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Abstract: Modular arithmetic over integers is required for many cryptography systems. Montgomery
reduction is an efficient algorithm for the modulo reduction after a multiplication. Typically, Mont-
gomery reduction is used for rings of ordinary integers. In contrast, we investigate the modular
reduction over rings of Gaussian integers. Gaussian integers are complex numbers where the real and
imaginary parts are integers. Rings over Gaussian integers are isomorphic to ordinary integer rings.
In this work, we show that Montgomery reduction can be applied to Gaussian integer rings. Two
algorithms for the precision reduction are presented. We demonstrate that the proposed Montgomery
reduction enables an efficient Gaussian integer arithmetic that is suitable for elliptic curve cryptogra-
phy. In particular, we consider the elliptic curve point multiplication according to the randomized
initial point method which is protected against side-channel attacks. The implementation of this
protected point multiplication is significantly faster than comparable algorithms over ordinary prime
fields.

Keywords: public-key cryptography; elliptic curve point multiplication; Gaussian integers; Mont-
gomery modular reduction

1. Introduction

Montgomery reduction is an efficient method that performs modulo reduction after
an integer multiplication. The reduction algorithm uses multiplication and simple bit-wise
operations instead of an expensive division [1]. Public-key cryptography based on the
Rivest-Shamir-Adleman (RSA) system benefits from the efficient Montgomery modulo
reduction [2,3]. Similarly, elliptic curve cryptography (ECC) systems over prime fields
apply Montgomery reduction to support arbitrary prime curves [4–14].

In this work, we consider the modulo reduction for Gaussian integers. Gaussian
integers are complex numbers such that the real and imaginary parts are integers. Arith-
metic over Gaussian integers for the RSA system was proposed in [15–18]. In [17,18], it
was shown for the RSA system that a significant complexity reduction can be achieved
with Gaussian integers. Due to the isomorphism between Gaussian integer rings and
ordinary integer rings, this arithmetic is suitable for many cryptography systems. The
Rabin cryptography system and elliptic curve cryptography over Gaussian integers were
considered in [19–22]. Moreover, coding applications over Gaussian integers use Gaussian
integer arithmetic [23–28].

To reduce the complexity of the modular reduction, we investigate Montgomery
reduction algorithms for finite Gaussian integer rings. However, it is not trivial to generalize
Montgomery reduction to Gaussian integers. The final step of the reduction algorithm is
based on the total order of integers which does not exist for complex numbers. In [29], a
Montgomery reduction algorithm was proposed that utilizes the absolute value to measure
the size of a Gaussian integer. This study is an extension of our paper [29]. In this work, we
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present a new approach that aims on reducing the complexity of the reduction presented
in [29]. In this algorithm, the absolute value is replaced by the Manhattan weight. The
calculation of the Manhattan weight requires only a single addition, whereas the calculation
of the absolute value requires addition and two squaring operations. On the other hand,
the reduction using the Manhattan weight may not always obtain a unique solution. There
are at most two possible solutions that are congruent. For many applications uniqueness is
not an issue for the intermediate results in calculations, which require many subsequent
reduction steps. For the final result, the correct representative can be calculated using
absolute values.

The proposed concept of Montgomery reduction was applied in [22] for the efficient
calculation of the elliptic curve point multiplication. In particular, an area-efficient co-
processor was designed in [22]. This processor uses the proposed Montgomery modular
arithmetic over Gaussian integers. It is shown in [21,22] that a key representation with a
Gaussian integer expansion is beneficial for the calculation of the point multiplication. This
key representation reduces the computational complexity and the memory requirements of
a secure hardware implementation, which is protected against side-channel attacks [30–37].
In this work, we provide the theoretical justification for the reduction algorithms applied
in [22]. Furthermore, we present new results for protected implementations of the point
multiplication. In particular, we consider the randomized initial point method proposed
in [38]. This method is protected against several side-channel attacks, i.e., differential power
analysis (DPA), zero-value point attacks (ZPA), and refined power analysis (RPA) [32,38].
We present synthesis results for a field-programmable gate array (FPGA) based on the
architecture proposed in [22]. The protected implementation of the point multiplication is
significantly faster with Gaussian integers. Moreover, it requires less memory and fewer
flip-flops than the PM algorithms over ordinary prime fields reported in [39,40].

This publication is organized as follows. We review the Montgomery multiplication of
ordinary integers and discuss some properties of Gaussian integers in Section 2. In Section 3,
Montgomery reduction based on the absolute value is investigated. We present a low-
complexity reduction algorithm based on the Manhattan weight in Section 4. To demonstrate
that the arithmetic over Gaussian integers is useful, we consider the complexity for the
elliptic curve point multiplication according to the randomized initial point method in
Section 5. In Section 6, we discuss the results and conclude our work.

2. Preliminaries and Problem Statement

In this section, we briefly discuss Montgomery reduction of ordinary integers. More-
over, we review some properties of Gaussian integer rings.

2.1. Montgomery Reduction of Ordinary Integers

Montgomery reduction is considered in several ECC and RSA cryptography systems
to decrease the complexity of the arithmetic in prime fields [9,11,14] as well as in rings [2,3].
The Montgomery multiplication uses the arithmetic over a ring Rn that is isomorphic
to the integer ring Zn = {x mod n : x = 0, . . . , n− 1, x ∈ Z} [1]. Montgomery reduction
algorithm reduces the complexity of the modulo reduction. The expensive calculation
mod n is replaced by mod R, where R > n is a power of two. Hence, the modulo reduction
in the ringRn is a simple bitwise AND operation with R− 1.

For the Montgomery arithmetic, an element x ∈ Zn is mapped to the Montgomery
domain as

X = xR mod n. (1)

Addition in the Montgomery domain is isomorphic to ordinary integer modular
arithmetic, because

(X + Y) mod n = (xR + yR) mod n = (x + y)R mod n. (2)
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The multiplication in the Montgomery domain needs Montgomery reduction function
µ(Z) = ZR−1 mod n described in Algorithm 1. This function defines the inverse map-
ping, since µ(X) = xRR−1 mod n = x mod n. Using the reduction function, we obtain the
product

µ(XY) = XYR−1 mod n = xyR mod n (3)

in the Montgomery domain.

Algorithm 1 Montgomery reduction according to [1].

input: Z, with 0 ≤ Z < nR, n′ = −n−1 mod R, and R = 2l ≥ n
output: M = µ(Z) = ZR−1 mod n

1: t = Zn′ mod R // bitwise AND with R− 1

2: q = (Z + tn)div R // shift right by l

3: if (q ≥ n) then

4: M = q− n

5: else

6: M = q

7: end if

Typically, all variables are mapped at the beginning of the calculation into the Mont-
gomery domain using this reduction function as

X = µ(xR2) = xR2R−1 mod n = xR mod n, (4)

since only one precomputed value R2 mod n is required.
We illustrate the Montgomery reduction of ordinary integers with an example. The

binary representation of positive integers is denoted by brackets (·)2 with the subscript 2.

Example 1. We consider the product of two numbers x = 14 and y = 7 from Z29. The two
integers x and y are mapped to the integers X = xR mod n = 13 and Y = yR mod n = 21 with
R = 32 = 25 > n = 29 in the Montgomery domain. Hence, all elements of the Montgomery
domain can be represented with five binary digits. The product xy mod n = 98 mod 29 = 11
corresponds to xyR mod n = 4 in the Montgomery domain.

With Algorithm 1, we can reduce the product Z = XY = 273 as follows. With n′ = 11,
we first calculate t = Zn′ mod R = 3003 mod 32 = 27. Note that the modulo reduction of
the binary representation is a simple bitwise AND operation with R− 1 = 31 or equivalently
the truncation of all bits except the five least significant bits. The integer 3003 has the binary
representation (1011 1011 1011)2 and the five least significant bits (1 1011)2 represent the value
t = 27.

Next, we calculate the quotient q = (Z + tn)div R = 1056 div 32 = 33. For R = 32, the
division by R without remainder in the binary representation is a simple right-shift by five bits
or equivalently the truncation of the five least significant bits. The integer 1056 has the binary
representation (100 0010 0000)2. The division without remainder results in (10 0001)2 which is the
binary representation of 33. The final result in the Montgomery domain is M = µ(Z) = q− 29 = 4
because q = 33 > n = 29. To obtain the result in Z29, we apply Montgomery reduction for the
inverse mapping M′ = µ(M) = µ(4) = 11.
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2.2. Rings of Gaussian Integers

The modulo arithmetic over Gaussian integers is based the modulo function

x mod π = x−
[

xπ∗

ππ∗

]
· π, (5)

where x and π are Gaussian integers. π∗ is the conjugate of the Gaussian integer π. The
brackets [·] denote rounding to the closest Gaussian integer [23], i.e., for a complex number
x = c + di, we have [x] = [c] + [d]i. The set

Gp = {x mod π : x = 0, . . . , p− 1, x ∈ Z} (6)

is a finite ring. For primes p of the form p ≡ 1 mod 4, Gp is a finite field which is isomorphic
to the prime field GF(p) over ordinary integers [23]. Such fields are suitable for elliptic
curve cryptography [21,22]. A prime of the form p ≡ 1 mod 4 is the sum of two perfect
squares, i.e., p = ππ∗ = |a|2 + |b|2 with the Gaussian integer π = a + bi.

Moreover, for integers n = cd such that c and d are primes of the form c ≡ d ≡ 1 mod 4
and c 6= d, the set Gn is a ring that is isomorphic to the ring Zn over ordinary integers [26].
Such Gaussian integers are suitable for the RSA public-key system [17,18].

Consider Montgomery reduction in Algorithm 1. Lines 3 to 7 of this algorithm
uniquely determine the smallest integer that is congruent to ZR−1 mod n. However,
complex numbers cannot be totally ordered [24]. Hence, it is not possible to directly apply
this reduction algorithm to Gaussian integers. This reduction problem is not regarded
in [17,18].

In this work, we consider two reduction strategies using different norms. One algo-
rithm uses the absolute value |x| =

√
|c|2 + |d|2 of the Gaussian integer x = c + di. The

second approach is based on the Manhattan weight ‖x‖ = |c|+ |d|. Calculating the Man-
hattan weight is less complex than calculating the absolute value, because only addition is
required, whereas squaring is necessary to determine |x|. Note that

|x| ≤ ‖x‖ (7)

holds for any x which follows from squaring both sides of the inequality.

2.3. Finding Primes of the Form p = a2 + b2

An algorithm for primes of the form p ≡ 1 mod 4 to find a, b such that p = a2 + b2 is
proposed in [23]. This algorithm consists of two steps.

• Find x such that x2 ≡ −1 mod p, which can be done using the Tonelli-Shanks algo-
rithm [41].

• Use the Euclidean algorithm to determine the greatest common divisor of p and x.
The first two remainders less than

√
p are a and b.

On the other hand, there exist many primes of the form p ≡ 1 mod 4 such that
p = a2 + (a− 1)2 or p = a2 + 1. Exploiting this observation we can search for a such that
the sum p = a2 + 1 or p = 2a2 − 2a + 1 is prime. This can significantly reduce the search
complexity. Table 1 illustrates some examples of such primes with sufficient bit lengths for
ECC applications.
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Table 1. Examples for primes of the form p = a2 + b2 with b = 1 or b = a− 1.

bits p a b

156 8 ×1046 + 74× 1024 + 17113 2× 1023 + 93 2× 1023 + 92

169 4× 1050 + 216× 1025 + 2917 2× 1025 + 54 1

170 8× 1050 + 6× 1026 + 113 2× 1025 + 8 2× 1025 + 7

190 8× 1056 + 3× 1030 + 2813 2× 1028 + 38 2× 1028 + 37

256
8× 1076 + 2516× 1038 +

197821 2× 1038 + 315 2× 1038 + 314

382 9× 10114 + 384× 1057 + 4097 3× 1057 + 64 1

3. Montgomery Reduction for Gaussian Integers

In this section, we consider some important properties of Gaussian integers and derive
Montgomery reduction for Gaussian integers using the absolute value. First, we show that
the set Gn is symmetric and that the absolute value of any element of this ring is bounded.

Lemma 1. For any x ∈ Gn we have the following symmetry

− x, ix,−ix ∈ Gn. (8)

The absolute value |x| is bounded by

|x| < |π|√
2

. (9)

Moreover, for any x′ /∈ Gn with x = x′ mod π we have

|x| <
∣∣x′∣∣. (10)

Proof. Consider the quotient x
π = xπ∗

n = c + di, where c and d are the real part and the
imaginary part of x

π . For x ∈ Gn we have x = x mod π. Hence, the rounded quotient
satisfies [

xπ∗

ππ∗

]
= 0.

This implies [c] = [d] = 0 and |c| < 1/2, |d| < 1/2. Hence, we can bound the absolute
value of the quotient x

π as ∣∣∣ x
π

∣∣∣ < 1√
2

.

Multiplying both sides by |π| results in (9). Note that x,−x, ix, or −ix have the same
absolute value. Hence, (8) holds.

Finally, consider a Gaussian integer x′ /∈ Gn which is congruent to x, i.e. x = x′ mod π.
We use the notation x′

π = c′ + d′i. Note that x = x′ mod π implies c = c′ − [c′] and
d = d′ − [d′]. Moreover, at least one rounded value [c′] or [d′] is nonzero because x′ /∈ Gn,
where [c′] 6= 0 results in |c| < 1/2 < |c′|. Similarly, [d′] 6= 0 implies |d| < 1/2 < |d′|.
Hence, we have (10).

The next example demonstrates that |x| < |π|√
2

is not a sufficient condition for x ∈ Gn.

Example 2. We consider the finite field G29 for the Gaussian integer π = 5 + 2i. All elements of
this field are depicted in Figure 1. Consider q′ = 3 with q = 3 mod π = −2− 2i, i.e., q′ /∈ G29
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and q ∈ G29. Both Gaussian integers satisfy |q′| < |π|√
2

and |q| < |π|√
2
≈ 3.8079. Hence, it is not

possible to determine the representative based on the bound (9). The representative q = −2− 2i
follows from (10), as |q| ≈ 2.8284 < |q′| = 3.

Next, we consider now Montgomery reduction. The reduction for Gaussian integers
can be performed according to Algorithm 2, where

α′ = argmin
α∈{0,±1,±i}

|q− απ|, (11)

α′′ = argmin
α∈{±1,±i,±1±i}

|q− απ|. (12)

Steps 1 and 2 in Algorithm 2 are applied separately for the real- and imaginary part.
We demonstrate that Algorithm 2 always obtains a precision reduction resulting in the
correct representative.

-3 -2 -1 0 1 2 3

Re

-3

-2

-1

0

1

2

3

Im

Figure 1. Elements of the Gaussian integer field G29 with π = 5 + 2i.

Algorithm 2 Montgomery reduction for Gaussian integers

input: Z = XY, π′ = −π−1 mod R, R = 2l > |π|√
2

output: M = µ(Z) = ZR−1 mod π

1: t = Zπ′ mod R // bitwise AND of Re, Im with R− 1

2: q = (Z + tπ)div R // shift Re, Im right by l

3: if (|q| <
√

2−1√
2
|π|) then

4: M = q

5: else if (|q| < |π|√
2

) then

6: determine α′ according to (11)

7: M = q− α′π

8: else

9: determine α′′ according to (12)

10: M = q− α′′π

11: end if
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Proposition 1. For M and Z according to Algorithm 2, we have

M = ZR−1 mod π. (13)

Proof. We consider the sum Z + tπ in step 2 of Algorithm 2, where

Z + tπ ≡ Z + Zπ′π mod R

≡ Z + Z(−π−1)π mod R

≡ Z− Z mod R ≡ 0,

implies that R divides Z + tπ. Considering the corresponding quotient q = (Z + tπ)div R,
we have

q mod π ≡ (Z + tπ)div R mod π

≡ (Z + tπ)R−1 mod π

≡ ZR−1 + tπR−1 mod π

≡ ZR−1 mod π.

This shows that q is congruent to ZR−1 mod π or ZR−1 = q− απ. The absolute value
of ZR−1 mod π is bounded, i.e.,∣∣∣ZR−1

∣∣∣ = |XY|R−1 ≤ |π|
2

2R
<

R|π|√
2R

=
|π|√

2
.

As shown in Example 2, the quotient q may not be the correct representative ZR−1 mod
π even for |q| < |π|√

2
. The congruent values q− απ with α ∈ {±1,±i} are also possible

candidates. However, for any x ∈ Gn and α ∈ {±1,±i}, the lower bound

|x− απ| ≥ ||π| − |x|| >
√

2− 1√
2
|π|,

follows from the triangle inequality and Lemma 1. Consequently, the quotient q is the
unique solution for |q| <

√
2−1√

2
|π|. Furthermore, for any x ∈ Gn the condition |α| >

√
2

implies

|x− απ| ≥ ||απ| − |x|| > |π|√
2

.

Hence, only the candidates according to (11) are possible for
√

2−1√
2
|π| ≤ |q| < |π|√

2
.

Using Lemma 1, it follows that the correct candidate can be found by minimizing the
absolute value among all candidates according to (11).

If |q| ≥ |π|√
2
, the result M is calculated as M = q − α′′π with α′′ according to (12).

To demonstrate that (12) is correct, we derive the bound |α| ≤
√

2. Consider again the
quotient q = (Z + tπ)div R. We aim to compensate the offset tπR−1 by απ, where the
absolute values are bounded by

|απ| =
∣∣∣tπR−1

∣∣∣ = |t||π|R−1 ≤
√

2|π|.

This follows from |t| ≤
√

R2 + R2 =
√

2R due to the reduction mod R and implies
the bound |α| ≤

√
2.

Example 3. As an example for Montgomery reduction, we consider the product of two numbers
x = 6 and y = 7 from Z29 or the corresponding field G29 of Gaussian integers with π = 5 + 2i.
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The two integers x and y are mapped to the Gaussian integers X = xR mod π = 2− i and
Y = yR mod π = −2 with R = 8 in the Montgomery domain. The product xy mod p =
42 mod 29 = 13 corresponds to xyR mod π = −i in the Montgomery domain.

With Algorithm 2, we can reduce the product Z = XY = −4 + 2i as follows. With
π′ = −1 + 2i, we first calculate t = Zπ′ mod R = −10i mod 8 = −2i. Note that the modulo
reduction is a simple bitwise AND operation with R− 1 = 7.

Next, we calculate the quotient q = (Z + tπ)div R = −8i div 8 = −i. For R = 8 = 23, the
division by R without remainder is a simple right-shift by three bits. The quotient M = µ(Z) =
q = −i is the final result without further reduction steps because |q| = 1 <

√
2−1√

2
|π| = 1.5773.

The product xy mod p = 13 corresponds to xy mod π = 1 + i in the field G29. To obtain
this result, we apply Montgomery reduction for the inverse mapping M′ = µ(M) = MR−1.
With M = −i, we have t = Zπ′ mod R = 2 + i mod 8 = 2 + i and the result M′ = q =
(Z + tπ)div R = 8 + 8i div 8 = 1 + i. Again, no reduction is required because the condition
|q| =

√
2 <

√
2−1√

2
|π| = 1.5773 is satisfied.

We illustrate the final reduction procedure of Algorithm 2 in the following example.
There are up to eight possible values α according to (11) and (12). However, not all potential
values have to be considered for the reduction. The number of valid candidates α can be
reduced based on the signs of the real and imaginary part of q.

Example 4. We consider again the finite field G29 of Gaussian integers with π = 5 + 2i. Figure 2
depicts all possible quotients q in the Montgomery domain after the first two steps of Algorithm 2.
For q = 3 we have

√
2−1√

2
|π| ≈ 1.5773 < |q| = 3 < |π|√

2
≈ 3.8079. Thus, α′ should be determined

according to (11). However, there are only two possible values for α, i.e., α ∈ {0, 1}, as q is in the
first quadrant. Calculating |q− 0| = 3 and |q− π| ≈ 2.3852 leads to α′ = 1. Consequently, we
obtain the representative M = q− α′π = −2− 2i.

-10 -5 0 5 10

Re

-10

-8

-6

-4

-2

0

2

4

6

8

10

Im

Figure 2. Illustration of the the Montgomery domain for p = 29 and π = 5 + 2i. Circles centered
with a point are possible quotients q after Montgomery reduction and filled circles are possible offsets
απ.

Algorithm 2 achieves the desired precision reduction, where the final reduction step
always results in the correct representative M = q mod π. This result satisfies the bound
|M| ≤ |π|√

2
. The number of possible candidates α is restricted depending on the absolute

value of q, as illustrated in (11) and (12).
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Nonetheless, the reduction according to Algorithm 2 can be rather complex due to
the squaring to determine the absolute values. This complexity may not be required in
all applications of the Montgomery multiplication. For applications in cryptography, it is
adequate to find the unique representative ZR−1 mod π only in the last calculation step,
whereas for intermediates results a reduction that achieves M ≡ ZR−1 mod π is sufficient.
This motivates a low complexity Montgomery reduction based on the Manhattan weight,
which is considered in the next section.

4. Precision Reduction for Gaussian Integers Using the Manhattan Weight

In this section, we present a low complexity precision reduction for Gaussian integers
based on the Manhattan weight, i.e., the absolute value in the reduction algorithm is
replaced by the Manhattan weight. The calculation of the absolute value requires squaring,
whereas the Manhattan weight requires only addition. On the other hand, this algorithm
may not obtain a unique solution. However, there are at most two possible solutions that
are congruent. In ECC or RSA systems that require many reduction steps, this algorithm
can be used for the intermediate results.

Without loss of generality we consider π = a + bi with a > b ≥ 1. The precision
reduction is described in Algorithm 3, where

α̂ = argmin
α∈{±1,±i,±1±i}

‖q− απ‖, (14)

and N = a− 1. We demonstrated that this algorithm always obtains M ≡ ZR−1 mod π,
where ‖M‖ ≤ N.

Algorithm 3 Precision reduction for Gaussian integers

input: Z = XY, π′ = −π−1 mod R, R = 2l > N
output: M ≡ µ(Z) = ZR−1 mod π

1: t = Zπ′ mod R // bitwise AND of Re, Im with R− 1

2: q = (Z + tπ)div R // shift Re and Im right by l

3: if (‖q‖ ≤ N) then

4: M = q

5: else

6: determine α̂ according to (14)

7: M = q− α̂π

8: end if

First, we note that using the symmetry according to Lemma 1, we can restrict the
following derivations to the elements of the first quadrant. Next, we consider some
important properties of the Manhattan weight.

Lemma 2. For x ∈ Gp the Manhattan weight is upper bounded by

‖x‖ ≤ a− 1 = N. (15)
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Proof. Let c and d be the real part and the imaginary part of x
π . For x ∈ Gp we have

x = x mod π and consequently [
xπ∗

ππ∗

]
= 0. (16)

This implies [c] = [d] = 0 and |c| < 1/2, |d| < 1/2. Hence, we consider (1/2+ 1/2i)π
to upper bound the real and imaginary parts of x as

|Re{x}| <

∣∣∣∣ a− b
2

∣∣∣∣,
|Im{x}| <

∣∣∣∣ a + b
2

∣∣∣∣.
Note that either a is odd and b is even or vice versa because p is an odd prime.

Furthermore, the real- and imaginary parts of x are integers. Consequently, we have

|Re{x}| ≤
∣∣∣∣ a− b

2
− 1

2

∣∣∣∣,
|Im{x}| ≤

∣∣∣∣ a + b
2
− 1

2

∣∣∣∣.
We can bound the Manhattan weight of x as

‖x‖ ≤
∥∥∥∥ a− b− 1

2
+

a + b− 1
2

i
∥∥∥∥.

With a > b ≥ 1, the Manhattan weight of x is upper bounded by

‖x‖ ≤ a− b− 1
2

+
a + b− 1

2
= a− 1. (17)

Hence (15) holds.

Next, we consider bounds on the Manhattan weight for the sum and product of two
elements x, y ∈ Gp. Note that we consider arithmetic without modulo reduction.

Lemma 3. For x, y ∈ Gp we have the upper bounds

‖x + y‖ ≤ 2N, (18)

‖xy‖ ≤ N2, (19)

for arithmetic without modulo reduction.

Proof. The bound on the sum follows from the triangle inequality and (15), i.e.,

‖x + y‖ ≤ ‖x‖+ ‖y‖ ≤ 2N. (20)

Without loss of generality we consider two elements x = c + di and y = e + f i from
the first quadrant for the product in (19). This implies ‖x‖ = c + d ≤ N or d ≤ N − c.
Similarly, we have f ≤ N − e. For the product xy we have

xy = (ce− d f ) + (ed + c f )i. (21)

First, consider the absolute value of the imaginary part Im{xy}

|Im{xy}| = ed + c f ≤ e(N − c) + c(N − e) = eN + cN − 2ce.
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To determine the maximum value, we consider the bivariate function g(e, c) = eN +
cN − 2ce and its partial derivatives

∂g(e, c)
∂e

= N − 2c = 0, (22)

∂g(e, c)
∂c

= N − 2e = 0. (23)

This results in a maximum for c = e = N/2 and the bound |Im{xy}| = ed + c f ≤ N2/2.
Due to symmetry this bound also holds for the absolute value of the real part. Hence, we
have

‖xy‖ ≤ N2

2
+

N2

2
= N2. (24)

The following proposition demonstrates that Algorithm 3 results in the desired reduction.

Proposition 2. For M and Z according to Algorithm 3, we have

M ≡ ZR−1 mod π, (25)

‖M‖ ≤ N. (26)

Proof. The first two steps are identical in Algorithm 3 and Algorithm 2. Hence, the first
statement (25) follows from the same arguments as in the proof of Proposition 1.

For ‖q‖ ≤ N, we immediately have (26). For ‖q‖ > N, we consider again the
corresponding quotient q = (Z + tπ)div R. The Manhattan weight of ZR−1 mod π is
bounded by ∥∥∥∥Z

R

∥∥∥∥ =
‖Z‖

R
=
‖XY‖

R
≤ N2

R
≤ NR

R
= N, (27)

where we have used (24) and the assumption R ≥ N.
Similar to the proof of Proposition 1, we aim to compensate tπR−1 with απ. From

Proposition 1 follows that ‖α‖ ≤
√

2. Hence, the minimization in (14) over α ∈ {±1,±i,±1±
i} is sufficient. From (27) follows that there is at least one solution with ‖M‖ = ‖q− α̂π‖ ≤
N. Consequently, the minimization in (14) will find a solution satisfying (26).

Finally, we can now describe the final reduction step of Algorithm 3. Note that there
are eight possible values for α according to (14), but not all potential values have to be
considered. The reduction procedure is demonstrated in the following example.

Example 5. Again, we consider the finite field G29 of Gaussian integers with π = 5 + 2i, where
all possible values of q after the first two steps of Algorithm 3 are depicted in Figure 2.

For instance, consider the product of x = 19 and y = 7 from Z29. The two integers x and y
are mapped to the Gaussian integers X = xR mod π = 2− 2i and Y = yR mod π = −2 with
R = 8 in the Montgomery domain. The product xy mod p = 133 mod 29 = 17 corresponds to
xyR mod π = 3− i in the Montgomery domain.

With Algorithm 2, we can reduce the product Z = XY = −4 + 4i as follows. We calculate
t = Zπ′ mod R = 4 + 4i and the quotient q = (Z + tπ)div R = 1 + 4i. A valid solution of
the reduction is a Gaussian integer M with ‖M‖ ≤ N. We have ‖q‖ = 5 > N = 4. Hence,
further reduction is required. As q is in the first quadrant, we have three possible values for α, i.e.,
α ∈ {1, i, 1 + i}. Calculating q− απ results in −4 + 2i, 3− i,−2− 3i, where only the solution
M = 3− i satisfies the condition ‖M‖ ≤ N = 4. Hence, we choose M = 3− i as the final result.

The final reduction step results in a Gaussian integer x with ‖x‖ ≤ N. Hence, Algo-
rithm 3 achieves the desired precision reduction using the Manhattan weight. However,
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the result may not always be an element of the ring. For instance, for some π the value
x = a− 1 is a ring element. Alternatively, the point x′ = x− π = −1− bi can be a ring
element. Both values are congruent and can satisfy ‖x‖ = a− 1 ≤ N, ‖x′‖ = b + 1 ≤ N
depending on π. The ring element is the value with the smallest absolute value. There
exist at most two congruent values with Manhattan weight less or equal N. Consequently,
the correct representation can be selected by minimizing the absolute value of these two
congruent values. Depending on the application this step might be required once to obtain
the final result x = q mod π.

5. Elliptic Curve Point Multiplication

In this section, we consider the elliptic curve point multiplication to demonstrate
that the arithmetic over Gaussian integers enables an efficient calculation. Calculations
of the elliptic curve point multiplication are prone to side-channel attacks. For example,
an attacker can estimate the secret key based on the required power consumption of the
different arithmetic operations over time. There are many known attacks on the point
multiplication like timing attacks, simple power analysis, differential power analysis,
refined power analysis, and zero-value point attacks [32,38].

The concept for the point multiplication over Gaussian integers was introduced in [22],
where an area-efficient coprocessor design was proposed with an arithmetic unit that en-
ables Montgomery modular arithmetic over Gaussian integers. It is shown in [22] that a
key representation with a Gaussian integer expansion is beneficial to reduce the compu-
tational complexity and the memory requirements of a secure hardware implementation
considering timing attacks and simple power analysis. This architecture supports different
point multiplication algorithms. In contrast to [22], we consider the randomized initial
point method which is additionally protected against differential power analysis, refined
power analysis, and zero-value point attacks [32,38]. We refer to [22] for the architecture
and the implementation details.

In the following, we consider the elliptic curve

y2 = x3 + αx + β, (28)

which is recommended for prime fields GF(p) [32,42]. The parameters α and β are constant
coefficients. The pair x and y defines the coordinates of a point P(x, y) on the curve. The
one-way function of elliptic-curve cryptography is the point multiplication, i.e., kP, where
P is a point on the elliptic curve and k is an integer. The point multiplication is typically
implemented based on the binary expansion k = ∑r−1

i=0 ki2i of the integer k with binary digits
ki ∈ {0, 1}, where r is the length in bits and kr−1, kr−2, . . . , k0 is the binary representation
of the key (the integer k). This method requires two different point operations, the point
addition (ADD) and the point doubling operation (DBL) [32]. Let P(x1, y1) and Q(x2, y2) be
two distinct points on an elliptic curve (28), then the sum S(x3, y3) = P(x1, y1) + Q(x2, y2)
is calculated as

x3 =

(
y2 − y1

x2 − x1

)2
− x1 − x2, y3 =

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1. (29)

Similarly, the point doubling operation S(x3, y3) = 2P(x1, y1) is defined as

x3 =

(
3x2

1 + α

2y1

)2

− 2x1, y3 =

(
3x2

1 + α

2y1

)
(x1 − x3)− y1. (30)

The calculations in (29) and (30) are typically performed using arithmetic over prime
fields. However, we consider arithmetic over Gaussian integer fields, where xi, yi, α, β ∈ Gp.

As an alternative to the binary expansion key representation, τ-adic expansions of the
integer k with a non-binary basis τ were proposed to speed up the point multiplication
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(PM) and to improve the resistance against attacks [38,43–47]. The τ-adic expansion results
in the point multiplication

kP =
l−1

∑
i=0

κiτ
iP = τ(. . . τ(τκl−1P + κl−2P) + . . .) + κ0P, (31)

where we consider digits κi from a Gaussian integer field.
To demonstrate that a τ-adic expansion with arithmetic over Gaussian integers can

reduce the computational complexity, we consider an example based on the curve (28) with
β = 0. For the products κiP(x, y) we use the endomorphism iP(x, y) = P(−x, iy) for prime
fields [32,48]. Note that P(−x, iy) is a point on the curve (28) if P(x, y) is a valid point.
The negation of any point −P(x, y) is P(x,−y) according to [32]. Hence, for the products
κiP(x, y) with κi ∈ {0,±1,±i} we have

P = P(x, y), (32)

−P = P(x,−y), (33)

iP = P(−x, iy), (34)

−iP = P(−x,−iy). (35)

Using this endomorphism, we can calculate other products τP, e.g., τP = (2 + i)P = 2P +
iP requires a DBL, the mapping iP, and an ADD operation. Several other endomorphisms
for different curves over prime fields can be fund in [32,48].

For the point multiplication, we consider the randomized initial point method accord-
ing to Algorithm 4. This method introduces a random point R into the calculation of the
point multiplication. Consequently, all intermediate results in the calculation of the point
multiplication become randomized. The algorithm starts with a precomputation phase,
where the points Sl−1, . . . , S1, S0 are computed in steps 1 to 4 and stored in a memory. The
point addition in step 5 results in the point Q = Sl−1 + R. This point is multiplied with τ
and then added to the corresponding precomputed point Sj in the loop in steps 6 to 9 of
this algorithm. Due to the second product of the precomputations −(τ − 1) · R, we obtain
the point Q + R after each iteration of this loop. Correspondingly, the final result is the
point Q + R = k · P + R. Hence, we obtain the correct result of the point multiplication
k · P by subtracting R from Q in step 10. The point addition in step 8 is computed in each
iteration since the τ-adic expansion of the key according to [22] excludes all zero elements.
This prevents SPA and timing attacks. Furthermore, all stored points Sl−1, . . . , S1, S0 are
randomized due to the subtracting the random point −(τ − 1) · R. Thus, the resistance
against DPA, RPA, and ZPA is increased.

We can use the reduction based on the Manhattan weight in Algorithm 3 for all interim
results in the point multiplication. The aim of the reduction of interim results is finding a
Gaussian integer x̃ that has a Manhattan weight satisfying ‖x̃‖ ≤ N and is congruent to the
actual representative x. The reduction algorithm can be stopped once a value x̃ = q− απ
with ‖x̃‖ ≤ N is found. Hence, not all offsets in (14) have to be considered in every
reduction. Table 2 presents numerical results on the number of required reduction steps
for different field sizes. The four columns on the right in Table 2 provide the percentage
for the number of required offset reduction steps after an arithmetic operation, where no
reduction is required if the result q already satisfies ‖q‖ ≤ N. These results illustrate that
sequential processing of the offset reduction is suitable for the point multiplication because
91% of all operations require no reduction since ‖q‖ ≤ N is satisfied. About 4− 5% of all
operations require a single reduction step. Two or three calculation steps were required in
approximately 4% of all cases.
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Algorithm 4 Point multiplication according to the randomized initial point method
from [38].

input: P, k = (κl−1, . . . , κ1, κ0)τ
output: k · P

1: R = random point // randomized initial point

2: for (j = l − 1 down to 0) do

3: Sj = κj · P− (τ − 1) · R // store all precomputed points in memory

4: end for

5: Q = Sl−1 + τ · R; // ADD κl−1 · P− (τ − 1) · R and τ · R

6: for (j = l − 2 down to 0) do

7: Q = τ ·Q // use DBL and ADD operations since τ ∈ Z[i]

8: Q = Q + Sj // ADD Q and κj · P− (τ − 1) · R that is read from the memory

9: end for

10: return Q− R

Table 2. Primes of the form p = a2 + b2 suitable for elliptic curve cryptography (ECC) applications and the percentage of
occurrences of offset reduction steps.

log2(p) a b No Reduction 1 Reduction 2 Reductions 3 Reductions

188 294 − 150 1 91.7% 4.4% 2.4% 1.5%
189 294 − 94 a− 1 91.9% 5.0% 1.5% 1.6%
198 299 − 34 1 91.6% 4.1% 2.5% 1.6%
199 299 − 37 a− 1 91.6% 5.3% 1.5% 1.7%
208 2104 − 120 1 91.5% 4.0% 2.7% 1.8%
209 2104 − 10 a− 1 91.6% 4.2% 2.7% 1.6%

On the other hand, the different execution times of the reduction steps may cause con-
cerns about side-channel vulnerabilities. However, the probability for additional reduction
steps is relativity low. Moreover, the randomized initial point method also randomizes the
occurrence of these additional steps.

Next, we demonstrate that determining the point multiplication using Gaussian in-
tegers reduces the computational complexity. The number of required point operations
per iteration of the point multiplication is similar to the results in [22]. However, some
additional computations are required to subtract the random point. As in [22], we esti-
mate the computational complexity for the point multiplication in terms of multiplication
equivalent operations M. Table 3 illustrates two examples for the complexity with different
bases τ. The parameter r denotes the maximum key length in bits and the value l is the
number of iterations per point multiplication. A larger value of |τ|2 reduces the number of
iterations and speeds up the computation compared with a conventional binary PM, but
requires more storage for the precomputed points.
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Table 3. Complexity results for Algorithm 4 with different τ-adic expansions in comparison with
ordinary integer expansions from [38] for a binary key of length r = 163.

Reference |τ|2 or 2w l M per PM
incl. Precomputations

proposed 5 0.430r 2372
[38] 4 0.506r 3054

proposed 17 0.245r 1866
[38] 16 0.2515r 2763

The results are compared with the point multiplication according to randomized initial
point but using ordinary integer expansions as proposed in [38] for comparable base values
w. For instance, we can compare the complex base τ = 4 + i with |τ|2 = 17 digits and the
base w = 4 with 2w = 16 digits from [38]. For these values, the number M of multiplications
is reduced by 32.5%. This reduction results mainly from the simpler calculation of τ · Q
for Gaussian integers due to the used endomorphism. In [21], a similar PM with τ-adic
expansions over Gaussian integers was proposed. This algorithm additionally reduces the
number of precomputed and stored points. However, this method considers only timing
and simple power analysis attacks. It is more vulnerable to statistical attacks than the
randomized initial point method.

To illustrate the efficiency of Gaussian integer arithmetic, we consider latencies for
the point multiplication according to Algorithm 4 using both norms in Table 4. The table
provides results for a Xilinx Virtex-7 field-programmable gate array (FPGA) based on
the architecture from [22]. The hardware requirements are represented by the number
of look-up tables (LUT), flip-flops (FF), slices, and digital signal processor (DSP) units,
as well as by the RAM size. The maximum clock frequency is denoted by fclk. These
point multiplications are significantly faster than the results from [39,40]. For instance, the
design in [40] considers key lengths up to r = 256 and the unprotected PM. This design is
optimized for the use of DSP units which reduces the number of LUT. The number 1990 of
LUT is similar to the proposed design with key length r = 253 using DSP units. It employs
much more flip-flops (1786) and memory (234 kbit). An unprotected PM of length r = 256
requires 23.5ms whereas the proposed protected PM requires only 6.87ms for r = 253.

Note that the latency values for the reduction algorithms depend on the hardware
architecture. The calculation of the Manhattan weight requires one addition which is
performed in a single clock cycle with the architecture from [22]. For the absolute value,
two additional multiplications are required which need four clock cycles each. Hence, the
latency for calculating the Manhattan weight is only 11% of the time for the absolute value.
The results in Table 4 illustrate the impact of this complexity reduction on the total latency
of a point multiplication. Applying the Manhattan weight reduces the latency of a PM by
13% compared with the reduction algorithm from [29].

Table 4. Field-programmable gate array (FPGA) synthesis results for the point multiplication according to Algorithm 4 using the
absolute value (abs.) and the Manhattan weight (Man).

τ r LUT FF RAM
[kbit]

Slices DSP fclk
[MHz]

Protected PM Latency
[ms]

abs. Man.

2 + i 189 1540 521 17.3 426 4 227 7.59 6.60
4 + i 189 1540 521 19.1 426 4 227 5.68 4.93
4 + i 253 1891 678 20.4 532 4 212 7.92 6.87
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6. Conclusions

Gaussian integers are suitable for RSA [17,18] and ECC applications [22]. Furthermore,
Gaussian integers have applications in coding theory [23,26]. The Montgomery multipli-
cation for Gaussian integers was previously proposed in [17,18]. However, no reduction
algorithm was advised.

The generalization of Montgomery reduction to Gaussian integers is not trivial, be-
cause complex numbers cannot be totally ordered. In this work, we have presented two
algorithms for Montgomery reduction for Gaussian integers which use different norms.
The first algorithm utilizes the absolute value to measure the size of a Gaussian integer.
This algorithm can uniquely determine the correct representative. The second algorithm is
based on the Manhattan weight of Gaussian integers, which reduces the computational
complexity for the modulo reduction. However, two congruent solutions may occur. It
is not possible to determine the correct candidate based on the Manhattan weight. The
correct representative is the candidate with the smaller absolute value. Hence, the first
algorithm is required to determine the final result, e.g., for the inverse mapping from the
Montgomery domain to the original field representation.

It is shown in [21,22] that a key representation with a Gaussian integer expansion
is beneficial to reduce the computational complexity and the memory requirements of
elliptic curve point multiplication algorithms that are protected against side-channel attacks.
However, only timing and simple power analysis attacks were considered. This PM is
vulnerable to statistical attacks [38]. As an alternative, we have shown that Gaussian
integer expansions can be used with the randomized initial point method. This method is
protected against statistical attacks like DPA, RPA, and ZPA. The FPGA implementation
of this protected PM with Gaussian integer expansions is significantly faster than the PM
algorithms over ordinary prime fields reported in [39,40].

However, Gaussian integer fields can only be constructed for primes of the form p
mod 4 = 1, hence a generalization of this work to Eisenstein integers could be beneficial.
Eisenstein integers are complex numbers of the form x = a+ bω, where ω = 1

2 ·
(
1 +
√
−3
)
,

and Eisenstein integer fields can be constructed for primes of the form p mod 6 = 1. An
elliptic curve point multiplication using Eisenstein integers was considered in [49] showing
similar properties as the point multiplication over Gaussian integers. Up to now no efficient
modulo operation for Eisenstein integers is known. We believe that a generalization of the
Montgomery modular multiplication to Eisenstein integers would be a promising direction
for further research.
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