
electronics

Article

A Compact Coprocessor for the Elliptic Curve Point
Multiplication over Gaussian Integers

Malek Safieh, Johann-Philipp Thiers and Jürgen Freudenberger *

Institute for System Dynamics (ISD), HTWG Konstanz, University of Applied Sciences,
78462 Konstanz, Germany; msafieh@htwg-konstanz.de (M.S.); jthiers@htwg-konstanz.de (J.-P.T.)
* Correspondence: jfreuden@htwg-konstanz.de; Tel.: +49-7531-206-647

Received: 9 November 2020; Accepted: 30 November 2020; Published: 2 December 2020
����������
�������

Abstract: This work presents a new concept to implement the elliptic curve point multiplication
(PM). This computation is based on a new modular arithmetic over Gaussian integer fields.
Gaussian integers are a subset of the complex numbers such that the real and imaginary parts
are integers. Since Gaussian integer fields are isomorphic to prime fields, this arithmetic is suitable
for many elliptic curves. Representing the key by a Gaussian integer expansion is beneficial to reduce
the computational complexity and the memory requirements of secure hardware implementations,
which are robust against attacks. Furthermore, an area-efficient coprocessor design is proposed
with an arithmetic unit that enables Montgomery modular arithmetic over Gaussian integers.
The proposed architecture and the new arithmetic provide high flexibility, i.e., binary and non-binary
key expansions as well as protected and unprotected PM calculations are supported. The proposed
coprocessor is a competitive solution for a compact ECC processor suitable for applications in small
embedded systems.

Keywords: elliptic curve cryptography; elliptic curve point multiplication; Gaussian integers;
Montgomery modular reduction; processor; resource-constrained systems

1. Introduction

Many resource-constrained systems, such as embedded systems, still rely on symmetric
cryptography for message authentication. For digital signatures and key exchange protocols,
asymmetric cryptography is required. However, software implementations of public-key algorithms
such as the Rivest-Shamir-Adleman (RSA) algorithm or elliptic curve cryptography (ECC) may be too
slow on small embedded systems. Such systems benefit from hardware assistance, i.e., coprocessors
optimized for public-key operations. For applications in embedded systems, ECC algorithms dominate,
because shorter key lengths are required [1–6].

In this work, we investigate the elliptic curve cryptography over Gaussian integers.
Gaussian integers are a subset of complex numbers such that the real and imaginary parts are integers.
Due to the isomorphism between Gaussian integer rings and rings over ordinary integers [7,8],
this principle is suitable for many cryptographic systems. It was shown in [9–12] that a significant
complexity reduction can be achieved for the RSA cryptographic system using Gaussian integers.
Similarly, Rabin cryptographic system was previously considered over Gaussian integers in [13,14].
In the context of ECC, arithmetic over complex numbers was proposed to speed up the point
multiplication [15–19]. However, to the best of our knowledge, no ECC hardware implementation
over Gaussian integers exists. We propose a compact ECC processor design and demonstrate that the
Gaussian integer arithmetic provides high flexibility.

The operation that dominates the execution time of ECC algorithms is the point multiplication,
i.e., kP, where P is a point on the elliptic curve and k is an integer. The point multiplication is typically

Electronics 2020, 9, 2050; doi:10.3390/electronics9122050 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-5913-4981
http://dx.doi.org/10.3390/electronics9122050
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/12/2050?type=check_update&version=2

Electronics 2020, 9, 2050 2 of 21

implemented based on the binary expansion k = ∑r−1
i=0 ki2i of the integer k with binary digits ki ∈ {0, 1},

where r is the length in bits and kr−1, kr−2, . . . , k0 is the binary representation of the key (the integer k).
Using the Horner scheme the point multiplication can be calculated as

kP =
r−1

∑
i=0

ki2iP = 2(. . . 2(2kr−1P + kr−2P) + . . .) + k0P, (1)

with the double-and-add method [17]. This method requires two different point operations, the point
addition and the point doubling operation.

Alternatively, τ-adic expansions of the integer k with a non-binary basis τ were proposed to speed
up the point multiplication (PM) and to improve the resistance against attacks [20–25]. This τ-adic
expansion results in the point multiplication

kP =
l−1

∑
i=0

κiτ
iP = τ(. . . τ(τκl−1P + κl−2P) + . . .) + κ0P, (2)

where the digits κi can be elements from complex number fields such as Gaussian, Eisenstein,
or Kleinian integers depending on the basis τ. Publications on hardware designs for non-binary-base
expansions mainly consider implementations for extension fields [26–28]. In [27], a multiple-base
expansion and arithmetic over Kleinian integers are used. The approach in [26,28] is based on a ternary
instead of a binary expansion. The corresponding point multiplication has a run-time of r/3 point
additions and r− 1 Frobenius mappings τP. This point multiplication with the ternary basis is much
faster than with a binary basis because the point-doubling operation is replaced by a simple Frobenius
mapping (Frobenius endomorphism) τP. For any point P(x, y) this mapping operation results in the
point (x2, y2), which requires only squaring of the field elements x and y. In [26,28], arithmetic over
binary extension field is considered, where the squaring operation is very efficient [29,30].

It was demonstrated in [22,24,25,31–34] that non-binary expansions are beneficial to harden
ECC implementations against attacks (SCA). Hardware implementations of the elliptic curve point
multiplication are prone to SCA. There exist different attacks in the literature such as timing attacks
(TA), simple power analysis (SPA), differential power analysis (DPA), refined power analysis (RPA),
zero value analysis, and methods based on machine learning [17,34–40].

In this work, we consider an endomorphism for prime fields [17], where the prime field is
represented by Gaussian integers. Hardware implementations can benefit from arithmetic over
Gaussian integers and non-binary expansion. In particular, we consider the PM for Gaussian
integers, where both the key as well as τ are Gaussian integers. The material in this paper was
presented in part at the Zooming Innovation in Consumer Electronics International Conference
2020 [41]. In [41] a new algorithm for the τ-adic expansion of the key k was presented. The resulting
expansion increases the robustness against TA and SPA and reduces the required memory size and
the computational complexity for a protected PM. In this study, we propose an ECC coprocessor
design for resource-constrained systems which employs a new concept for the Montgomery modular
arithmetic [42]. The proposed processor provides high flexibility, because it supports binary and τ-adic
key expansions and different PM algorithms. An unprotected PM with binary key expansions can
reduce the latency for applications where only a public key is employed, e.g., the verification of digital
signatures according to the NIST standard [43]. On the other hand, τ-adic expansions can reduce the
computational complexity and memory requirements for calculations protected against SCA. This is
beneficial for applications where the secret key is used, e.g., for the elliptic curve Diffie-Hellman
key exchange [17]. We demonstrate that the arithmetic over Gaussian integers can be implemented
as efficiently as ordinary Montgomery modular arithmetic over prime fields. The main aim of this
work is to demonstrate that Gaussian integer arithmetic is a competitive solution for compact ECC
processor designs.

Electronics 2020, 9, 2050 3 of 21

This publication is organized as follows. In Section 2, we review the Gaussian integers as
well as the ECC point multiplication for binary and τ-adic expansions. The resistance of the PM
implementation against attacks is discussed in Section 3. The Montgomery arithmetic over Gaussian
integers is considered in Section 4. It is demonstrated that the key expansion employing Gaussian
integers reduces the memory requirements and computational complexity compared with other
τ-adic expansions. In Section 5, we introduce the architecture of the hardware implementation
that supports Gaussian integer arithmetic. We discuss area requirements and throughput results
for field-programmable gate array (FPGA) implementations in Section 6. Finally, we conclude our
work in Section 7.

2. Point Multiplication over Gaussian Integers

In this section, we briefly review the Gaussian integers and the elliptic curve point multiplication
for the ordinary binary representation of the key. We demonstrate that the point multiplication over
Gaussian integers with a τ-adic key expansion can reduce the computational complexity. Furthermore,
we discuss suitable projective coordinates.

2.1. Gaussian Integers

Many ECC applications [5,6,32,44–48] consider arithmetic operations over ordinary integer
fields. On the other hand, it was previously shown that Gaussian integers are suitable for ECC
applications [42]. In this section, we review some important properties of the Gaussian integers.

Gaussian integers are a subset of the complex numbers with integers as real and imaginary parts.
The set of Gaussian integers is typically denoted by Z[i]. The modulo function of a Gaussian integer
x = c + di with i =

√
−1 and c, d ∈ Z is defined as

x mod π = x−
[

xπ∗

ππ∗

]
· π, (3)

where π is the complex divisor and π∗ its conjugate. The brackets [·] denote rounding to the closest
Gaussian integer [7], i.e., for x = c + di we have [x] = [c] + [d] i.

For primes p of the form p ≡ 1 mod 4, the set

Gp = {x mod π : x = 0, . . . , p− 1, x ∈ Z} (4)

is a finite field isomorphic to a prime field GF(p) over ordinary integers [7]. Hence, these sets are
suitable for ECC applications. In this case, p is the sum of two perfect squares, i.e., π = a + bi and
p = ππ∗ = |a|2 + |b|2 with integers a, b. An algorithm for finding a, b for a given prime is provided
in [7].

The inverse mapping of a Gaussian integer z ∈ Gp to an element z′ of the prime field GF(p) is
defined as

z′ = (zvπ∗ + z∗uπ) mod p, (5)

where the parameters u and v are calculated using the extended Euclidean algorithm [7].
Next, we consider an example to illustrate the modular arithmetic over Gaussian integer fields.

Example 1. Consider the set G17 with π = 4 + i. The elements of the Gaussian integer field according to (4)
are shown in Figure 1. Pleas note that the black markings are relevant for Example 3 and will be discussed in
Section 3.

For the ordinary integers x′ = 7 and y′ = 9 the corresponding Gaussian integers x, y ∈ G17 are
x = x′ mod π = − 1− 2i and y = y′ mod π = 2i. The sum z = (x + y) mod π = − 1 can also
be calculated as z = (x′ + y′) mod π = 16 mod π = − 1. Similarly, the product z = (x · y) mod
π = (4− 2i) mod π = − 1 + i can also be expressed as z = (x′ · y′) mod π = 63 mod π = − 1 + i.
Any Gaussian integer z ∈ G17 can be mapped to an element of the prime field z′ ∈ GF(17) using the parameters

Electronics 2020, 9, 2050 4 of 21

v = 2 + i and u = − 2. For instance, for z = −1 + i we have z′ = ((−1 + i) · vπ∗ + (−1− i) · uπ) mod
p = 63 mod 17 = 12.

-3 -2 -1 0 1 2 3

Real part

-3

-2

-1

0

1

2

3

Im
a

g
in

a
ry

 p
a

rt

Figure 1. The set of Gaussian integers for π = 4 + i.

The complex multiplication of two Gaussian integers x = c + di and y = e + f i can be efficiently
calculated as

xy = (v2 − v3) + (v1 − v2 − v3)i, (6)

where v1 = (c + d)(e + f), v2 = ce, and v3 = d f . Hence, the complex multiplication requires three
integer multiplications. We call such an integer multiplication an atomic multiplication. While the
complex multiplication over Gaussian integers does not provide a significant complexity reduction in
comparison with the multiplication over ordinary integers, the squaring of a Gaussian integer can be
simplified to

x2 = (c + d)(c− d) + (cd + cd)i, (7)

where only two atomic multiplications and three additions are required [11,12].

2.2. Elliptic Curve Point Multiplication for Binary Keys

The public-key cryptosystems using elliptic curves were introduced in [1,2]. In this work,
we consider the curve

y2 = x3 + αx + β, (8)

which is recommended for prime fields GF(p) [3,17]. The parameters α and β are non-zero constant
coefficients. The pair x and y defines the coordinates of a point P(x, y) on the curve.

The main operation of ECC is the PM k · P(x, y), i.e., multiplying a point P(x, y) on the elliptic
curve with a scalar k. There exist different algorithms for the ECC point multiplication [17,49].
These multiplication algorithms are based on two point operations, the point addition (ADD) and
the point doubling (DBL). Both operations depend on the form of the curve [17]. Let P(x1, y1) and
Q(x2, y2) be two distinct points on an elliptic curve (8), then the ADD operation R(x3, y3) = P(x1, y1)+

Q(x2, y2) is calculated as

x3 =

(
y2 − y1

x2 − x1

)2
− x1 − x2, y3 =

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1. (9)

Electronics 2020, 9, 2050 5 of 21

Similarly, the DBL operation R(x3, y3) = 2P(x1, y1) is defined as

x3 =

(
3x2

1 + α

2y1

)2

− 2x1, y3 =

(
3x2

1 + α

2y1

)
(x1 − x3)− y1. (10)

The calculations in (9) and (10) are typically performed using arithmetic over prime fields.
However, we consider arithmetic over Gaussian integer fields, where xi, yi, α ∈ Gp.

The number of required ADD and DBL operations per point multiplication depends on the
field size, but also on the PM algorithm. We first consider a binary representation of the key
(kr−1, . . . , k1, k0)2, where r is the number of binary digits of the key. The subscript indicates the
binary basis, i.e., ki ∈ {0, 1}. One example for the PM is presented in Algorithm 1, which requires r− 1
DBL and at most r− 1 ADD operations per PM, whereas the number of ADD operations varies with
the key. We focus on the worst-case complexity because most implementations will try to balance the
number of ADD operations in ordered to harden the calculation against timing attacks [32,33].

Algorithm 1 Point multiplication with binary key representation [32].

input: P, k = (kr−1, . . . , k1, k0)2
output: kP

1: R = P
2: for (i = r− 2 down to 0) do

3: R = 2R // DBL R
4: if (ki == 1) then

5: R = R + P // ADD R and P
6: end if
7: end for
8: return R

2.3. Elliptic Curve Point Multiplication for τ-Adic Expansion

Next, we consider Algorithm 2 which calculates the τ-adic expansion of an integer k [19].
Algorithm 2 is the ordinary division algorithm for base conversion when k and τ are both integers.
In this case, the algorithm results in an expansion with l ≈ log2(k)/ log2(τ) digits. However,
we consider the expansion where k and τ are Gaussian integers. In this case, the modulo function is
calculated according to (3) and the number of digits can be estimated as

l ≈
log2(|k|)
log2(|τ|)

. (11)

To see this, note that the division (z− κl)/τ results in a quotient which is a Gaussian integer.
Hence, the absolute value of the enumerator z− κl is diminished by a factor |τ| in each iteration.

From the estimate (11) follows that it is advantageous to represent the key as a Gaussian integer.
For any Gaussian integer ring x ∈ Gn the absolute value |x| is bounded by |x| ≤

√
n/2 [41].

Hence, we can estimate the maximum number of digits l for the τ-adic expansion of a key k ∈ Gn as

l ≈
log2(

√
n/2)

log2(|τ|)
=

log2(n)− 1
2 log2(|τ|)

=
log2(n)− 1

log2(|τ|
2)

. (12)

Note that the size of the keyspace is determined by the order of the elliptic curve. For a curve of
order n, we choose a Gaussian integer key from Gn or a smaller ring. The size of this ring should equal
the order to retain the size of the keyspace. Consequently, using k ∈ Gn approximately halves the

Electronics 2020, 9, 2050 6 of 21

number of digits compared with an expansion of an ordinary integer k′ ∈ Zn, which has a maximum
key length l ≈ log2(n)/ log2(|τ|).

Algorithm 2 τ-adic expansion of integers or Gaussian integers.

input: Gaussian integer k and base τ

output: τ-adic expansion k = (κl−1, . . . , κ1, κ0)τ

1: z = k
2: l = 0
3: while (z 6= 0) do

4: κl = z mod τ // remainder
5: z = z−κl

τ // quotient
6: l = l + 1
7: end while
8: return κl−1, . . . , κ1, κ0

In [17,50] several endomorphisms for different curves over prime fields were presented.
To demonstrate that a τ-adic expansion can reduce the computational complexity, we consider an
example based on the curve (8) with β = 0 and τ = 2 + i. The τ-adic expansion according to (2) results
in digits κi ∈ {0,±1,±i}. For the products κiP(x, y) we use the endomorphism iP(x, y) = P(−x, iy)
for prime fields [17,50]. Note that P(−x, iy) is a point on the curve (8) if P(x, y) is a valid point.
The negation of any point −P(x, y) is P(x,−y) according to [17]. Hence, for the products κiP(x, y)
with non-zero κi we have

P = P(x, y), (13)

−P = P(x,−y), (14)

iP = P(−x, iy), (15)

−iP = P(−x,−iy). (16)

Similarly, we can calculate the mapping τP as τP = (2 + i)P = 2P + iP. This product requires
a DBL and an ADD operation. The operation of the PM with this expansion is summarized in
Algorithm 3, where (κl−1, . . . , κ1, κ0)(2+i) denotes the pentavalent representation of the integer k.

Algorithm 3 Point multiplication with (2 + i) expansion.

input: P, k = (κl−1, . . . , κ1, κ0)(2+i)
output: kP

1: R = κl−1P;
2: for (i = l − 2 down to 0) do

3: Q = 2R // DBL R
4: R = Q + iR // ADD Q and iR
5: if κi 6= 0 then

6: R = R + κiP // ADD R and κiP
7: end if
8: end for
9: return R

Example 2. We consider the curve y2 = x3 + 3x over the field G17 from Example 1. Using the generator
point P(1, 2) we obtain a subgroup of order 13, which comprises the neutral element O and the following points

Electronics 2020, 9, 2050 7 of 21

(1, 2) (i, 1 + i) (−i,−1 + i) (−2i,−1− i) (−1,−2i) (2i, 1− i)
(2i,−1 + i) (−1, 2i) (−2i, 1 + i) (−i, 1− i) (i,−1− i) (1,−2).

Due to the order of the subgroup we choose a key from G13, i.e., k = 1 + i. Using Algorithm 2 with
τ = 2 + i, we obtain the expansion (κ1, κ0)τ = (1,−1)τ . With the starting point P(1, 2), the PM from
Algorithm 3 results in the point R(−2i, 1 + i).

Each iteration of Algorithm 3 is more complex than a single iteration of Algorithm 1. However,
the τ-adic expansion reduces the number of iterations that are required to calculate the PM. Again let
r be the number of bits for the binary key representation, and l the number of digits κi. We have
l ≈ r/ log2(5) ≈ 0.43r because of (12). Algorithm 1 requires a maximum of r− 1 iterations with one
DBL and one ADD operation in each iteration. Similarly, the point multiplication based on the τ-adic
expansion requires a maximum of l − 1 iterations, with one DBL and two ADD operations in each
iteration. This results in l − 1 ≈ 0.43r DBL operations and at most 2(l − 1) ≈ 0.86r ADD operations.
Hence, the number of both operations is reduced compared with the binary case. Similar considerations
hold for the Montgomery PM [49]. A comparison of the latencies of the PM using binary and τ-adic
expansion of the key are given in Section 6.

As proposed in [25], the non-binary expansions are beneficial to harden ECC implementations
against attacks based on power analysis. The products κiP(x, y) can be precomputed and stored in
memory. This minimizes the dependencies between arithmetic operations and the key.

2.4. Projective Coordinates

ADD and DBL are calculated using modular arithmetic operations, i.e., addition, subtraction,
multiplication, and inversion over prime or Gaussian integer fields. The most expensive operation is
the multiplicative inverse. To speed up the PM calculation, several point representation methods were
considered, such as the projective homogeneous coordinates [51] and the Jacobian coordinates [17,52].
These methods transform each point P(x, y) from affine to projective coordinates P(X, Y, Z), where the
computation of ADD and DBL is applied without inversion. After the computation of a PM,
the result is transformed back into affine coordinates by applying a single inversion. The number of
required modular arithmetic operations depends on the representation of the projective coordinates.
In this work, we consider the Jacobian coordinates [17,52], because fewer modular multiplications
are required.

A drawback of the representation in the projective coordinates is that many interim results have
to be stored. We can reduce the number of interim values by exploiting some properties of the Jacobian
coordinates. Consider the calculation of the ADD operation +P or +κiP in Algorithms 1 and 3.
In both cases, the second argument does not change throughout the PM algorithm. Hence, the point
P can be represented in affine coordinates with Z = 1 as P = P(X, Y, 1). Similarly, for κi = i holds
iP = P(−X, iY, 1) and so on. This enables a special ADD operation with reduced complexity [17,51,52].
In the following, this operation is denoted by SADD.

Transforming the result from projective to affine coordinates requires a single inversion.
This transformation is defined for the Jacobian coordinates as

x =
X
Z2 , y =

Y
Z3 . (17)

3. Resistance Against Side-Channel Attacks

In Section 5, we will discuss a flexible architecture for the PM calculation that can be used
with binary and non-binary key expansions and with different PM algorithms. A PM according
to Algorithm 1 with binary key expansions can be useful for applications where only a public
key is employed, e.g., the verification of digital signatures according to the NIST standard [43].
On the other hand, applications, where the secret key is used, require protection against side-channel
attacks. In this section, we discuss the resistance of the PM implementation against SCA. In particular,

Electronics 2020, 9, 2050 8 of 21

we consider the key expansion algorithm from [41] which improves the resistance against TA and
SPA. We demonstrate that this key expansion employing Gaussian integers reduces the memory
requirements and computational complexity compared with other τ-adic expansions. Algorithm 3 is
an example for such a point multiplication.

The SADD operation in Algorithm 1 is only calculated if the current bit of the binary key
ki 6= 0. Moreover, the DBL and SADD operations employ different numbers of arithmetic operations.
Hence, the power consumption and the execution time of an iteration depend on the current bit of the
secret key. Consequently, an attacker can estimate the current bit of the secret key by observing the
power consumption over time. To avoid TA and SPA attacks, many publications balance the number
of applied point operations using additional dummy ADD operations [22,24,31–34].

Similar to the binary PM, the conditional SADD operation is computed if κi 6= 0 for the PM
with τ-adic expansion in Algorithm 3. Note that the product κiP is a point multiplication, where the
associated number of DBL and SADD operations depends on the actual value of κi. Hence, an attacker
can infer κi by estimating the number of calculated DBL and SADD from the power consumption of
the device.

Improved robustness against SPA can be achieved by precomputing all possible products κiP and
storing these values in a memory [21,22,24,31]. Hence, by processing the PM according to Algorithm 3,
the corresponding product κiP is read from the memory. This results in fixed calculation times for the
SADD operation with any product κiP. Nonetheless, this concept is not protected against TA or SPA.
An attacker still can detect all values κi = 0 in an expansion, where the conditional SADD operation
is skipped.

To protect the PM against such attacks, Algorithm 4 was recommended in [41] for the key
expansions. This algorithm replaces all values κi = 0 by κi = τ. Hence, it determines a new base
conversion of the key excluding all zero elements. Consequently, the SADD operation in step 6 of the
PM in Algorithm 3 is calculated in each iteration independent of the value of κi and without the need
for dummy additions. This results in a constant calculation time for a PM and increases the robustness
against SPA and timing attacks. It was shown in [41] that the key expansions according to Algorithm 2
and Algorithm 4 result in the same point multiplication.

Algorithm 4 SPA resistance τ-adic expansion of a Gaussian integers (or an integer) k according to [41].

input: Gaussian integer k and base τ
output: τ-adic expansion k = (κl−1, . . . , κ1, κ0)τ

1: z = k
2: l = 0
3: while (z 6= 0) do

4: κl = z mod τ // remainder
5: if (κl = 0) then

6: κl = τ
7: end if
8: z = z−κl

τ // quotient
9: l = l + 1

10: end while
11: return κl−1, . . . , κ1, κ0

Algorithm 4 is suitable for ordinary integers and Gaussian integers. However, using Gaussian
integers reduces memory requirements and computational complexity. This complexity reduction
results from the symmetry of the Gaussian integer field. We illustrate this with the following example.

Example 3. We consider expansions with τ = 4 + i. The set of all possible digits κi is depicted in Figure 1.
The corresponding precomputations can be obtained as follows. First, the product 2P is calculated using a DBL

Electronics 2020, 9, 2050 9 of 21

operation. Next, we calculate the products κiP for the remaining κi digits in the first quadrant, i.e., (1 + i)P
and (1 + 2i)P, where we use two SADD operations and the endomorphism (15). The corresponding digits are
depicted with filled points in Figure 1. For the Gaussian integer κi = τ we have to calculate τP = (4 + i)P,
which requires additionally one DBL and one SADD operation.

Due to the symmetry of Gaussian integers [42], we can use (13) to (16) and the elements from the
first quadrant to determine all products κiP in the remaining quadrants without additional point operations.
Hence, the precomputations require a total of two DBL and three SADD operations.

Similarly, the number of stored precomputed points can be reduced using Gaussian integers.
For the hardware implementation, we use the sign-magnitude binary format for the real and imaginary
parts of a Gaussian integer. With this representation, it is sufficient to store the value τ and all values
κiP corresponding to the κi values from the first quadrant. These κi values are represented with filled
points in Figure 1 for τ = 4 + i. The different signs for real and imaginary parts resulting from (13)
to (16) are implicitly stored as parts of the κi values in the expansion, i.e., each κi value contains bits
addressing a value from the first quadrant and two bits for the signs of the real and imaginary parts.
This representation does not increase the number of bits for the expansion, but reduces the number of
stored precomputed points to (|τ|2 − 1)/4 for the products κiP and one point for the value τP.

We provide results for different τ values in Table 1. This table contains the number of stored
points, the number of iterations l per PM, and the number of multiplications M per PM. Table 1
illustrates the number of required multiplications M for the DBL and SADD point operations with and
without precomputations. Note that the parameter M denotes the number of multiplication equivalent
operations. For Gaussian integers, this number is approximated based on the complex squaring (7)
and multiplication (6), where the complexity of a complex squaring is about 2/3 of the complexity of a
complex multiplication.

Furthermore, results from [21] are included in the lower part of Table 1 for comparison.
The concept from [21] aims on reducing the required memory for the precomputed points. For instance,
compare for example τ = 4 + i with |τ|2 = 17 digits and the base w = 4 with 2w = 16 digits from [21].
The proposed approach reduces the number of stored points from 8 to 5. Moreover, the number of
multiplications is decreased by 30%.

Table 1. Performance results for different τ-adic expansions in comparison with [21] for a binary key
length r = 163 according to [41].

Reference |τ|2 or 2w Stored Points l M for PM M for PM and Precomputations

proposed 5 2 0.430r 2293 2311
proposed 17 5 0.245r 1622 1678
proposed 29 8 0.206r 1857 1953

proposed in [21] 4 2 0.506r - 3026
fixed-base [21] 4 3 0.506r - 3010

proposed in [21] 16 8 0.2515r - 2726
fixed-base [21] 16 15 0.2515r - 2710

proposed in [21] 32 16 0.203r - 2796
fixed-base [21] 32 31 0.203r - 2780

Finally, we note that the robustness against DPA attacks can be improved for τ-adic expansion
with τ ∈ Gp with the randomized initial point approach proposed in [21]. This approach increases the
number of the stored precomputed points, but still achieves a complexity reduction compared with
other non-binary expansions.

4. Montgomery Arithmetic over Gaussian Integers

In this section, we consider the Montgomery arithmetic over Gaussian integer fields. Furthermore,
we discuss some important properties of the proposed concept for hardware implementations.

Electronics 2020, 9, 2050 10 of 21

4.1. Montgomery Reduction over Gaussian Integers

After each complex multiplication or squaring operation, a reduction step is required to map
the result in a valid field representative. However, the modulo operation according to (3) is
computationally expensive. Alternatively, the Montgomery method can be applied to efficiently
determine this modulo operation [53].

Typically, the Montgomery reduction is considered in ECC applications to design
arithmetic that supports arbitrary prime fields [32,33,48,54]. In this case, the Montgomery
multiplication is based on arithmetic over a ring Rn that is isomorphic to the prime field
GF(p) = {x mod p : x = 0, . . . , p− 1, x ∈ Z}. Due to the isomorphism between prime fields GF(p)
and Gaussian integer fields Gp, the concept of Montgomery multiplication is applicable for Gaussian
integers. This was previously considered in [11,12,42].

Similar to [42] and without loss of generality, we consider π = a + bi with a > b ≥ 1. Then we
can reduce the complexity of the modulo reduction by replacing the expensive calculation x mod π

with x mod R, where the integer R is a power of two that satisfies R > N = a− 1. Note that x mod R
is a simple bitwise AND operation of the real and imaginary parts of x = c + di with R− 1, because R
is a power of two. Each Gaussian integer x ∈ Gp is mapped to the Montgomery domain as

X = xR mod π. (18)

The complex addition and subtraction in the Montgomery domain are equal to the modular
arithmetic of Gaussian integers, because

(X+Y) mod π = (xR+yR) mod π = (x+y)R mod π. (19)

However, the multiplication in the Montgomery domain requires a special reduction function

µ(XY) = XYR−1 mod π = xyR mod π, (20)

where the result is again in the Montgomery domain. The Montgomery reduction function µ(X) also
determines the inverse mapping, since µ(X) = xRR−1 mod π = x mod π. The generalization of the
Montgomery reduction algorithm from ordinary integers to Gaussian integers is not trivial. The final
reduction step of the algorithm uses the total order of integers. However, such an order relation does
not exist for complex numbers.

Two Montgomery reduction algorithms were presented in [42]. These algorithms differ in the norm
used for the final reduction step, where one uses the absolute value |x| =

√
|c|2 + |d|2 of x = c + di

and the other is based on the Manhattan weight ‖x‖ = |c|+ |d|. Calculating the Manhattan weight is
less complex than calculating the absolute value because only addition is required, whereas squaring is
necessary to determine |x|. To achieve a low complexity implementation of the proposed coprocessor,
we apply the algorithm based on the Manhattan weight.

Note that |x| ≤ ‖x‖ holds for any x which can be seen from squaring both sides of the inequality.
Furthermore, it was shown in [42] that for each Gaussian integer x ∈ Gp holds.

‖x‖ ≤ N = a− 1 (21)

The algorithm based on the Manhattan weight calculates a result satisfying this bound.
This precision reduction is described in Algorithm 5, where

α̂ = argmin
α∈Z[i]

‖q− απ‖ (22)

and π−1 mod R can be calculated using the extended Euclidean algorithm [7].

Electronics 2020, 9, 2050 11 of 21

Algorithm 5 Precision reduction for Gaussian integers using the Manhattan weight according to [42].

input: Z = XY, π′ = −π−1 mod R, R = 2l > N
output: M ≡ µ(Z) = ZR−1 mod π

1: t = Zπ′ mod R // bitwise AND of real and imaginary part with R− 1
2: q = (Z + tπ)div R // shift real and imaginary part right by l
3: if (‖q‖ ≤ N) then

4: M = q
5: else

6: determine α̂ according to (22)
7: M = q− α̂π
8: end if

This algorithm is useful when many successive multiplications have to be calculated which is
the case in ECC applications. However, not every Gaussian integer satisfying the bound in (21) is
necessarily an element of the set Gp. Hence, in the final calculation step, the correct representative can
be determined by minimizing absolute value as

α′ = argmin
α∈Z[i]

|q− απ|. (23)

This step is more complex but has to be performed only once per PM.

4.2. Simplifying the Reduction

The number of comparisons to calculate the offsets in (22) and (23) can be reduced based on
the signs of the real and imaginary parts of the Gaussian integer q, i.e., we can first determine the
corresponding quadrant and reduce the number of possible offsets [42].

For all interim results in the PM calculation, we can use the reduction based on the Manhattan
weight in Algorithm 5. Note that the reduction for interim results does not necessarily require the
offset that minimizes the Manhattan weight in (22). The aim of this reduction is finding a Gaussian
integer x̃ that is congruent to the actual representative x and has a Manhattan weight satisfying (21).
Hence, the reduction can be stopped once a value x̃ = q− απ with ‖x̃‖ ≤ N is found. We implement
an iterative reduction in microcode. Hence, the latency depends on the number of reduction steps
required until such a congruent x̃ is found.

To estimate the latency, a Monte Carlo simulation is conducted. Table 2 shows the results of this
simulation. This table provides the percentage of the number of required reduction steps for Gaussian
integers of different sizes. Each simulation considered 100.000 random values. The four columns on the
right in Table 2 present the percentage for the number of required offset reductions after an arithmetic
operation. Note that no reduction is required if the result q already satisfies ‖q‖ ≤ N. These results
illustrate that sequential processing of the offset reduction is reasonable because 91% of all operations
satisfy ‖q‖ ≤ N and require no reduction. Approximately 4–5% of all operations require a single
reduction step. Only in about 4% of all cases, two or three calculation steps were required.

Electronics 2020, 9, 2050 12 of 21

Table 2. Examples of primes of the form p = a2 + b2 suitable for ECC applications, and the percentage
of the number of required offset reductions for 100 k samples.

log2(p) a b No Reduction 1 Reduction 2 Reductions 3 Reductions

188 294 − 120 1 91.6% 4.2% 2.6% 1.5%
189 294 − 27 293 91.6% 4.5% 3.8% 0%
189 294 − 41 a− 1 91.6% 5.2% 1.6% 1.6%
252 2126 − 252 1 91.6% 4.1% 2.6% 1.6%
252 2126 − 422 3 91.6% 4.2% 2.5% 1.6%
252 2126 − 434 7 91.7% 4.1% 2.6% 1.6%
252 2126 − 116 113 91.6% 4.2% 2.6% 1.6%
253 2126 − 159 2126 − 76, 543, 210 91.6% 5.3% 1.6% 1.5%
253 2126 − 253 a− 1 91.6% 5.2% 1.6% 1.6%
380 2190 − 594 1 91.8% 4.1% 2.5% 1.6%
381 2190 − 84 a− 1 91.6% 5.3% 1.6% 1.6%

4.3. Bit Width for the Gaussian Integer Representation

Next, we determine the number of bits that are required to represent a Gaussian integer x ∈ Gp

with p = a2 + b2 and π = a + ib. In particular, we show that

m = log2

(⌊
a + b

2

⌋)
+ 1 (24)

bits for the real as well as for the imaginary part are sufficient, where b·c denotes the floor function.
In the following, Re {x} and Im {x} denote the real and the imaginary parts of the complex

number x, respectively. For x ∈ Gp, we have x = x mod π. Let c and d be the real and the imaginary
parts of x

π . From (3) follows [
xπ∗

ππ∗

]
= 0. (25)

This implies [c] = [d] = 0 and |c| < 1/2, |d| < 1/2. Hence, we have

|Re {x}| ≤
⌊

a + b
2

⌋
, |Im {x}| ≤

⌊
a + b

2

⌋
,

because Re {x} and Im {x} are integers. With the binary logarithm of these bounds, we can determine
the required number of bits considering an extra bit in (24) for the signs.

5. Hardware Architecture

In this section, we present an area-efficient processor architecture supporting Gaussian integer
arithmetic. We propose an application-specific instruction set processor based on a Harvard
architecture. This architecture aims at high flexibility, i.e., it supports different algorithms for point
multiplications. With this architecture, we can demonstrate that a protected PM using Gaussian
integers can be as fast as an unprotected binary PM.

The main components of the proposed Harvard architecture are depicted in Figure 2.
The coprocessor is divided into three main components, which are interconnected and controlled by a
control unit. The uppermost component in this block diagram is a program memory. The processor
is controlled by microcode instead of a finite state machine to enable different PM algorithms.
The undermost components are a data memory that stores the operands, interim, and final results of
the PM, and an arithmetic unit, which performs all required arithmetic operations. Since the carry
chains in the arithmetic unit limits the operating frequency, this unit determines the performance of
the whole coprocessor.

Electronics 2020, 9, 2050 13 of 21

Figure 2 includes four types of buses. The operation path, shown in black, defines the operation
to be performed by the arithmetic unit. The address paths define either the register addresses for the
arithmetic unit or the addresses for the data memory. For the data memory, two address paths are
concatenated to obtain 6-bit addresses. Please note the path, connected to the address 4 of the program
memory, can either be used as part of a data memory address or for further specification of arithmetic
instructions, depending on the operation.

The 64-bit data paths are shown in light gray. These directly connect the arithmetic unit and the
data memory to omit multiplexing in the control unit. The dark gray paths are for the initialization of
the memories before the processing of a PM. The data memory has to be initialized with necessary
values for computing the PM such as the domain parameters α, β, the point P, and the key k, while the
program memory has to be initialized with the microcode for the PM processing.

Figure 2. Block diagram of the ECC processor.

As mentioned above, the calculation in projective coordinates significantly reduces the
computational complexity. However, the computation with projective coordinates requires storage
for many interim results. Typically, these results are stored in registers to enable fast data access.
The proposed architecture stores these interim results in random accessible memory (RAM) because
RAM is more compact than registers. This also results in a compact control logic with very simple
data paths.

The data paths connect the RAM and the arithmetic unit. All data passes through the RAM,
hence no multiplexers are required to control the data flow. However, additional clock cycles are
required for each operation to read and store data. On the other hand, some arithmetic operations for
the PM processing are multicycle operations, where the additional cycles for data transfer are only a
small overhead. Moreover, reducing the logic results in a higher operating frequency that shortens the
latency for a PM.

The address of the program memory is defined by a program counter in the control unit, which is
not shown in Figure 2. Hence, each instruction is available for exactly one clock cycle. For multicycle
operations, as the multiplication a dummy operation no op is available. For branches, the program
counter can be set to a value specified in the corresponding instruction. For function calls within the
microcode a register is available, which can store the current value of the counter as return address.
After the function, the counter can be set to the value of this register using a return operation. Next,
we specify the three components of the proposed ECC coprocessor in more detail.

Electronics 2020, 9, 2050 14 of 21

5.1. Instruction Set Architecture

Table 3 presents all instructions for the proposed application-specific instruction set processor
using arithmetic over Gaussian integers. In total, 11 instructions are sufficient to control all
necessary operations for calculating a PM. Therefore, only four bits are considered to indicate the
requested operation.

Table 3. Definition of the instruction set.

Field 1 Field 2 Field 3 Field 4 Field 5
Operation Address Address Address Address/Control

4 Bits 3 Bits 3 Bits 3 Bits 3 Bits

read read address 1 read address 2
store store address 1 store address 2

branch memory address carry/sign/call

return -

no op -

add read address 1 read address 2 store address Manhattan

multiply - - - control

complement - - address switch sign

shift - - - 1 bit/8 bit

rotate - - - control

mod R - - - -

The operations read, store, branch, return, and no op are control instructions that are processed in
the control unit, while add, multiply, complement, shift, rotate, and mod R are arithmetic instructions that
are executed in the arithmetic unit.

The instruction read is used to read data from the RAM to the two input registers 1 and 2 in the
arithmetic unit. Similarly, the store instruction saves the two output registers 4 and 5 to the RAM.
Both operations require two addresses for the data memory. The data memory stores up to 64 variables,
hence six address bits are required. In Table 3 these addresses are represented by the combination of
two fields of three bits width.

The branch instruction is used for branches, loops, and function calls. By calling the branch
instruction, we set the program counter to the address defined in the memory addr. field if a specific
condition is fulfilled. Depending on the control bits this condition can be the carry bit or the sign of the
first register. For function calls no condition is required. Instead, the current program counter value is
written to a register as return address. Using the return operation this address can be written to the
program counter. The instruction no op is used when the arithmetic unit is busy. This is required for
multicycle operations.

The add instruction adds two m-bit numbers, which allows for a complex addition in two clock
cycles. Depending on the control bits this instruction can also add the absolute values to determine
the Manhattan weight in one clock cycle. The complement calculates the two’s complement of an m-bit
number. This complement instruction is required to transform to or from sign-magnitude representation
used for the multiplication. Moreover, it can change the sign of a number in sign-magnitude
representation by flipping the sign bit of a register. For subtraction, the complement instruction is called
before the add instruction. Subtraction could also be implemented as a combined adder-subtractor
logic requiring an additional subtraction instruction.

The multiply instruction performs an m/2-bit multiplication which requires four clock cycles.
The rotate instruction is used to shift the last two registers by m/2 bits, which allows for a faster m-bit

Electronics 2020, 9, 2050 15 of 21

multiplication using accumulation on these two registers. Each m-bit multiplication requires four
m/2-bit multiplications and some additions, i.e., for two m-bit numbers a, b we have

c = a · b =
(

a1 · 2
m
2 + a0

)
·
(

b1 · 2
m
2 + b0

)
= a1b12m + (a1b0 + a0b1) 2

m
2 + a0b0 (26)

where a0 and b0 denote the least significant half-words, a1 and b1 the most significant half-words of
a and b, respectively. The term (a1b0 + a0b1) could be written as ((a1 + a0)(b1 + b0)− a1b1 − a0b0),
which would reduce the number of multiplications to three. On the other hand, this would require
subtraction and a representation of negative numbers in the half-words. To avoid this we implement
the multiplication according to (26). To allow for a complex multiplication three m-bit multiplications
and some additions and subtractions are required according to (6).

The shift instruction is required for the division by R and can right-shift the last two registers by
either one or eight bits, depending on the control bits. For the modulo reduction, the mod R instruction
is used to perform bit-wise AND of the first and the last register. While the modulo R operation could
be implemented by truncating the result, we require the ability to use arbitrary R. Hence, we can load
R− 1 to the first register and call the mod R operation to calculate the last register modulo R.

5.2. Data Memory

We employ dual-port RAM (DP-RAM) to store variables and intermediate results, which enables
accessing the real and imaginary parts of each Gaussian integer simultaneously. Alternatively,
two smaller single port memories could be used in parallel. However, this would result in more
complicated microcode. We store the results of complex additions and subtractions before the reduction
in RAM. Hence, an additional carry bit is necessary, which increases the required bits for the real and
imaginary parts of Gaussian integers and consequently the word width of the RAM from (24) to

m = log2

(⌊
a + b

2

⌋)
+ 2 (27)

for the whole design.
For embedded systems, where the proposed architecture is supported as a coprocessor to a

primary processor, this DP-RAM may be shared with the primary processor. Note that a smaller word
width increases the likelihood that this DP-RAM can be shared because small embedded systems
typically do not provide memories with large word width. Consequently, using Gaussian integers
increases the likelihood that the RAM can be shared, due to the reduced word width of m ≈ r/2.

5.3. Arithmetic Unit for Gaussian Integer Fields

The arithmetic unit consists of five registers (reg.) of the length m, an adder, and a multiplier
(MUL), as shown in Figure 2. The adder is used for the instructions add, multiply, and complement to
minimize the area requirements.

The multiplication of two unsigned m/2-bit integers is implemented using the Karatsuba principal
(cf. (26)) as depicted in Figure 3. The operands are stored in the first two registers, which are connected
to the multipliers. We use four multipliers with a width of m/8 which achieves a good trade-off
between area requirements and latency. Register 2 is shifted by m/8 bits in each iteration to perform
a m/2-bit multiplication in four clock cycles. The partial results of the four multipliers are stored in
register 3. These results are then added to registers 4 and 5, which are used as accumulator registers.
As shown in Figure 3, registers 4 and 5 are applied to the adder with an m/8-bit shift, corresponding
to the m/8-bit shift of the input register. After an m/2-bit multiplication the accumulator registers
can be shifted by m/2-bit using the rotate instruction. This allows for an accumulation of the next
m/2-bit multiplication.

Electronics 2020, 9, 2050 16 of 21

Figure 3. Structure of the Karatsuba multiplier.

6. Results and Discussion

In this section, we present implementation results for the proposed processor architecture for
the Xilinx Virtex 7 FPGA. To the best of our knowledge, no ECC hardware implementation over
Gaussian integers exists. Hence, we compare these results with implementations over prime fields
from the literature. This comparison illustrates that the proposed architecture is a competitive solution
for a compact ECC processor. Yet more important, we compare the latency of a PM with binary
keys, according to Algorithm 1, with a PM using τ-adic key expansions, according to Algorithm 3,
to demonstrate that a protected PM using Gaussian integers can be as fast as an unprotected binary
PM or even faster.

All results are presented in Table 4, which is divided into two parts. In the upper part, the results
for the proposed architecture with different bit lengths are summarized. The lower part contains
results from the literature for comparison. The parameter r denotes the maximum key length in bits.
The hardware requirements are represented by the number of look-up tables (LUT), flip-flops (FF),
slices, and DSP units, as well as the RAM size. The maximum clock frequency is denoted by fclk.
Note that the number of inputs per LUT as well as the number of LUTs and registers per slice vary for
different FPGA devices. However, we can compare the total number of registers and memory size.

The proposed architectures were synthesized with and without the FPGA’s DSP units. However,
the architectures were not optimized for the provided DSP units. The number of flip-flops is dominated
by the five registers of the arithmetic unit which have a size of m bits. The RAM size is the sum of the
data and program memory sizes. A data memory with 38 words of m bits and a program memory with
950 words of length 16 bits are sufficient. Hence, the RAM requirements are dominated by the program
memory, since the arithmetic unit performs only very simple operations. Multiple instructions are
required to perform a complete arithmetic operation over complex numbers.

The proposed architecture is suitable for binary key representations and τ-adic expansions. Hence,
the latency values are provided for both representations, where we use τ = 2 + i and τ = 4 + i for
the τ-adic expansion. Similarly, we consider two different PM algorithms. One algorithm is protected
against timing and SPA attacks by balancing the number of ADD and DBL operations. The latency for
this algorithm is denoted by protected in Table 4. The results denoted by unprotected correspond to the
PM with the minimum number of ADD and DBL operations.

Electronics 2020, 9, 2050 17 of 21

Table 4. Results and comparison with other area efficient implementations.

τ/Ref. FPGA r LUT FF RAM [kbit] Slices DSP fclk [MHz]

PM latency [ms]
Protected/Unprotected

Binary τ-adic

τ = (2 + i) Virtex 7 189 2246 521 17.3 614 0 214 7.32/5.30 5.84/5.49
τ = (2 + i) Virtex 7 189 1540 521 17.3 426 4 227 6.90/5.00 5.51/5.18
τ = (4 + i) Virtex 7 189 1540 521 19.1 426 4 227 6.90/5.00 3.89/3.84
τ = (2 + i) Virtex 7 253 3140 678 18.5 847 0 173 12.11/8.77 9.67/9.09
τ = (2 + i) Virtex 7 253 1891 678 18.5 532 4 212 9.88/7.16 7.89/7.42
τ = (4 + i) Virtex 7 253 1891 678 20.4 532 4 212 9.88/7.16 5.58/5.50
τ = (2 + i) Virtex 7 381 5188 1008 20.8 1420 0 141 22.38/16.21 17.87/16.80
τ = (2 + i) Virtex 7 381 2769 999 20.8 765 8 180 17.53/12.70 14.00/13.16
τ = (4 + i) Virtex 7 381 2769 999 23.0 765 8 180 17.53/12.70 9.90/9.76

[55] Spartan 6
192
256 1990 1786 234 768 6 159

-/13.5
-/23.5 -

To evaluate the proposed architecture, we compare the implementation results with other
designs that employ the Montgomery modular arithmetic over ordinary integer fields GF(p) [33,55].
The design in [33] support primes up to 521 bits. It requires a smaller number of LUT, but more
flip-flops and a larger memory due to the larger key. For longer keys, the design in [33] results in
higher latency. Consider for example the key length r = 384. The protected PM from [33] requires
55.87 ms. The proposed design without DSP units requires only 17.87 ms for the protected PM with
τ = 2 + i and 9.9 ms for τ = 4 + i.

The design in [55] considers key lengths up to r = 256 and the unprotected PM. This design is
optimized for the use of DSP units which reduces the number of LUT. The number of LUT is similar
to the proposed design with key length r = 253 using DSP units. It employs much more flip-flops
and memory. The proposed architecture for r = 253 with 4 DSP units is faster for all considered
PM calculations.

The implementation results demonstrate that the latency of a protected PM with (2 + i)-adic
expansion is similar to the latency of an unprotected binary PM. The latency of the protected
τ-adic expansion is only 10% higher than the latency of unprotected binary PM. On the other hand,
the protected binary PM has latency values that are 25% larger than the results for the protected
τ-adic expansion. Note that the latency with τ-adic expansions can be further reduced with other
bases τ, i.e, the choice of τ enables a trade-off between speed and memory size. According to Table 1,
the base τ = 4+ i with |τ|2=17 reduces the computational complexity by 29% compared with τ = 2+ i,
at the cost of memory for three additional precomputed points. For instance, with τ = 4 + i and
r = 253 the implementation with DSP units achieves a latency of 5.58 ms for the protected PM and
5.5 ms for the unprotected PM, respectively. The memory size increases from 18.5 kbits to 20.4 kbits.
This PM is significantly faster than the results from [33,55]. In [32], an implementation for the Virtex
7 FPGA is reported that achieves a latency of only 1.96 ms for a protected PM with r = 256. However,
this implementation employs a much higher parallelization degree using 20 DSP units, i.e., five times
more DSP units than with the proposed design.

7. Conclusions

In this work, we have presented a new concept to implement the elliptic curve point multiplication.
This computation is based on a new modular arithmetic over Gaussian integer fields [42]. The proposed
coprocessor is flexible, i.e., it supports different point multiplication algorithms over prime fields.
The implementation results illustrate that the proposed concept is a competitive solution for a compact
ECC processor for applications in small embedded systems.

Moreover, the proposed architecture supports different ECC key representations with binary and
τ-adic expansions. We have demonstrated that it is beneficial to represent the key and the base τ as
Gaussian integers. This representation speeds up the PM computation. Furthermore, such τ-adic
expansions improve the robustness against TA and SPA attacks. The randomized initial point method

Electronics 2020, 9, 2050 18 of 21

from [56] can be applied to further strengthen the robustness against DPA, and RPA attacks. We have
demonstrated that the Gaussian integer representation reduces the number of stored points and the
computational complexity of such a protected point multiplication compared with other non-binary
key representations.

Gaussian integer fields can only be constructed for primes of the form p mod 4 = 1, hence a
generalization of this work to Eisenstein integers could be beneficial. Eisenstein integers are complex
numbers of the form x = a + bω, where ω = 1

2 ×
(
1 +
√
−3
)
, and Eisenstein integer fields can

be constructed for primes of the form p mod 6 = 1. An elliptic curve point multiplication using
Eisenstein integers was considered in [57] showing similar properties as the PM over Gaussian integers.
However, up to now no efficient modulo operation for Eisenstein integers is known. We believe that a
generalization of the Montgomery modular multiplication to Eisenstein integers would be a promising
direction for further research.

Author Contributions: The research for this article was exclusively undertaken by M.S., J.-P.T. and J.F.
Conceptualization and investigation, M.S. and J.F.; software and validation, M.S. and J.-P.T.; writing—review
and editing, M.S., J.-P.T. and J.F.; writing—original draft preparation and hardware, M.S.; supervision,
project administration, and funding acquisition J.F.; All authors have read and agreed to the published version of
the manuscript.

Funding: The German Federal Ministry of Economics and Technology (ZF4559701ED8) supported the research
for this article.

Acknowledgments: The authors would like to thank Hyperstone GmbH, Konstanz for supporting the research
for this article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Miller, V.S. Use of Elliptic Curves in Cryptography. In Advances in Cryptology—CRYPTO ’85 Proceedings;
Williams, H.C., Ed.; Springer: Berlin/Heidelberg, Germany, 1986; pp. 417–426.

2. Koblitz, N. Elliptic Curve Cryptosystems. Math. Comput. 1987, 48, 203–209. [CrossRef]
3. Krisell, M. Elliptic Curve Digital Signatures in RSA Hardware; Scholar’s Press: Mexico City, Mexico, 2012.
4. Esmaeildoust, M.; Schinianakis, D.; Javashi, H.; Stouraitis, T.; Navi, K. Efficient RNS Implementation of

Elliptic Curve Point Multiplication Over GF(p). IEEE Trans. Very Large Scale Integr. Syst. 2013, 21, 1545–1549.
[CrossRef]

5. Li, L.; Li, S. High-Performance Pipelined Architecture of Elliptic Curve Scalar Multiplication Over GF(2m).
IEEE Trans. Very Large Scale Integr. Syst. 2016, 24, 1223–1232. [CrossRef]

6. Rashidi, B.; Sayedi, S.M.; Rezaeian Farashahi, R. Efficient and low-complexity hardware architecture of
Gaussian normal basis multiplication over GF(2m) for elliptic curve cryptosystems. IET Circuits Devices Syst.
2017, 11, 103–112. [CrossRef]

7. Huber, K. Codes over Gaussian integers. IEEE Trans. Inf. Theory 1994, 40, 207–216. [CrossRef]
8. Freudenberger, J.; Ghaboussi, F.; Shavgulidze, S. New Coding Techniques for Codes over Gaussian Integers.

IEEE Trans. Commun. 2013, 61, 3114–3124. [CrossRef]
9. Elkamchouchi, H.; Elshenawy, K.; Shaban, H. Extended RSA cryptosystem and digital signature schemes in

the domain of Gaussian integers. In Proceedings of the 8th International Conference on Communication
Systems (ICCS), Singapore, 28–28 November 2002; Volume 1, pp. 91–95.

10. Koval, A.; Verkhovsky, B.S. Analysis of RSA over Gaussian Integers Algorithm. In Proceedings of the
Fifth International Conference on Information Technology: New Generations (ITNG), Las Vegas, NV, USA,
7–9 April 2008; pp. 101–105.

11. Koval, A. Security Systems Based on Gaussian Integers: Analysis of Basic Operations and Time Complexity
of Secret Transformations. Ph.D. Thesis, New Jersey Institute of Technology, Newark, NJ, USA, 2011.

12. Koval, A. Algorithm for Gaussian Integer Exponentiation. In Information Technology: New Generations;
Springer International Publishing: Manhattan, NY, USA, 2016; pp. 1075–1085.

http://dx.doi.org/10.1090/S0025-5718-1987-0866109-5
http://dx.doi.org/10.1109/TVLSI.2012.2210916
http://dx.doi.org/10.1109/TVLSI.2015.2453360
http://dx.doi.org/10.1049/iet-cds.2015.0337
http://dx.doi.org/10.1109/18.272484
http://dx.doi.org/10.1109/TCOMM.2013.061913.120742

Electronics 2020, 9, 2050 19 of 21

13. Bhargava, K.; Soni, V. A novice cryptosystem based on nth root of Gaussian integers. In Proceedings of the
2017 International Conference on Computer, Communications and Electronics (Comptelix), Jaipur, India,
1–2 July 2017; pp. 271–274.

14. Awad, Y.; El-Kassar, A.N.; Kadri, T. Rabin Public-Key Cryptosystem in the Domain of Gaussian Integers.
In Proceedings of the International Conference on Computer and Applications (ICCA), Beirut, Lebanon,
25–26 July 2018; pp. 336–340.

15. Koblitz, N. An elliptic curve implementation of the finite field digital signature algorithm. In Proceedings of
the Advances in Cryptology (CRYPTO), Santa Barbara, CA, USA, 23–27 August 1998; pp. 327–337.

16. Solinas, J. Efficient Arithmetic on Koblitz Curves. Des. Codes Cryptogr. 2000, 19, 195–249. [CrossRef]
17. Hankerson, D.; Menezes, A.J.; Vanstone, S. Guide to Elliptic Curve Cryptography; Springer: New York, NY,

USA, 2003.
18. R. Avanzi, C.H.; Prodinger, H. Redundant τ-adic expansions I: Non-adjacent digit sets and their applications

to scalar multiplication. Des. Codes Cryptogr. 2011, 58, 173–202. [CrossRef]
19. Heuberger, C.; Mazzoli, M. Symmetric digit sets for elliptic curve scalar multiplication without

precomputation. Theor. Comput. Sci. 2014, 547, 18–33. [CrossRef] [PubMed]
20. Jarvinen, K.; Tommiska, M.; Skytta, J. A scalable architecture for elliptic curve point multiplication.

In Proceedings of the IEEE International Conference on Field- Programmable Technology, Brisbane, NSW,
Australia, 6–8 December 2004; pp. 303–306.

21. Hedabou, M.; Pinel, P.; Bénéteau, L. Countermeasures for Preventing Comb Method Against SCA Attacks.
In Information Security Practice and Experience; Deng, R.H., Bao, F., Pang, H., Zhou, J., Eds.; Springer:
Berlin/Heidelberg, Germany, 2005; pp. 85–96.

22. Okeya, K.; Takagi, T.; Vuillaume, C. Efficient Representations on Koblitz Curves with Resistance to Side
Channel Attacks. In Information Security and Privacy; Boyd, C., Gonza’lez Nieto, J.M., Eds.; Springer:
Berlin/Heidelberg, Germany, 2005; pp. 218–229.

23. Thériault, N. SPA Resistant Left-to-Right Integer Recodings. In Selected Areas in Cryptography; Preneel, B.,
Tavares, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 345–358.

24. Tao, Z.; Mingyu, F.; Xiaoyu, Z. Secure and efficient elliptic curve cryptography resists side-channel attacks.
J. Syst. Eng. Electron. 2009, 20, 660–665.

25. Liu, S.; Yao, H.; Wang, X.A. SPA Resistant Scalar Multiplication Based on Addition and Tripling
Indistinguishable on Elliptic Curve Cryptosystem. In Proceedings of the 10th International Conference
on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), Krakow, Poland, 4–6 November 2015;
pp. 785–790.

26. Lutz, J.; Hasan, A. High performance FPGA based elliptic curve cryptographic co-processor. In Proceedings
of the International Conference on Information Technology: Coding and Computing (ITCC), Las Vegas, NV,
USA, 5–7 April 2004; Volume 2, pp. 486–492.

27. Dimitrov, V.S.; Järvinen, K.U.; Jacobson, M.J.; Chan, W.F.; Huang, Z. FPGA Implementation of Point
Multiplication on Koblitz Curves Using Kleinian Integers. In Cryptographic Hardware and Embedded
Systems—CHES 2006; Goubin, L., Matsui, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 445–459.

28. Li, L.; Li, S. Improved Algorithms and Implementations for Integer to τ NAF Conversion for Koblitz Curves.
IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 154–162. [CrossRef]

29. Hossain, M.S.; Saeedi, E.; Kong, Y. High-Speed, Area-Efficient, FPGA-Based Elliptic Curve Cryptographic
Processor over NIST Binary Fields. In Proceedings of the IEEE International Conference on Data Science and
Data Intensive Systems, Sydney, Australia, 11–13 December 2015; pp. 175–181.

30. Safieh, M.; Thiers, J.P.; Freudenberger, J. Area Efficient Coprocessor for the Elliptic Curve Point Multiplication.
In Proceedings of the 12th International ITG Conference on Systems, Communications and Coding (SCC),
Rostock, Germany, 11–14 February 2019; pp. 1–6.

31. Möller, B. Securing elliptic curve point multiplication against side-channel attacks. In International Conference
on Information Security; Springer: Berlin/Heidelberg, Germany, 2001; pp. 324–334.

32. Amiet, D.; Curiger, A.; Zbinden, P. Flexible FPGA-Based Architectures for Curve Point Multiplication over
GF(p). In Proceedings of the Euromicro Conference on Digital System Design (DSD), Limassol, Cyprus,
31 August–2 September 2016; pp. 107–114.

http://dx.doi.org/10.1023/A:1008306223194
http://dx.doi.org/10.1007/s10623-010-9396-6
http://dx.doi.org/10.1016/j.tcs.2014.06.010
http://www.ncbi.nlm.nih.gov/pubmed/25190900
http://dx.doi.org/10.1109/TCSI.2017.2712716

Electronics 2020, 9, 2050 20 of 21

33. Salman, A.; Ferozpuri, A.; Homsirikamol, E.; Yalla, P.; Kaps, J.; Gaj, K. A scalable ECC processor
implementation for high-speed and lightweight with side-channel countermeasures. In Proceedings
of the International Conference on ReConFigurable Computing and FPGAs (ReConFig), Cancun, Mexico,
4–6 December 2017; pp. 1–8.

34. Goubin, L. A refined power-analysis attack on elliptic curve cryptosystems. In International Workshop on
Public Key Cryptography; Springer: Berlin/Heidelberg, Germany, 2003; pp. 199–211.

35. Kocher, P. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems.
In Proceedings of the Annual International Cryptology Conference, Santa Barbara, CA, USA,
18–22 August 1996.

36. Kocher, P.; Jaffe, J.; Jun, B. Differential Power Analysis. In Proceedings of the Annual International
Cryptology Conference, Santa Barbara, CA, USA, 15–19 August 1999.

37. Akishita, T.; Takagi, T. Zero-Value Point Attacks on Elliptic Curve Cryptosystem. In Information Security;
Boyd, C., Mao, W., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 218–233.

38. Mulder, E.D.; Örs, S.B.; Preneel, B.; Verbauwhede, I. Differential power and electromagnetic attacks on a
FPGA implementation of elliptic curve cryptosystems. Comput. Electr. Eng. 2007, 33, 367–382. [CrossRef]

39. Lerman, L.; Bontempi, G.; Markowitch, O. Side channel attack: An approach based on machine learning.
In Proceedings of the 2nd International Workshop Constructive Side-Channel Analysis and Security Design,
Darmstadt, Germany, 13–14 April 2011; pp. 29–41.

40. Maghrebi, H.; Portigliatti, T.; Prouff, E. Breaking cryptographic implementations using deep learning
techniques. In Proceedings of the International Conference on Security, Privacy, and Applied Cryptography
Engineering, Hyderabad, India, 14–18 December 2016; pp. 3–26.

41. Safieh, M.; Thiers, J.; Freudenberger, J. Side Channel Attack Resistance of the Elliptic Curve Point
Multiplication using Gaussian Integers. In Proceedings of the Zooming Innovation in Consumer
Technologies Conference (ZINC), Novi Sad, Serbia, 26–27 May 2020; pp. 231–236.

42. Safieh, M.; Freudenberger, J. Montgomery Modular Arithmetic over Gaussian Integers. In Proceedings of
the 24th International Information Technology Conference (IT), Zabljak, Montenegro, 18–22 February 2020.

43. Locke, G.; Gallagher, P. Digital Signature Standard (DSS); Standard FIPS PUB 186-3; National Institute of
Standards and Technology: Gaithersburg, MD, USA, 2009.

44. Schmalisch, M.; Timmermann, D. A reconfigurable arithmetic logic unit for elliptic curve cryptosystems
over GF(2m). In Proceedings of the 46th Midwest Symposium on Circuits and Systems, Cairo, Egypt,
27–30 December 2003; Volume 2, pp. 831–834.

45. Chelton, W.N.; Benaissa, M. Fast Elliptic Curve Cryptography on FPGA. IEEE Trans. Very Large Scale
Integr. Syst. 2008, 16, 198–205. [CrossRef]

46. Khan, Z.U.A.; Benaissa, M. Throughput/Area-efficient ECC Processor Using Montgomery Point
Multiplication on FPGA. IEEE Trans. Circuits Syst. II Express Briefs 2015, 62, 1078–1082. [CrossRef]

47. Khan, Z.U.A.; Benaissa, M. High-Speed and Low-Latency ECC Processor Implementation Over GF(2m) on
FPGA. IEEE Trans. Very Large Scale Integr. Syst. 2017, 25, 165–176. [CrossRef]

48. Roy, D.B.; Mukhopadhyay, D. High-Speed Implementation of ECC Scalar Multiplication in GF(p) for Generic
Montgomery Curves. IEEE Trans. Very Large Scale Integr. Syst. 2019, 27, 1587–1600.

49. Montgomery, P.L. Speeding the Pollard and elliptic curve methods of factorization. Math. Comput.
1987, 48, 243–264. [CrossRef]

50. Gallant, R.; Lambert, R.; Vanstone, S. Faster Point Multiplication on Elliptic Curves with Efficient
Endomorphisms. In Advances in Cryptology—CRYPTO 2001; Springer: Berlin/Heidelberg, Germany, 2001;
pp. 190–200.

51. Brier, É.; Joye, M. Weierstraß Elliptic Curves and Side-Channel Attacks. In Public Key Cryptography;
Naccache, D., Paillier, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 335–345.

52. Schinianakis, D.M.; Fournaris, A.P.; Michail, H.E.; Kakarountas, A.P.; Stouraitis, T. An RNS Implementation
of an Fp Elliptic Curve Point Multiplier. IEEE Trans. Circuits Syst. I Regul. Pap. 2009, 56, 1202–1213. [CrossRef]

53. Montgomery, P.L. Modular multiplication without trial division. Math. Comput. 1985, 44, 519–521. [CrossRef]
54. Ma, Y.; Zhang, Q.; Liu, Z.; Tu, C.; Lin, J. Low-Cost Hardware Implementation of Elliptic Curve Cryptography

for General Prime Fields. In Information and Communications Security; Lecture Notes in Computer Science;
Lam, K.Y., Chi, C.H., Qing, S., Eds. Springer International Publishing: Manhattan, NY, USA, 2016;
pp. 292–306.

http://dx.doi.org/10.1016/j.compeleceng.2007.05.009
http://dx.doi.org/10.1109/TVLSI.2007.912228
http://dx.doi.org/10.1109/TCSII.2015.2455992
http://dx.doi.org/10.1109/TVLSI.2016.2574620
http://dx.doi.org/10.1090/S0025-5718-1987-0866113-7
http://dx.doi.org/10.1109/TCSI.2008.2008507
http://dx.doi.org/10.1090/S0025-5718-1985-0777282-X

Electronics 2020, 9, 2050 21 of 21

55. Matutino, P.M.; Araújo, J.; Sousa, L.; Chaves, R. Pipelined FPGA coprocessor for elliptic curve cryptography
based on residue number system. In Proceedings of the International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS), Pythagorio, Greece, 16–20 July 2017;
pp. 261–268.

56. Itoh, K.; Izu, T.; Takenaka, M. Efficient Countermeasures Against Power Analysis for Elliptic Curve
Cryptosystems. In Smart Card Research and Advanced Applications VI; Quisquater, J.J., Paradinas, P.,
Deswarte, Y., El Kalam, A.A., Eds.; Springer: Boston, MA, USA, 2004; pp. 99–113.

57. Thiers, J.P.; Safieh, M.; Freudenberger, J. Side Channel Attack Resistance of the Elliptic Curve Point
Multiplication using Eisenstein Integers. In Proceedings of the IEEE 10th International Conference on
Consumer Electronics (ICCE), Berlin, Germany, 9–13 November 2020.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Point Multiplication over Gaussian Integers
	Gaussian Integers
	Elliptic Curve Point Multiplication for Binary Keys
	Elliptic Curve Point Multiplication for -Adic Expansion
	Projective Coordinates

	Resistance Against Side-Channel Attacks
	Montgomery Arithmetic over Gaussian Integers
	Montgomery Reduction over Gaussian Integers
	Simplifying the Reduction
	Bit Width for the Gaussian Integer Representation

	Hardware Architecture
	Instruction Set Architecture
	Data Memory
	Arithmetic Unit for Gaussian Integer Fields

	Results and Discussion
	Conclusions
	References

