operating systems designed by Microsoft that supports enterprise-

level management, data storage, applications, and communications. Previous versions of

Windows Server have focused on stability, security, networking, and various improvements to the

Bachelor Thesis 7 Windows Hardware Certification Kit

Alan Koschel 33

file system. Other improvements also have included improvements to deployment technologies,

as well as increased hardware support." [8]

7.2.6 DUT

The DUT is the HMI device for Pedelecs from Marquardt GmbH. It displays driver information e.g.

current speed, statistics, driven kilometers, remaining distance and provides configuration

options e.g. reset statistics, language or unit settings etc. through a 3.5" TFT Full Color Display [9].

It is connected via micro USB 2.0 to the test computer and in addition it provides the USB protocol

MTP that is implemented as an USB custom class. Having taken these factors into account, the

objectives are to set USB and MTP under test in Windows HCK.

Figure 33: HMI Device Marquardt GmbH

7.3 Hardware Test Categories

The Windows Certification Program provides many tests for any feature, associated with devices

attached to the test computer. Those tests are divided in six different levels and organized into

hardware test categories. In case of the objective relating to this chapter, verification of USB and

MTP, we will only discuss the hardware test cases for USB and MTP.

7.3.1 Device Connectivity Tests

These should be the first tests before starting to test any other features of the DUT. Without a

constant connection, nothing else can be tested. All in all, there are nine of 30 tests associated to

the DUT. Therefore, the test cases examine the DUT if it responds properly to an unique assigned

address. Furthermore, the standard descriptor data respond is going to be checked and some

stress tests, i.e., Enumeration, disable and enable operations under permanent load.

7.3.2 Device Fundamentals Tests

In general, this category tests device fundamentals. In total there are five specific tests which tests

the fundamentals of USB and MTP. The tests verify the proper implementation and functionality

of UMDF and KMDF drivers (Section 4) concerning MTP.

7.3.3 Device Fundamentals Reliability Tests

This category belongs to the Device Fundamentals Tests category. It includes 48 tests therefrom

24 tests which fits in our test set-up. General I/O operations are going to be executed to verify that
the DUT was properly configured. This comprise operations like rebooting, disabling and enabling

the device.

Bachelor Thesis 7 Windows Hardware Certification Kit

Alan Koschel 34

7.3.4 Device Portable Tests

To run these tests the DUT must appear in the Device Manager under Portable Devices. It is

necessary that the Windows Class Driver for MTP is going to be used. In case of using a custom

INF file (Section 4.1) related to the DUT, the test is going to lead to a failure.

The MTP implementation on the DUT will be tested, to see if it is compliant with the Windows

implementation of MTP. When a device will be connected or disconnected through Plug and Play,

the Windows Media Device Manager (WMDM) application is going to start and updates the cache

device list with connected devices. The tests examine WMDM scenarios, i.e., content transfer,

device initialization and content cancelation for Portable Media Devices. Other tests verifying that

the DUT fulfills the Windows Hardware Certification requirements, which must work properly

with the Windows Portable Device API. This also includes specific MTP functionality tests, e.g.,

MultiSessions.

7.4 HMI Device Test Analysis

The successfully executed test cases confirm that the device provides read and write operations.

In detail, the Device Portable Tests confirm that the device and device driver in accordance with

the WPD scenarios operate properly at the WPD API level which comprise operations to explore

a device, send and receive content.

Furthermore, the Device Connectivity Tests that were executed successfully, verify that the
device responds properly to descriptor requests (Section 5.7) that contains correct data. Due to

that, the enumeration (Section 5.9) runs properly, verified by these tests, too.

Last, the Device Fundamentals and Device Fundamentals Reliability Tests, referred as DF in

Table 6, that were executed successfully, verify that Plug and Play operations do not lead to

errors and fundamental communication on WDF (Section 4) level will be performed properly

To consider the failed tests, we are going to explain the test case and lastly a solution that helps

to run the test successfully. To get an overview, the tests are going to be retrievable in Table 6

with detailed information.

Table 6: HMI Device List of Failed Tests

Test Name Hardware Category Target Test Level

DF - Reinstall with IO Before and
After

Device Fundamental
Reliability

MTP Certification

WDF - Check KMDF Coinstaller
Version Test

Device Fundamentals MTP Certification
Functional

WDF - Check UMDF Coinstaller
Version Test

Device Fundamentals MTP Certification
Functional

USB-IF Certification Validation Test
(Device)

Device Fundamentals USB Certification

USB Serial Number Device Connectivity USB Certification

WPD Compliance Tests - Events
(Manual)

Device Portable MTP Certification
Functional

WPD Compliance Stress Tests Device Portable MTP Certification
Reliability

MTP Compliance Test - Core - Device
Properties

Device Portable MTP Certification
Functional

Bachelor Thesis 7 Windows Hardware Certification Kit

Alan Koschel 35

Test Name Hardware Category Target Test Level

MTP Compliance Test - Core -
Miscellaneous

Device Portable MTP Certification
Functional

MTP Compliance Test - Core - Object
Properties

Device Portable MTP Certification
Functional

MTP Compliance Test - Core -
Operations

Device Portable MTP Certification
Functional

MTP Compliance Test - Core - Plays
For Sure

Device Portable MTP Certification
Functional

MTP Compliance Test - Core -
Recommended

Device Portable MTP Certification
Functional

MTP Compliance Test - Core - Service
Fundamentals

Device Portable MTP Certification
Functional

MTP Compliance Test - Core - Service
Identification

Device Portable MTP Certification
Functional

MTP Compliance Test - Core - Service
Miscellaneous

Device Portable MTP Certification
Functional

MTP Compliance Test - Core - Service
Operations

Device Portable MTP Certification
Functional

MTP Compliance Test - Core -
Transport

Device Portable MTP Certification
Functional

MTP Compliance Test - Core -
Unsupported

Device Portable MTP Certification
Functional

MTP Compliance Test - Requirements
- Core

Device Portable MTP Certification
Functional

Bachelor Thesis 7 Windows Hardware Certification Kit

Alan Koschel 36

7.4.1 DF – Reinstall with IO Before and After

In this test scenario the test computer is going to uninstall and reinstall the driver for the DUT to

verify that no other device or driver is going to be affected. When the test starts, a

preinstallscan.xml file will be created and collects all the information about connected devices

before the test process starts. When completing the test, a postinstallscan.xml file will be created

and collects all the information about connected devices. The two files will be compared, in order

to examine if the reinstallation process had any effect on devices or drivers. A failed test result

represents that there is a difference between the preinstallscan.xml and postinstallscan.xml files.

The shown error message in the report WDTF_DRIVER_SETUP_DEVICE :

DriverSetupDevice::Install() call class installer HRESULT=0x800F0228 describes, that there are no

existing compatible drivers for the DUT. The test result is not really surprisingly because the DUT

will not be automatically recognized by Windows. This is based on the false USB class code that

will be provide in the configuration descriptor from the device as seen in Figure 34. The valid class

codes were mentioned in Section 4.1.

Figure 34: Device Manager, USB Class Codes from DUT

But how can we deal with this issue? The DUT was made operable by setting up Windows to

handle the device as a MTP device over the Device Manager. But still the class codes in software

should be changed, instead it is necessary to provide a custom INF file to allocate the correct

driver. Moreover, the created files, preinstallscan.xml and postinstallscan.xml, were both equal to

each other, thus the case of difference of the files can be excluded.

7.4.2 WDF – Check UMDF Coinstaller Version Test

The test ensures that the drivers, assigned to the DUT, are signed. While the executed job was

looking for the device with VID: 0421 and PID: 0485 an error occurred. In fact, this is exactly what
should happen because the DUT driver was not installed properly, as mentioned in Section 7.4.1.

The DUT has the VID: 28FE and PID: 1125. But where does the other ID's come from?

Since the mentioned install procedure, the MTP driver is related to the standard INF file from

Windows that contains the given ID's.

Bachelor Thesis 7 Windows Hardware Certification Kit

Alan Koschel 37

7.4.3 WDF – Check KMDF Coinstaller Version Test

See Section 7.4.2 WDF – Check UmdF Coinstaller Version Test.

7.4.4 USB Serial Number

Some devices must provide an unique serial number that will be tested, e.g., Bluetooth or mass

storage devices, except MTP. All in all, this is supposed to fail.

7.4.5 WPD – Compliance Tests – Events (Manual)

The test forces the DUT to reset, to verify that the device works properly with the WPD stack. It is

important that the DUT is now allowed to be unplugged or turned off.

If the DUT is unplugged or turned off, a WPD_EVENT_DEVICE_REMOVED event is triggered. To run

the test successfully, the test computer expects a WPD_EVENT_DEVICE_RESET event instead. To

sum up, a reset event should not be confused with a hardware or power-on reset that pulls down

V-Bus power. Instead a reset pulls down D- and D+ pin (Section 5.2) for ten milliseconds, which

initiate the enumeration procedure.

As a result, the test failed. Therefore, a software reset implementation is not implemented and the

DUT is not able to execute a reset.

7.4.6 WPD – Compliance Stress Tests

By exercising the driver, this test verifies that the driver complies with the Windows Hardware

Certification requirements. Device and driver are going through different scenarios, e.g., object

hierarchy enumeration (Section 5.9), object deletion, object resource operation and power

management. Unlike to the test results concerning other tests, there is no log file that helps to

analyze the test scenario and find the errors.

Therefore, we can only assume what went wrong, due to the proper functionalities. Since the

enumeration process on the test computer works properly and a test case, called USB Enumeration

Stress (Win7) 9, was completed successfully, we can exclude a failure in the enumeration process.

Furthermore, the test forces the transmission of object properties that works fine on the test

computer. Then, during the test process, objects are written to the device and read from device. A

failure in this process is unlikely, since this is working properly by manual interaction with the

DUT. Next, deletion of objects works properly, too.

In conclusion, we can narrow down the source of errors to content type and format requirements.

In detail, this means that possibly some content types and formats are not supported, which are

listed below.

• WPD_CONTENT_TYPE_AUDIO (Describes the general type)

• WPD_OBJECT_FORMAT_WMA (Windows Media Audio format)

• WPD_OBJECT_FORMAT_MP3 (Audio format)

• WPD_OBJECT_FORMAT_WMV (Windows Media Video format)

• WPD_OBJECT_FORMAT_BMP (Windows Bitmap, image format)

• WPD_OBJECT_FORMAT_EXIF (Exchangeable File Format, image format)

9 The USB Enumeration Stress (Win7) test enumerates the DUT n times.

Bachelor Thesis 7 Windows Hardware Certification Kit

Alan Koschel 38

• WPD_OBJECT_FORMAT_GIF (Graphics Interchange Format, image format)

• WPD_OBJECT_FORMAT_ICON (Windows Icon format)

• WPD_OBJECT_FORMAT_JFIF (JPEG Interchange Format, image format)

• WPD_OBJECT_FORMAT_JP2 (JPEG2000 Baseline File Format, image format)

• WPD_OBJECT_FORMAT_JPX (JPEG2000 Extended File Format, image format)

• WPD_OBJECT_FORMAT_PNG (Portable Network Graphics, image format)

• WPD_OBJECT_FORMAT_TIFF (Tag Image File Format, image format)

7.4.7 MTP Compliance Test – Core – Service Operations

This test ensures that the DUT is using the MTP class driver and verifies compliance with the

Windows implementation of MTP. The DUT will be recognized by the test computer as an active

MTP device with VID: 28FE and PID: 1125.

The test server holds a mtptest.inf file which contains the ID's assigned to the test devices. While

trying to update this file, the process failed. In this case the INF file, related to the driver, does not

contain the VID and PID of the device that was recognized by the enumeration process and leads

to an error. Consequently, this is based on what was mentioned in Section 7.4.1 because Windows

was prompted to refer its INF file. Due to the error code 0x103, which means that "No more data

is available." [10], it seems applicable.

The following tests are included in the same hardware test category and failed for the same

reason. In case of a lack of a description for each followed test in HCK it is only possible to list

them.

• MTP Compliance Test – Core – Transport

• MTP Compliance Test – Core - Service Miscellaneous

• MTP Compliance Test – Core - Service Identification

• MTP Compliance Test – Core - Service Fundamentals

• MTP Compliance Test – Core - Plays For Sure

• MTP Compliance Test – Core - Operations

• MTP Compliance Test – Core - Object Properties

• MTP Compliance Test – Core - Miscellaneous

• MTP Compliance Test – Core - Recommended

• MTP Compliance Test – Core - Unsupported

• MTP Compliance Test – Core - Device Properties

7.4.8 MTP Compliance Test – Requirements – Core

The test verifies if core requirements for MTP devices are supported.

See Section 7.4.7 MTP Compliance Test – Core – Service Operations.

Bachelor Thesis 8 Conclusion

Alan Koschel 39

8 Conclusion

As a result, the USB stack, as well as the MTP responder stack, were clarified and explained in their

function. Illustrations clarify various procedures to understand the different functions.

First, we documented the concept of Windows driver, because our evaluation platform is

Windows 7. Moreover, this is fundamental to understand how Windows recognizes USB

applications. Without drivers we are not able to use them.

Furthermore, we analyzed the USB stack and pointed out that all data between the host and a

device will be transmitted through endpoints. They serve as buffer, which are used from the host

and the device. They are placed on the device as hardware and were driven from both. The host is

using them to send data to the device and vice versa, but in detail the function of the device only

writes and reads data on the buffer. Basically, the transmission will be initiate by the hardware

itself. There are also various transfer types for different applications, for example transferring

sensitive data or just media. In the end the enumeration is illustrated that explains how Windows

detects an attached device to load an appropriate driver.

Based on USB, the MTP responder stack was analyzed, too. MTP applications need several drivers

to be recognized on an operating system, which are natively on Windows 7. Additionally, we

discussed the main differences of MTP and MSC and pointed out the big difference. By means of

the STM32F429IDSCOVERY development board, which was running the MTP application, we

achieved to analyze the operating principle and illustrated the processes in a clear manner.

Lastly, on the basis of the achieved knowledge about USB and MTP, a test environment, based on

Windows Hardware Certification Kit, was set up, with the objective to set a HMI device, from

Marquardt Verwaltungs GmbH, under test. All test cases are predefined and directly executable

without making many modifications. Finally, the test cases were successfully executed and

subsequently their results were analyzed. We were able to test a device to find out what was

missing and what operated properly, in case of USB and MTP. By considering the successfully

executed tests, it is verified that the device provides read and write operations. Descriptors

contain correct data and were transmitted in case of descriptor requests properly, which lead

additionally to a proper enumeration. The failed tests prove that the DUT has a lack of appropriate

drivers. Windows is not able to install the appropriate driver because the DUT delivers the wrong

USB class codes, during the enumeration, which do not comply with the MTP class codes. Next the

DUT's software is not able to perform a software reset to reinitiate the enumeration, without

pulling the bus power low. Perhaps the DUT does not support some specific file formats, but in

case of a non-existing log file, regarding the specific test, it is not possible to verify why the test

failed. It was only possible to narrow down the source of errors.

Subsequent works could use this thesis to get more in-depth with the MTP responder stack. They

could start to analyze the detailed data transfer, by means of the appended MTP responder stack

for the STM32F429IDISCOVERY development board and try to figure out how data packets are

built up in detail. In the end a MTP implementation could be developed from scratch.

If the Windows Hardware Certification Kit is going to be used by companies to verify their devices

and systems, it would be recommendable to automate the testing, in case of a greater extent. This

would be possible by using written scripts to accelerate specific test cases for lots of devices and

systems.

Bachelor Thesis 9 Summary

Alan Koschel 40

9 Summary

The concrete task was to analyze the USB stack as well as the MTP responder stack by means of

the STM32F429IDISCOVERY development board. Concerning this matter, both had to be clarified

in a clear manner and emphasized by illustrations. Then a test environment had to be set up, which

allows to set an USB device, running a MTP responder stack, under test. The test results had to be

evaluated.

By means of the USB MTP application, running on the development board, and additional placed

UART outputs between the code lines, it was easier to understand the processes, while the

application was operating. It was necessary to avoid to place much outputs, because the USB

communication must be executed in a specific time. For the test environment the Windows Server

2008 R2 operating system had to be set up to run the Windows Hardware Certification Kit. Then

predefined test cases were able to be executed and to evaluate the subsequent test results.

The outcome is an overview about the USB stack and MTP responder stack and emphasized by

illustrations to help to understand the operating principle of both. A test environment was set up

with a detailed description. We were able to test a HMI device successfully and to evaluate the test

results. In conclusion, then, it is clear that the HMI device test results reveal that they are based

on driver issues, because the device is using an incorrect USB class specification code. This causes

that the host is not able to recognize the DUT and to select an appropriate driver.

Bachelor Thesis Bibliography

Alan Koschel V

Bibliography

[1] Teledyne LeCroy, "Product Analyzers USB," w. D. w. M. w. Y.. [Online]. Available:

http://teledynelecroy.com/protocolanalyzer/protocoloverview.aspx?seriesid=414&capi

d=103&mid=511. [Accessed 01 August 2017].

[2] STMicroelectronics, "UM1734 User Manuel, STM32Cube USB device library," w. D. May

2015. [Online]. Available:

http://www.st.com/content/ccc/resource/technical/document/user_manual/cf/38/e5/

b5/dd/1d/4c/09/DM00108129.pdf/files/DM00108129.pdf/jcr:content/translations/en.

DM00108129.pdf. [Accessed 26 August 2017].

[3] Sebastian, "MTP Responder Stack for STM32F429IDISCOVERY," [Online]. Available:

private communication. [Accessed 15 May 2017].

[4] C. Peacock, "USB Functions, Beyond Logic," 17 September 2010. [Online]. Available:

http://www.beyondlogic.org/usbnutshell/usb3.shtml#Endpoints. [Accessed 17 May

2017].

[5] C. Peacock, "The Setup Packet, Standard Device Requests, Beyond Logic," 24 June 2011.

[Online]. Available: http://www.beyondlogic.org/usbnutshell/usb6.shtml. [Accessed 22

June 2017].

[6] Microsoft, "download.microsoft.com," w. D. January 2012. [Online]. Available:

https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0ahUKEwi

m1abj4tPVAhUGJ8AKHeTBDyEQFgg3MAI&url=http%3A%2F%2Fdownload.microsoft.co

m%2Fdownload%2F2%2F4%2FA%2F24A36661-A629-4CE6-A615-

6B2910A1367A%2FInside%2520MTP%2520Responder.pdf&usg=AFQjCN. [Accessed 13

July 2017].

[7] Microsoft, "HCK Testing Concepts, Microsoft Developer Network," Microsoft

Coorperation, w. D. w. M. w. Y.. [Online]. Available: https://msdn.microsoft.com/en-

us/library/windows/hardware/hh998767(v=vs.85).aspx. [Accessed 02 July 2017].

[8] Microsoft, "Windows Server, Microsoft Developer Network," w. D. w. M. w. Y.. [Online].

Available: https://msdn.microsoft.com/en-us/library/dn636873(v=vs.85).aspx.

[Accessed 26 July 2017].

[9] Marquardt GmbH, "Marquardt," w. D. w. M. w. Y.. [Online]. Available:

https://www.marquardt.com/download/datenblaetter.html. [Accessed 27 July 2017].

[10] Microsoft, "System Error Codes, Microsoft Developer Network," Microsoft, w. D. w. M. w.

Y.. [Online]. Available: https://msdn.microsoft.com/en-

us/library/windows/desktop/ms681382(v=vs.85).aspx. [Accessed 21 July 2017].

