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Abstract 
 

The effect on the mean-variance space of restrictions on a variable is investigated in this 
paper. A restriction may be the placing of upper and lower bounds on a variable. Another 
limitation is the loss of the continuity of a variable.  
Average marks for examinations are considered in an application of this limited mean-
variance space. In this case, the bounds are given by the highest and the lowest possible 
mark (e.g. 1.0 and 5.0). The limitation of the mean-variance space depends on the 
number of students who participate in the examination. The restriction of the loss of 
continuity is shown by the use of discrete marks (e.g. 1.0, 1.3, 1.7, 2.0, …). Furthermore, 
the Target-Shortfall-Probability lines are integrated into the mean-variance space. These 
lines are used to indicate the proportion of students who have good or very good marks in 
the examination. In financial markets, Target-Shortfall-Probability is used as a risk 
criterion.  
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1. Introduction 
 
The aim of most students is to leave university with very good examination results. In the past two 
decades the percentage of students with excellent marks has risen2. High tuition fees charged by 
universities have their own influence on this development, and seem to be part of modern society.3 
Today, the problem of the inflation of marks in examinations can also be observed in universities 
without tuition fees. There may be different factors affecting this problem. To study the inflation for 
different courses and examinations in a mean-variance space, this paper investigates the limitation of 
the space. The first restriction is based on the range of marks, which may be from 1.0 for the best 
exam paper to 5.0 for the worst. The second restriction occurs when the scale of marks is not 
continuous, such as when the marks may only have the following values: 1.0, 1.3, 1.7, 2.0, 2.3, 2.7, 
3.0, 3.3, 3.7, 4.0, 4.3, 4.7, 5.0. Both restrictions have an impact on the mean-variance space of the 
average marks in examinations.  
The mean-variance space with its limitations gives a framework for depicting the average marks for 
courses, and additionally offers the possibility of integrating the so-called “Target-Shortfall-Probability” 
lines (TSP lines).4 The position of these lines in the mean-variance space gives information about the 
proportion of students in an examination who have good or very good marks. The TSP is a risk 
criterion in financial markets and portfolio optimization.  
The effect of the first limitation will be discussed in chapters 3 and 4, while chapters 5 and 6 are 
dedicated to the TSP with respect to the second limitation of discrete marks.  
Although the variance of marks is observed and depicted, this paper does not recommend maximizing 
this criterion. Maximization would produce examinations where the only marks were 1.0 and 5.0. This 
could not be a desirable aim. 
 
Other measures of dispersion were not tested. The absolute deviation is less usual, and the 
recommendation would be to use the median of the marks instead of the mean. Furthermore, the 
integration of the TSP lines would not be possible. Coefficients of concentration5 and indexes to 
measure biodiversity6 were not used to measure the dispersion in the marks. These coefficients often 

                                                           
1 Schubert@HTWG-Konstanz.de 
2 Preuss R.: Zu gute Noten an deutschen Hochschulen, SZ, 11.11.2012, p. 1. 
3
 The problem of the inflation of the best grade points at universities in the USA seems to be caused by the character of 

American society (see Wallace, D. F., (2009), p. 145). 
4 See e.g. Schubert L. (2002).  
5 See e.g. Bamberg, G., Baur, F., Krapp M., (2012), pp. 22ff. 
6
 See e.g. Bouza Herrera, C., Schubert, L. (2003). 
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measure the deviation of equally distributed results, which is not a realistic assumption for the 
dispersion of marks.  
 
 
 
2. Applications of the mean-variance space 

 
The mean-variance space is well known in capital market theory. If portfolios of assets are to be 
efficient, the variance of these portfolios has to be minimized. The variance depends on the variance 
of the return on the single assets and also on the covariance between two assets.  
In this paper, the variance with respect to the standard deviation of the marks in an examination is not 
minimized. Instead, the maximal possible variance of the marks will be sought. Additionally, the marks 
have neither variance nor covariance.  
Figure 2-1 shows, for two assets A and B (with mean returns of 1% and 5%, equal standard deviation 
s=2 and covariance covAB=0), the efficient portfolios, which are on the “up” side of the minimal 
variance point (MVP).7 To illustrate the difference between this and the example used in this paper, 
the lowest mark is selected as 1.0 and the highest as 5.0. The curve of the maximization of the 
variance that is now depicted is a reverse of the curve of the portfolio example. The different forms of 
this curve will be derived in the following chapter.    
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Figure 2-1: Mean–Standard deviation space applied in the selection of portfolios and in the illustration of the average marks in 

an examination.  
 

 
 

3. The maximal standard deviation with marks from 1.0 to 5.0 
 
The maximal standard deviation for marks between 1.0 and 5.0 depends on the number n of 
participants in the examination. Therefore, the maximal standard deviation will be shown first with the 
mean 0.3x =  for an even and an odd number of participants, and then it will be shown in a more 
general way.   
 
For an even number n of participants:  
The maximal standard deviation always occurs when n/2 students score xi = 1.0 (i=1, …, n/2) and all 
the other entrants score xi = 5.0 (for i=n/2+1, …, n). The mean of the marks will in this case be: 
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7 Computation of the efficient frontier: see Grundmann, W., Luderer, B., (2003), pp. 146f.  
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For this mean, the variance is: 
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and the standard deviation s = 2 (see Figure 2-1).  
 
For an odd number n of participants:  
In this case, (n-1)/2 students get 1.0 and the same number get 5.0, and one student scores exactly 
3.0, to maximize the variance.  
 
The mean of the marks will also be: 
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For this mean, the variance is: 
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and the standard deviation 
n
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 as for the case of even numbers. As an 

example: if n=15 students participate in the examination, the maximal standard deviation of the marks 
would be about s=1.9322, and if n= 55 the maximal s would be 1.9817. 
 
To explore the maximal standard deviation for every mean 0.5x0.1 ≤≤ , the case of mean 1.0 is 
considered first; here, all students score xi=1.0 (i=1, …, n). To keep the maximal variance, we now 
change the mark of only one student by δ (0 ≤ δ ≤ 4). A change of δ=4 signifies that this student scores 
5.0 while the rest of the students score 1.0. Now we introduce the variable z, which counts the number 
of students with the mark 5.0. At the moment, z=1. From this point on, the mark of one more student 
who had scored 1.0 will be changed by δ, until (for δ=4) two students have 5.0 and z=2. From this the 
maximal standard deviation can be described until z=n-1 students score 5.0 and the mark of the last 
student has been changed by δ=4. This is equivalent to z=n students with 5.0 and δ=0. 
Analogously to equations (3-1) and (3-2) respectively, the mean and variance are:  
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can be computed for every n = 1, 2, 3, … , z = 0, …, n-1 and 0 ≤ δ ≤ 4. 
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In Figures 3-1 and 3-2, the mean of the evaluation marks for a term and the standard deviation are 
depicted for different numbers n of participants. With the mean 3.0, the differences described for the 
maximal variance for even and odd numbers n can be seen (see equations (3-2) and (3-4)).  
 
To construct the complete frontier, equations (3-5) and (3-6) are used.  
 
The following table 3-1 applies equations (3-5) and (3-6) to show examples for some n used in Figure 
3-2: 
 

n z δ mean variance std. dev. 
2 1 0 3.0000 4.0000 2.0000 
3 1 2 3.0000 2.6667 1.6330 
5 0 0 1.0000 0.0000 0.0000 
5 2 2 3.0000 3.2000 1.7889 
5 4 4 5.0000 0.0000 0.0000 
6 3 0 3.0000 4.0000 2.0000 
15 7 2 3.0000 3.7333 1.9322 
999 499 2 3.0000 3.9960 1.9990 

Table 3-1: Some examples for mean ),z,n(x δ  and variance s2(n,z,δ) 

 
To discuss the average mark in an examination, the reduced maximal standard deviation has to be 
respected for small numbers of participants (n ≤ 15). For bigger numbers, it is sufficient to use the 
maximal standard deviation depicted by the black line (n=1000). The line can be computed from 
equations (3-6) and (3-5). First, equation (3-6) is used with δ=0 to get the frontier of the maximal 
variance where the only possible marks are 1.0 and 5.0. The result is: 
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The variable z moves by discrete steps: z = 1, 2, …, n. The variance s2 in equation (3-7) depends on 
z/n ∈[0;1]. The mean described by equation (3-5) for δ=0 is:  
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or, rewritten for z/n: 
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From equation (3-9) the variance of equation (3-7) depends on z/n and can be transformed into:  
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   5x6x)x(s 22 −⋅+−= , with 0.5x0.1 ≤≤ .     (3-10a) 
 
In the final chapter below, a more general method will be used to get this frontier function. The 
examples in Table 3-2 show some applications of equation (3-10a). As in Figures 3-1 and 3-2, when 
the mean is 1.0 or 5.0 the standard deviation s = 0.00. The mean of 3.0 corresponds to the maximal 
standard deviation s=2.00. Above and below this point, the standard deviation shrinks.   
 
To estimate an “inner” curve, which describes for small n the maximal standard deviation (or, better, 
the minima of the maximal standard deviation) the equation (3-6) can again be used. To get the middle 
point of the different curve segments, the parameter δ is fixed at δ = 2. Furthermore, equation (3-5) 
has to be rewritten as 4/))1x(n(z δ−−⋅= (so 4/)2)1x(n(z −−⋅= ) and applied to  
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mean variance std. dev. 
5.00 0.00 0.00 
4.50 1.75 1.32 
4.00 3.00 1.73 
3.50 3,75 1.94 
3.00 4.00 2.00 
2.50 3.75 1.94 
2.00 3.00 1.73 
1.30 1.11 1.05 
1.00 0.00 0.00 

Table 3-2: The maximal mean-standard-deviation frontier using equation (3-10a) 
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Figure 3-1: Maximal standard deviation in the case of the even numbers n= 2, 6, 20, 1000 

 
substitute z in equation (3-6). After some transformations, the maximal variance for small n – 
characterized by this “inner” curve – is:  
 

   
n
4

5x6x)x(s 22
I −−⋅+−= , with (n ≥ 2) and 0.5x0.1 ≤≤ .   (3-10b) 

 
Equation (3-10b) is an approximation, which shifts the variance in equation (3-10a) by 4/n, to give an 
idea of where the maximal variance lies in the case of small n. For these cases, the variance lies in the 
area between the curves (3-10a) and (3-10b). For extreme examinations, with either only n scores of 
1.0 or only n scores of 5.0, the approximation of (3-10b) is not applicable , especially for very small n. 
This is because of the use of δ = 2 in the construction of the “inner” curve. For a mean of 1.0 or 5.0, sI

2 
would be negative. In Table 3-3, the differences in the standard deviation for n=∞ and very small n can 
be seen. With a mean 3.0 for n=∞ the standard deviation sI= 2.00, but this measure for n=5 or n=15 is 
reduced to sI=1.79 (or, respectively, sI=1.93). With a mean of 1.30, these differences are greater. For 
the case of n=∞ equation (3-10b) is identical to equation (3-10a). The inner curves for n=5, n=15 and 
n=∞ can be seen in Figure 3-3. The dotted line signifies the mean of 1.30 in the chart. 
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Figure 3-2: Maximal standard deviation in the case of the odd numbers n= 3, 5, 15 
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Figure 3-3: Inner curves of the maximal standard deviation for n=5 and n=15  
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number n mean variance std. dev. 

∞ 3.00 4.00 2.00 
100 3.00 3.96 1.99 
50 3.00 3.92 1.98 
20 3.00 3.80 1.95 
15 3.00 3.73 1.93 
5 3.00 3.20 1.79 

∞ 1.30 1.11 1.05 
100 1.30 1.07 1.03 
50 1.30 1.03 1.01 
20 1.30 0.91 0.95 
15 1.30 0.84 0.92 
5 1.30 0.31 0.56 

Table 3-3: The maximal mean-standard deviation frontier using equation (3-10b) (for mean 1.3 see dotted line in Figure 3-3) 
 
 
 
4. The maximal standard deviation with marks from 1.0 to 6.0 
 
Some schools use marks from xi=1.0 to 6.0 for the i=1, …, n participants. To explore the maximal 
standard deviation for every mean 0.6x0.1 ≤≤  in this case, the same procedure as that of chapter 3 
is used. The parameter δ that describes the change in one student’s mark lies in the interval δ∈[0;5]. 
For δ=5, one mark changes from 1.0 to 6.0. The variable z counts the number of students with a mark 
of 6.0, as in chapter 3. The equation (3-5) for the mean is modified to:  
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and the maximal variance for this mean can be derived, in the same way as in chapter 3, as:  
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with n = 1, 2, 3, … , z = 0, …, n-1 and 0 ≤ δ ≤ 5. 
 
For the mean of 3.5, the maximal variance s2 is 6.25 and the standard deviation s=2.5 (e.g. n=6, z=3, 
δ=0). The maximal variance for odd numbers n converges to this value as n increases (e.g.: s2=5.0 
and s=2.23607 for n=5, z=2, δ=2.5). In Table 4-1 the equations (4-1) and (4-2) are used to give some 
examples. 
  

n z δ mean variance std. dev. 
2 1 0 3.50 6.2500 2.5000 
3 1 2.5 3.50 4.1667 2.0412 
5 0 0 1.00 0.0000 0.0000 
5 2 2.5 3.50 5.0000 2.2361 
5 4 5 6.00 0.0000 0.0000 
6 3 0 3.50 6.2500 2.5000 
15 7 2.5 3.50 5.8333 2.4152 
999 499 2.5 3.50 6.2437 2.4987 

Table 4-1: Some examples for mean ),z,n(x δ  and variance s2(n,z,δ) 

 
In the same way as in chapter 3, equations (4-1) and (4-2) can be transformed (with δ=0) to get the 
maximal variance s2 as a function of the mean:   
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   6x7x)x(s 22 −⋅+−= , with 0.6x0.1 ≤≤      (4-3a) 
 
and the maximal variance for small n described by the “inner” curve (with δ=2.5 
and 5/)5.2)1x(n(z −−⋅= ) is 
 

   
n
25.6

6x7x)x(s 22 −−⋅+−= , with 0.6x0.1 ≤≤ .    (4-3b) 

 
mean variance std.dev.  number n mean variance std.dev. 

6.00 0.00 0.00  ∞ 3.50 6.25 2.50 
5.55 2.25 1.50  100 3.50 6.19 2.49 
5.00 4.00 2.00  50 3.50 6.13 2.47 
4.50 5.25 2.29  20 3.50 5.94 2.44 
4.00 6.00 2.45  15 3.50 5.83 2.42 
3.50 6.25 2.50  5 3.50 5.00 2.24 

3.00 6.00 2.45  ∞ 1.30 1.41 1.19 
2.50 5.25 2.29  100 1.30 1.35 1.16 
2.00 4.00 2.00  50 1.30 1.29 1.13 
1.50 2.25 1.50  20 1.30 1.10 1.05 
1.30 1.41 1.19  15 1.30 0.99 1.00 
1.00 0.00 0.00  5 1.30 0.16 0.40 

Table 4-2: Some examples for equations (4-3a) (left side) and (4-3b) (right side) 

 

 

 

5. Target-Shortfall-Probability and skewed distributions 
 

The Target-Shortfall-Probability (TSP) is well known for the case in which the marks xi are normally 
distributed (or X ~ N(0,1)). In applications of the TSP for the average marks for an examination, the 
target τ could be, for example, τ=2.5. At least this mark is needed to get a good examination result. In 
the case of X ~ N(0,1), the probability that at most α=70% of the students get a good or very good 
result is: 
 
  P(X<τ) ≤ α so P(X< 2.5) ≤ 0.70.       (5-1a) 
 
The target τ of the inequality (5-1a) can be normalized by the mean µ and standardized by the 
standard deviation σ of the variable X by  
  

(τ – µ) / σ ≤ zα  with zα the abscissa value of the N(0,1) probability distribution. (5-1b) 
 
The inequality (5-1b) can be rearranged to give the expected value of X  

 
µ ≥ τ – zα⋅σ.         (5-1c) 

 
In the inequality (5-1c) the target τ=2.5 and z0.7 = 0.5244 gives a borderline for the mean and standard 
deviations. All µ-σ-combinations above this line fulfil the condition that at most α=70% of the students 
get a good or very good result. In this example, the line is: 

 
µ = 2.5 – 0.5244⋅σ.        (5-1d) 

 
This line can be integrated into the graphs from chapters 3 and 4. Every examination that has a µ-σ-
combination below this line will have more than 70% of good and very good marks.  
 
The restriction of the marks to the interval [1;5] means that in many cases the normal distribution will 
be deformed to a skewed distribution. Therefore, the line (5-1d) has to be adapted. An alternative line 
can be found using the extreme cases of the curve of the graphs of chapter 3. If 70% score 1.0 and 
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30% score 5.0, the examination will have a mean of 2.2x =  and a standard deviation of s=1.8330. For 
this standard deviation and mean, exactly 70% get a good or very good result. With no standard 
deviation (s=0), the mean has to be 2.5. From these two points, the gradient of the line can be 
computed. The line starts at the point (µ;σ) = (2.5, 0) and ends at the point (2.2, 1.8330). The 
computation is:    
  

(2.2 – 2.5) / (1.8330 – 0) = -0.1637. 
 
This procedure is applied to the other probabilities and the targets 2.5 and 3.0, in Table 5-1. 
Compared with the gradient -zα for the N(0,1) distribution (see inequalities (5-1b) to (5-1d)), the 
gradient is reduced. This is also shown in Figure 5-1, in which the target τ=2.5 was used for the TSP 
lines.    
 

probability of 
being below the 

target mean x  std. dev. s 

gradient for 
target τ=2.5 

gradient for 
target τ=3.0 

90 1.4 1.200000 -0.9167 -1.3333 
80 1.8 1.600000 -0.4375 -0.7500 
70 2.2 1.833030 -0.1637 -0.4364 
60 2.6 1.959592 0.0510 -0.2041 
50 3.0 2.000000 0.2500 -0.0000 
40 3.4 1.959592 0.4593 0.2041 
30 3.8 1.833030 0.7092 0.4364 
20 4.2 1.600000 1.0625 0.7500 
10 4.6 1.200000 1.7500 1.3333 

Table 5-1: Estimated gradients of the TSP line for skewed distributions 
 

The “Skew-TSP” lines in Figure 5-1 are correct only at the beginnings and ends of the lines where a 
one-point distribution exists. These “Skew-TSP” lines may be nonlinear. They signify that the TSP line 
will move upwards and be deformed when the normal distribution is restricted at the lower side of the 
scale. 
 

Target-Shortfall-Probability-Lines

File: Notenfeld01.sav / Skew-TSP.spo (70-90)
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Figure 5-1: TSP lines for 70%, 80% and 90% and “Skew-TSP” lines that coincide with the TSP in extreme situations (as they do 

in the curve).  
 
 
 
6. Minimal standard deviation when marks are discrete numbers  
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Sometimes the marks are additionally restricted to discrete numbers like 1.0, 1.3, 1.7, 2.0, 2.3 etc. 
This constraint means that a grade point average of 1.8 cannot happen with zero standard deviation. 
The minimal dispersion can only occur when the average mark is one of the discrete numbers from the 
list above. To find the standard deviation curve between two discrete zero dispersion points a and b 
(a≠b) (e.g. a=1.3, b=1.7) that are direct neighbours, the variance function s2 is used. For this, the 
function of the average mark is expressed as a function of a variable y that is the proportion of 
students with the smaller mark a (so that (1-y) is the proportion with the higher mark):  
 

( ) by1ayx ⋅−+⋅= .        (6-1) 
 
The mean equation (6-1) can be rewritten with the proportion y as the subject: 
 

ba
bx

y
−
−= .         (6-2) 

 
The variance, dependent on the mean, is:   
 
  [ ] ( ) [ ]222 xby1xay)x(s −⋅−+−⋅=       (6-3) 
 
With the equations (6-1) and (6-2) the variance can be expressed as a function of the mean and the 
marks a and b: 
 

 [ ] [ ]222 xb
ba
bx

1xa
ba
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)x(s −⋅








−
−−+−⋅

−
−=      (6-4) 

 
Equation (6-4) can be transformed8 into equation (6-5): 
 
 abx)ba(x)x(s 22 −⋅++−= .       (6-5) 
 
The variance function (6-5) is a generalisation of the special case of equation (3-10a) where a=1 and 
b=5 or of equation (4-3a) where a=1 and b=6. 
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Figure 6-1: Minimal standard deviation when marks are discrete, with TSP lines for 70%, 80% and 90%.  

  

                                                           
8 The transformation is explained in the appendix. 
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Figure 6-2: Mean and standard deviation of average marks of some written examinations in the mean-standard deviation space.  
 
For examinations with small numbers of participants, only some points of the variance function can be 
realized. When, for example, only two students participate in an examination, three possibilities may 
occur: both will get a or b, with s2=0, or one will get a and the other b, with s2> 0 computed from 
equation (6-5). Between the marks a and b must not lie another mark c with a<c<b. Then the variance 
of the marks a and b will be minimal for the interval [a, b]. This means that equation (6-5) gives the 
minimal variance for two neighbours a and b.  
 
Figure 6-1 shows the left limitation of the mean-standard deviation space when the marks are not 
continuous. In the example, the marks have the following values: 1.0, 1.3, 1.7, 2.0, 2.3, 2.7, 3.0, 3.3, 
3.7, 4.0, 4.3, 4.7, 5.0. Furthermore, some TSP lines are integrated. 
 
In Figure 6-2 the standard deviation and the average marks for some written examinations are 
depicted. Only five examinations are below the 90%-TSP line. The majority lie above this line. There 
are two examinations with an average mark worse than 3.0. The mean-standard deviation framework 
is useable when the relative position of a few examinations needs to be shown. Besides the visibility of 
the information about the level of the average marks and their position relative to the TSP line, high 
and low standard deviations can also be recognized. Low standard deviation signifies that only some 
marks were used in the evaluation of the examination. Near the violet curves on the left-hand side, the 
average mark was built from only one or two different marks. On the other side, high standard 
deviation results from a distribution of marks with two peaks. In the extreme position of the curve, only 
the marks 1.0 and 5.0 were given.        
 
 
 
7. Conclusion and suggestions for further research 
 
The instrument that is developed in this paper is not an analytical one. It is more an instrument for 
visualisation that shows the possible area in which the mean and standard deviation of a restricted 
variable can lie. The example in this paper is concerned with the average mark for an examination and 
the dispersion of the marks. Neither a high nor a low dispersion of marks should be an aim when 
marking examinations, and the same applies to a high or low grade point average. These extreme 
positions should occur when they are reasonable.    
The impact of the skewness of the distribution on the Target-Shortfall-Probability needs some further 
investigation. In this paper, only an upper bound for the TSP line was proposed.  
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Appendix 
 
Equation (6-4) is  
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Rewriting this equation has the result: 
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which can be reduced by the compensating elements 2323 xbxxbx +−−+ in the left fraction. The 

remaining term is ordered by 2x , x and the constant element to 
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With +1 in the left summand substituted by (a-b)/(a-b) and analogously with b2 by b2⋅(a-b)/(a-b) in the 
right summand, the equation can be simplified to:  
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Uniting some summands in both fractions gives the function (6-5) for the maximal variance: 
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substituted give  

 
the function (6-5) for the maximal variance:   
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