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Interpretability and uncertainty modeling are important key factors for medical applications.
Moreover, data in medicine are often available as a combination of unstructured data like
images and structured predictors like patient’s metadata. While deep learning models are
state-of-the-art for image classification, the models are often referred to as ’black-box’,
caused by the lack of interpretability. Moreover, DL models are often yielding point
predictions and are too confident about the parameter estimation and outcome predictions.
On the other side with statistical regression models, it is possible to obtain interpretable
predictor effects and capture parameter and model uncertainty based on the Bayesian
approach. In this thesis, a publicly available melanoma dataset, consisting of skin lesions
and patient’s age, is used to predict the melanoma types by using a semi-structured model,
while interpretable components and model uncertainty is quantified. For Bayesian models,
transformation model-based variational inference (TM-VI) method is used to determine the
posterior distribution of the parameter. Several model constellations consisting of patient’s
age and/or skin lesion were implemented and evaluated. Predictive performance was shown
to be best by using a combined model of image and patient’s age, while providing the
interpretable posterior distribution of the regression coefficient is possible. In addition,
integrating uncertainty in image and tabular parts results in larger variability of the outputs
corresponding to high uncertainty of the single model components.
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Acronyms

ANN Artificial neural network

AUC Area under the curve

BNN Bayesian neural network

CDF Cumulative distribution function

CI Confidence interval

CIb Complex intercept for image data

CIx Complex intercept for tabular data

CNN Convolutional neural network

CPD Conditional probability distribution

CRI Credible interval

DL Deep learning

ELBO Evidence lower bound
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ID In-distribution

IQR Interquartile range
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Nomenclature

ONTRAM Ordinal neural network transformation models

OOD Out-of-distribution

OR Odds ratio

PPD Posterior predictive distribution

SI Simple intercept

TM-VI Transformation model-based variational inference

VI Variational inference

Symbols
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β(x) Log odds ratio function for tabular data, defined as Complex intercept

β0 Intercept parameter
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λ Initialized variational parameter
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ϑ(B) Log odds ratio function for image data, defined as Complex intercept
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qλ(w) Variational distribution

w Weights of a NN

x Tabular data

y Outcome
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Chapter 1

Introduction

Malignant melanomas are aggressive skin tumors of melanocytic origin and responsible
for over 90% of all skin tumor deaths. In recent decades, there has been a significant
increase in the incidence rate. This is on the one hand due to UV-exposed leisure and
vacation behavior, which is a well-known major risk [23]. In Germany, an incidence of 19
cases per 100,000 population is recorded, with an approximately equal number of men and
women affected [6]. Additionally, as with other tumors, the risk of being diagnosed with
melanoma increases with age [22, 24]. But on the other hand, there is also a relatively high
incidence at young ages compared to other tumor entities [22]. The use of dermoscopy as a
noninvasive skin imaging technique for melanoma diagnosis leads to improved accuracy in
the diagnosis of pigmented lesions when used correctly. However, the degree of experience
of dermoscopy methods is important for diagnostic accuracy. Even for experts, diagnosing
melanoma can be time-consuming and based on subjective judgment [17]. Because early
detection of melanoma is critical for efficient treatment, there is a need for computer-aided
systems for automated skin lesion models.
In recent years, artificial neural networks (ANNs) and the associated deep learning (DL)
methods have gained great success in modeling unstructured data like images with the
ability of automatic feature engineering [9]. Previous works show [15] that utilizing ANNs,
which are based on convolutional neural networks (CNNs) in dermoscopy images, can
result in a good performance in the early detection of melanoma type and therefore ease
the diagnosis of medical experts.
However, ANNs are often referred to ’black box’ models because they are generally difficult
to interpret. For medical applications, additional interpretation possibilities focusing on
different risk factors may be relevant, e.g. ’what effect does age have on the type of
melanoma?’ Within the usage of statistical regression models, it is possible to obtain
interpretable parameters. These models take structured data as input, which are tables.
The combination of both, structured and unstructured data, yielding to a semi-structured
model, where the benefits of the statistical and deep learning community are combined.
Another drawback of traditional deep learning models is that they are often overconfident
within their predictions and only yield point estimates of parameters and the resulting
predictions [9]. However, uncertainty modeling, with the underlying probabilistic view,
is crucial especially in high-risk domains like medical applications. For example, what
happens if a melanoma image appears with a structure that has not been observed by the
model before?
In this case, Bayesian modeling helps to reveal an out-of-distribution situation, captured
as epistemic uncertainty [16], manifesting in a wide uncertainty distribution. Aleatoric
uncertainty [16] on the other hand captures data uncertainty and thus it can’t be reduced
by adding more data. Bayesian neural networks (BNN) [7] allow to capture both types of
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Chapter 1. Introduction

uncertainties by means of posterior distributions over the weights and the outcome predic-
tions of a NN. The determination of the model posteriors is computationally impossible due
to a large number of parameters of NNs and therefore BNNs need an approximation. The
posterior distribution is hard to determine exactly but can be approximated by variational
inference (VI) [3]. In the case of a complex posterior distribution needs to be fitted, a re-
cently developed method called transformation model-based variational inference (TM-VI)
can be used [11].

1.1 Aim and Objectives

This master thesis aims to predict the melanoma type by using semi-structured Bayesian
models, while interpretable components and model uncertainty is quantified.

This results in the following objectives:

1. Develop a CNN based on lesion images, a NN based on patient’s age, and a combi-
nation of both by using a publicly available dataset consisting of skin lesions and
patient’s age.

2. Interpret the effect of patient’s age with and without the impact of the image.

3. Apply TM-VI to semi-structured Bayesian models.

4. Quantifying uncertainty of the model parameter estimations of the different model
components by using the TM-VI method.

5. Evaluate and compare the prediction performance of all models.

6. Evaluate the parameter and model uncertainty.

1.2 Structure

First, the dataset is described, which is used for implementing the models. Afterward, the
methods are presented, which provide a brief introduction of the fundamentals of logistic
regression, deep learning models to model image and tabular data, and Bayesian neural
networks. Chapter 4 contains the experimental setup. This is followed by a discussion of
the results. The findings are summarized in a conclusion in the last chapter. In addition,
a brief exploration of future research points is given. Additional material is provided in
appendix A-C.
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Chapter 2

Dataset

Melanoma is a disease with a worldwide increasing incidence. One of the most extensive
collections of melanoma datasets can be found in the International Skin Imaging Collabo-
ration (ISIC) repository [13] including confirmed diagnosis of patient’s skin lesions labeled
by expert dermatologists. ISIC makes new public datasets available every year and has
thus grown significantly over the years. For this thesis, the ISIC 2020 Challenge dataset
’Skin Lesion Analysis Towards Melanoma Detection’ was used, which contains 33126 skin
lesion images from over 2000 patients, collected from six different institutions [25]. The
goal of the ISIC 2020 Challenge is to classify benign and malignant lesions. Figure 2.1
shows example lesions from the ISIC archive divided into benign and malignant melanoma
types. As it is shown in figure 2.1, the class distribution is quite imbalanced with ≈ 98%
benign and ≈ 2% malignant skin lesions.

A B

Figure 2.1: A: Example skin lesions from the ISIC 2020 Challenge Dataset with diagnosis ’benign’
(top row) and ’malignant’ (bottom row). B: Distribution of binary outcome variable of ISIC 2020
Challange Dataset. The outcome is quite imbalanced with ≈ 98% ’benign’ (y = 0) and ≈ 2%
’malignant’ (y = 1) diagnosis.

In addition to the labeled dermoscopy imaging, the respective metadata, consisting of the
patient’s age, gender, location of lesion, diagnosis, and the patient’s identification number
is available. To demonstrate the use of interpretable Bayesian models, we restrict here
to the age of the patient in combination with the lesion images.1 The approximate age
of the patient is almost equally distributed in both diagnosis groups with an average age
of about 50 years and a standard deviation of about 14 years (see panel B figure 2.2).
There were 68 missing values of the patient’s age, which have been supplemented with the
median age. Concerning the outcome variable, age seems to have an impact on the type of

1Statistical significance for the patient’s age is shown in table 5.1.
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Chapter 2. Dataset

melanoma, such that older patients are more likely to be affected by malignant melanoma
than younger ones (see panel A figure 2.2).
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Figure 2.2: Distribution of patient’s age. A: Mass distribution of patient’s age related to the
outcome variable ’benign’ and ’malignant’. B: Distribution of age with an average value of about
50 years.
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Chapter 3

Methods

In this chapter the used methods are described that are relevant for this thesis to model
Bayesian semi-structured models with the possibility of interpretation.

3.1 Logistic Regression

For a binary outcome and tabular data as input, logistic regression is used, when an
interpretable model is preferred. From a probabilistic perspective, a conditional probability
pD = p(y = 1|D) is modeled, which indicates the probability for an event occurs (y = 1),
depending on the data D. The resulting outcome is a conditional probability distribution
(CPD) which follows a Bernoulli distribution (y|D) ∼ Ber(pD) where pD is the probability
that an event occurs (y = 1). In logistic regression, instead of probabilities, odds are
considered for interpretation and are defined as:

odds(y = 1) = p

1− p (1)

where p represents the probability that an event occurs (y = 1). The range of odds
is between 0 and ∞. To obtain the range of values between -∞ and ∞, the odds are
logarithmized. Thus a linear predictor can be used to model the log-odds. The resulting
logit scale is defined by:

z = log
(

p

1− p

)
= logit(p) = β0 + β1x1 + β2x2 + ...+ βkxk (2)

The probabilities, estimated by a logistic regression, are obtained by solving equation 2 for
p, also known as the sigmoid function σ(z):

p(y = 1|x) = p(x) = 1
1 + e−z

(3)

As defined in equation 2, logistic regression can thus be represented as a continuous latent
variable model (illustrated in figure 3.1), in which the continuous latent variable z (see
panel B in figure 3.1) is modeled by a linear predictor. Therefore, rather than modeling the
probability directly, one cutpoint h1 in the latent variable z is modeled. At this cutpoint,
the cumulative distribution function (CDF) of the latent variable z is evaluated, which
yields the probability p(y = 1|x), modeled by logistic regression (see panel A in figure 3.1).
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Chapter 3. Methods

ℎ! ℎ!

Figure 3.1: Logistic regression as latent variable model. Panel A depicts the cumulative distribu-
tion function (CDF) of the latent variable z, which is known as logistic regression. The probability
density function (PDF) modeling z as linear predictor (panel B). There is one cutpoint h1, which
yields the probability for an outcome (B) and is evaluated by the logistic regression (A).

3.1.1 Interpretation of regression coefficients

For interpretation, the log-odds (see equation 2) are exponentiated (eβk), since the link to
the probabilities is nonlinear. This is known as odds ratio:

ORx→x+1 = odds(x + 1)
odds(x) = eβ0+βkxk+1

eβ0+βkxk
= eβk (4)

Therefore eβk can be interpreted as the factor by which the odds for class 1 changes,
when the predictor xi is increased by one unit while keeping all other predictors constant.
If ORx→x+1 > 1 there is a positive association, if ORx→x+1 < 1 it is negative and
ORx→x+1 = 1 resumes no association between predictor and the outcome. It should be
noted that the interpretation as OR’s should be done with caution due to two different
phenomenons, namely, confounding bias and non-collapsibility [5]. Even if confounders can
systematically be adjusted, there is still the effect of non-collapsibility, which means that
the conditional OR is not equal to the marginal OR. For a more detail explanation refer to
Burgess [5].

3.1.2 Logistic regression as neural network

Logistic regression can be modeled as a neural network (NN) without a hidden layer with
a sigmoid as an activation function. The weights of the NN correspond to the regression
coefficients (see equation 2).
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Chapter 3. Methods

Figure 3.2: Logistic regression as a one layer
neural network (NN) without hidden layer. The
weights correspond to the regression coefficients.
The sigmoid activation function is used to model
the probability for an event p(y = 1|x) = σ(z).
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The parameters are estimated by the maximum likelihood approach. Instead of maximizing
the likelihood, the NN is trained by minimizing the negative log-likelihood (NLL) over all
samples [9], which is defined as:

NLL = − 1
n

n∑
i=1

(yi log(p1(xi)) + (1− yi) log(1− p1(xi))) (5)

where n represents the number of samples , yi the true label of a binary event based on
data xi, and p1(xi) the predicted probability for an event.

3.2 Modeling image data

The image data are processed by a deep convolutional neural network (CNN) since it
is known for its good performance in the field of image classification. CNN is a type of
NN that contains stacked convolutional layers followed by fully connected layers. While
convolution is an operation process that detects local characteristics in certain regions
of the image and is thus used for feature extraction, the fully connected part is used for
classification. For more detailed information refer to Goodfellow et al. [9].
The architecture used in this thesis is inspired by the work of Abbas et al. [1] with a few
adoptions. In their work, they used a self-proposed CNN architecture for dermoscopic
images, consisting of five convolutional layers with max pooling (window size 2x2 pixels)
followed by two fully-connected layers. The same layer composition is used for this thesis,
however, the input of the 2D CNN are skin lesion images with the size of 128x128x3 pixels.
Furthermore, batch normalization is used in each layer to normalize the inputs. In each
convolution filter, a size of 3x3 pixels is used with 32,32,64,64,128 filters per layer. The
fully connected part consists of two 128-unit fully connected layers. RMSprop [28] was
used as optimizer and tanH (hyperbolic tangent activation function) as nonlinear activation
function for all layers. The network contained 419,589 trainable parameters. The NLL is
used as loss function (see equation 5).
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Input layer 5 x (Convolution Layer + tanH + max pooling) 2 x Fully connected Output Layer

Figure 3.3: Schematic visualization of the CNN to model image data with binary outcome. TanH:
Hyperbolic tangent activation function.

3.3 Combining image and tabular data

How to integrate tabular and unstructred data like images has already been shown for
ordinal regression [19]. Ordinal neural network transformation models (ONTRAM) uses
jointly trained neural networks, which compose of a transformation function h(y|x). This
transforms the ordinal outcome to cutpoints of a latent variable fz, instead of considering
the probabilities of the outcomes.
Since the logistic regression is used to model an outcome variable, which has a binary
outcome, the method simplifies to estimating a single cutpoint h1, which is known from
logistic regression (described in section 3.1). Through joint training of image and table
data, it is possible to get the interpretation of the regression coefficients as log odds and at
the same time have the prediction power of a CNN. Figure 3.4 provides an overview of the
individual components for different NN models.

A
Simple intercept (SI)	

B
Linear shift (LSx)

C
Complex intercept (CIx)

D
Complex intercept (CIb)

𝛽!
𝛽!

𝛽"𝑥"𝑥
𝛽"

𝛽(𝑥)𝑥 𝜗(𝐵)

1

Figure 3.4: Architecture of the used model components and NN models. A: Simple intercept (SI)
for a null model. B: Linear shift (LSx) term for tabular data as a dense NN without hidden layer
with the possibility of interpretation as log odds ratio. C: Complex intercept (CIx) for tabular
data as a dense NN with one hidden layer to model non-linear dependencies. D: Complex intercept
(CIb) for image data by using a CNN.

In the following, the resulting models based on the model components of figure 3.4 are
presented, which are necessary for this thesis.
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Chapter 3. Methods

1. Simple intercept + linear shift (SI LSx): h = β0 + β1x1 is used for tabular data
based on patients age as the only predictor variable x1 (see figure 3.4 components
A & B). It is modeled by a single layer NN using a linear activation function. To
get the probability for the outcome, a sigmoid function is used as a link function
p(y = 1|D) = σ(h). This corresponds to a logistic regression as a NN, which allows
to interpret eβ1 from the LSx term as the OR (described in section 3.1.1). So far,
there is no advantage to use a NN.

2. Complex intercept (CIx): h = β(x) is used to model patient’s age in a more complex
manner by a flexible dense NN, for example with one hidden layer and non-linear
activation function (see figure 3.4 component C). It should be noted that the single
output is used with linear activation where β(x) is a log odds ratio function, when the
sigmoid function is used as link function p(y = 1|D) = σ(h). Thus β(x) is different
for each age x in contrast to the LSx term and can model non-linear dependencies.

3. Complex intercept (CIb): h = ϑ(B) depends on the image data (see figure 3.4
component D) constructed by a 2D CNN (described in section 3.2). Similar to the
complex intercept and the linear shift term for tabular data, the output ϑ(B) can be
interpreted as the log odds ratio.

4. Complex intercept + linear shift (CIb LSx): h = ϑ(B) + β1x1 integrate image and
tabular data into a single model (see figure 3.4 components D & B). It is necessary
to model the output with a linear activation in both model components. Note that
there is no bias term in the LSx term, which allows interpret eβ1 as OR using sigmoid
function as link function p(y = 1|D) = σ(h). Here, the advantage of modeling the
tabular part with a NN becomes apparent with the possibility to combine structured
and unstructured data.

3.4 Bayesian neural network

Capturing parameter and model uncertainty are often tackled by statistical Bayesian
approaches, which can be transferred to neural networks, called Bayesian neural network
(BNN). Instead of point estimates for the parameters, posterior distributions are learned,
which represent the parameter uncertainty [7]. In BNNs, a prior distribution p(w) is chosen
over the weights, which is known as prior belief before any data is observed. Furthermore,
the definition of the likelihood distribution p(D|w) of the data D given by the parameters
is needed. After observing the data D, the posterior distribution p(w|D) of the parameters
are defined by the Bayesian theorem as follows:

p(w|D) = p(D|w)p(w)
p(D) = p(D|w)p(w)∑

p(D|w)p(w)∼p(D|w)p(w) (6)

The term p(D) is a normalization constant, which is usually an intractable problem due to
the fact of a high dimensional integral. Hence an approximation is needed, for example
Markov-Chain-Monte-Carlo (MCMC) [2] or variational inference (VI) [3]. With MCMC it
is possible to approximate the true posterior well. However, since it is a sampling method,
it is associated with high computational costs when sampling from a high dimensional
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Chapter 3. Methods

posterior [26]. Therefore VI is more suitable for larger NN. In section 3.4.1 the VI method
is described in more detail.

The posterior predictive distribution (PPD) of the model on a test example x are then
given by:

p(y|x,D) =
∫

w
p(y|x,w) · p(w|D)dw (7)

where p(y|x,w) is the outcome predictive distribution given the weights w and data x, that
are weighted with the posterior probability p(w|D). Thus, it is possible to capture the
outcome uncertainty by an overall distribution of probabilities. Figure 3.5 gives a visual
representation of a Bayesian logistic regression using a BNN. For detailed information on
Bayesian deep learning, refer to e.g. [7, 14].

Figure 3.5: Logistic regression using a Bayesian
neural network (BNN). Weights of the BNN have
distributions. Posterior predictive distribution
p(y|x,D) captures the outcome uncertainty. x! β!

Σ σ

β$
1

...

β%x% p(y=1|x)

x!

Σ σ

1

...

x% p(y=1|x,	D)

3.4.1 Variational inference

Variational inference (VI) is an optimization problem [3], in which a variational distribution
qλ(w) can be assumed to approximate the posterior distribution. The approximation of
the posterior is done by minimizing the Kullback-Leibler (KL) divergence between the VI
distribution qλ(w) and the posterior p(w|D):

KL(qλ(w) || p(w|D)) =
∫
qλ(w) log

(
qλ(w)
p(w|D)

)
dw

= log(D)− (Ew∼qλ
(log(p(D|w)))−KL(qλ(w) || p(w)))︸ ︷︷ ︸

ELBO(λ)

(8)

Since log(D) is a constant, the KL is minimized, if the negative evidence lower bound
(ELBO) is minimized via gradient descent instead. ELBO consists of two terms. The first
term is an expected log-likelihood, which can be approximated by averaging over T weight
samples:

Ew∼qλ
(log(p(D|w))) ≈ 1

T

∑
t,i

log(p(Di|wt)) (9)

The second term is the negative KL-Divergence between the variational distribution qλ(w)
and the prior p(w), which can be approximated by:

KL(qλ(w) || p(w)) ≈ 1
T

∑
t

log
(
qλ(wt)
p(wt)

)
(10)
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Chapter 3. Methods

As soon as several parameters have to be approximated, a mean-field VI is often used,
which assumes that all parameters are independent. This assumption leads to the fact that
posterior approximations are not determined as accurately, especially if the parameters
have potential dependencies [3, 30].
Mostly Gaussian is taken as variational distribution qλ(w), but there is the disadvantage
of limited flexibility in approximating a potentially complex distribution, as can be seen
in figure 3.6. In this case the TM-VI method [11] is suitable, which is described in the
following section.

Figure 3.6: Illustration of variational approximation. Variational Gaussian-VI approximation
qλ(w) compared to the true posterior p(w|D).

3.4.2 Transformation model-based variational inference

Within the TM-VI method, it is possible to approximate a flexible posterior distribution
[11]. This method consists of the concept of transformation model and VI. In figure 3.7 a
visual representation of the method is given.

Transformation model
Transformation models (TM) in general allow the transformation of a simple distribution,
such as Gaussian, to a potentially complex distribution and is a quite recently developed
method within the statistical community [12]. Sick et al. [27] described a method to model
complex regression distribution by joining ideas from statistical TMs and Normalizing
Flows [18], which are known from the deep learning community. The main idea is to
learn a bijective transformation function h that consists of a chain of transformation
h(z) = f3 ◦ f2 ◦ f1 (demonstrated in the right part of figure 3.7).
The first transformation is a scale and shift transformation f1(z) = a · x+ b (point 2 in
figure 3.7), followed by a sigmoid function, which transforms z, that comes from a standard
normal distribution, into the range of z′ ∈ [0, 1]. For f2(z′), a flexible Bernstein polynomial
is used (point 3 in figure 3.7) with the properties of a strict monotonous increase of
f2(z′), which can be achieved by enforcing the Bernstein coefficients (ϑ0...ϑM ) to increase.
Furthermore, the Bernstein polynomial can transform any function in the range [0,1].
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Chapter 3. Methods

The Bernstein polynomial, consisting of M + 1 parameters ϑ0...ϑM , is defined as follows:

f2(z′) =
M∑
i=0

Bei(z′)
ϑi

M + 1 (11)

where the polynomials of order M are generated by beta-densities Bei(z′).
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Figure 3.7: Representation of the TM-VI procedure by a single layer BNN with one input x and bias
term. The weights of the NN follow a posterior distribution, which is approximated by a variational
distribution trained from a simple distribution N(0,1) by a bijective transformation function h(z).
This transformation function consists of a chain of transformation functions h(z) = f3 ◦ f2 ◦ f1
(point 5), which transforms the simple distribution (red distribution, N(0,1)) to a potential complex
distribution qλ(w) (green distribution). After transforming N(0, 1) into the range [0,1] with f1
(point 2) followed by a sigmoid function, the flexible Bernstein polynomial f2 (point 3) is used
for transforming into a complex distribution. After the scale and shift function f3 (point 4), the
probability density of qλ(wt) can be calculated (point 6). Illustration taken from Hörtling et al.
[11].

The third transformation is again a scale and shift transformation f3(w′) = α · w′ + β
(point 4 in figure 3.7). To ensure that all transformations fi increase monotonously to
guarantee a bijective transformation, the softplus activation function f(x) = log(1 + ex) is
used for the slope parameters a and α. Moreover, the Bernstein coefficients are restricted
as follows: ϑ0 = ϑ′0, ϑi = ϑi − 1 + softplus(ϑ′i) for i =1,...,M. The transformation function
h(z) has therefore 5+M parameters λ = a, b, ϑ0, ...ϑM , α, β which are controlled by the NN.

Training TM-VI
For the TM-VI method, the initialized parameters λ = a, b, ϑ0, ...ϑM , α, β are trained by
minimizing the negative ELBO via gradient descent as described in section 3.4.1. However,

12



Chapter 3. Methods

for the expected log likelihood (see equation 9), T samples are drawn at first from the
basis distribution z (zt ∼ N(0, 1)). With these samples, the corresponding w-samples are
calculated using the transformation function wt = h(zt). Then, wt is used to determine
the KL divergence between variational distribution and the prior (see equation 10). The
probability density qλ(wt) can be achieved by applying the change of variable function
(point 6 in figure 3.7) from the samples zt:

qλ(wt) = p(zt) ·
∣∣∣∣∂hλ(zt)

∂z

∣∣∣∣−1
(12)
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Chapter 4

Experiments

Different models are implemented and evaluated by using the melanoma dataset (see
chapter 2), which are described in the following sections.
All models are implemented in Python (version 3.9.7) using Keras based on Tensorflow
backend (version 2.4.1) and trained on a GPU (see appendix B for implementation details.)
For reproducibility, the full code is available on Github:
https://github.com/IvonneKo/Master_Thesis

4.1 Models

For all models, a conditional outcome distribution (y|D) ∼ Ber(pD) is fitted where pD is
the probability of a melanoma being malignant. The data consists of image data (labeled as
B) and standardized patient’s age (labels as x). First, four non-Bayesian models (M1-M4)
are fitted by using image data, tabular data, or the combination of both, as described in
section 3.3. In the next step, the TM-VI method is used to model Bayesian models. Table
4.1 summarizes all components, which are used in this thesis.

Model Bayesian variant
M1 SI LSx
h = β0+ β1x1

a) β0: TM-VI null model (SI); β1: TM-VI fix intercept (SI LSx)
b) β0+ β1 x1: MF-TM-VI method (SI LSx)

M2 CIx
h = β(x) -

M3 CIb
h = ϑ(B)

a) Last layer MF-TM-VI
b) Last layer MF-Gaussian-VI

M4 CIb LSx
h = ϑ(B) + β1x1

a) ϑ(B): CNN ; β1x1: TM-VI
b) ϑ(B): Last layer MF-TM-VI; β1x1: MF-TM-VI

Table 4.1: Overview of the models implemented and evaluated in this thesis. In the left part of
the table the models are listed, which are implemented at first without considering uncertainty
(M1-M4). Models: SI LSx: Simple intercept, linear shift for tabular data, CIx: Complex intercept
for tabular data, CIb: Complex intercept for image data, and CIb LSx: Complex intercept for
image data, linear shift for tabular data. The TM-VI method is only added in the models M1,
M3 and M4 (right part of the table), using different model setups. If more than one parameter is
approximated, the meanfield TM-VI (MF-TM-VI) method is used (M1b, M3a&b, M4b).
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Chapter 4. Experiments

4.1.1 Non-Bayesian models

Since no uncertainty is adopted in the first step, deep ensembling approach [21] is used for
models with image data. This results in better prediction results by training the mentioned
models three times using a different weight initialization. For model evaluation, the result
of the predicted outcome is averaged over three runs.
To reduce computational costs for the combined model M4 CIb LSx, the weight of the
linear shift model is initialized with the resulting coefficient from logistic regression. For
this, additional Gaussian noise with mean 0 and scale 0.1 is added.
Learning rate, number of epochs, and batch size were adjusted for each model. The models
are trained with NLL as loss function (defined in equation 5).

4.1.2 Bayesian models

Since the goal is an overall model that combines tabular and image data, which allows for
both model uncertainty and interpretable regression coefficients, certain steps are taken to
compare different models with different model setups.
The flexibility of the TM-VI method is tested on tabular data (M1 SI LSx) with ’one
parameter models’, where β0 is modeled at first without data as a null model. Furthermore,
a fixed intercept term is taken for the parameter β1, which is estimated from the maximum
likelihood point estimation of the logistic regression. Next, the two parameters are modeled
combined with the mean-field TM-VI method (MF-TM-VI). All four parameters are
compared with the true MCMC posterior distributions modeled by PyStan (see appendix
B.2 for implementation details).
For image data (M3 CIb a)), the MF-TM-VI is only applied in the last layer of the
fully connected part of the CNN. The reason is the reduction of the computational cost
associated with the approximated inference [4], where reasonable results are obtained even
when modeling only a certain area of Bayesian approximation [20]. To have a comparison,
a model with MF-Gaussian-VI in the last layer (M3 CIb b)) is added.
For the combined model based on tabular and image data, the CNN is once modeled
without (M4 CIb LSx a)), once with TM-VI (M4 CIb LSx b)) in the last layer. In the last
case, the mean-field TM-VI is used. For numerical stability, the combined model M4b is
initialized with pre-trained weights for the model components ϑ(B) and β1x1.
Learning rate, number of epochs, and batch size were adjusted for each model. The models
are trained by minimizing the ELBO (defined in equation 8). For simplicity, all models
assume a vague Gaussian prior N(0, 1), which is often used in Bayesian neural networks
[29].

4.2 Preparation

For evaluation purposes, the entire dataset was split, with 80% of the data going into the
training set and 20% in the test set. 20% of the training set is used as validation data.
The image data was resized to 128x128x3 pixels and normalized to have values between
0 and 1. The data of the patient’s age are standardized with a mean 0 and variance 1.
Figure 4.1 shows the distribution of the standardized age.
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Figure 4.1: Distribution of the standardized age of training and test data with a mean of 0 and
variance 1.

4.3 Evaluation

The prediction performance of all models are evaluated with the log-score, as this corre-
sponds to a proper scoring rule [8]. It is thus well suited for the comparison of probabilistic
models. The log-score indicates how well a model fits the data and can be used to determine
the uncertainty quality. The higher the score the better:

log-score = 1
ntest

ntest∑
i=1

log(p(y = yi|xi, D)) (13)

In addition, the Area under Curve (AUC) is determined, since the usage is very common
especially in the medical field [10]. The higher the score, the better. A detailed description
can be found in appendix A.
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Results and Discussion

This chapter presents the results and discussion divided into non-Bayesian and Bayesian
models, using different combinations of model components. All models are evaluated and
compared by using the log-score and the AUC value. In addition, we take a look at the
interpretable parameter and at the PPD to detect OOD examples.

5.1 Non-Bayesian models

As described in section 4.1, four models are used in which uncertainty is not taken into
account.

5.1.1 Tabular data: Simple intercept, linear shift (M1 SI LSx)

Model h = β0 + β1x1 (SI LSx) can be compared to the solution from a logistic regression.
Table 5.1 shows the prediction performance from both models and, as expected, the same
log-score and AUC values are achieved. In addition, figure 5.2 gives a visual representation
of the ROC curves. Furthermore, table 5.1 shows that the estimated odds ratio (OR) of
the coefficient eβAge is the same. Here, the uncertainty of the coefficient estimates isn’t
addressed, since this is done with the addition of the TM-VI-method (results described in
section 5.2). However, the solution of the logistic regression model can specify the 95%
confidence interval (CI) of the coefficients, to have later the comparison with the credible
intervals (CRI) of the Bayesian models. It should be noted that these intervals are not
directly comparable, but give us an idea of the uncertainty distribution.
To interpret the effect of patient’s age, the estimated coefficient β1 can be considered as a
log odds ratio. It must be done with caution since the data is standardized to the mean 0
and variance 1 (see figure 4.1). Thus, the standardized coefficient is measured in units of
standard deviation. Therefore, the interpretation of the standardized coefficient for the
patient’s age differs slightly as described in section 3.1. It would be interpreted as follows:
The odds to have a malignant melanoma, when increasing the standardized predictor age
x by one standard derivation, is ORAge = eβAge = 2.01 times higher, holding all other
predictors constant. Since the odds are larger than one, the risk of a melanoma to become
malignant increases with age. This result was expected since age can be considered as a
risk factor of having a malignant melanoma.
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Chapter 5. Results and Discussion

5.1.2 Tabular data: Complex intercept (M2 CIx)

The assumption that the patient’s age, related to the target variable malignant melanoma,
has a linear effect, as specified in model M1 SI LSx, is not assured. For example, one
possible assumption is that the effect of age becomes linear only after a certain age, while
it remains almost the same at younger ages. To check this, the effect of age is modeled
by a smooth function visualized by a NN with an additional hidden layer using tangens
hyperbolicus (tanh) as a nonlinear activation function. This corresponds to the complex
intercept model h = β(x) (CIx), in which β differs for each standardized age. In figure
5.1 it is obvious that the coefficient could be modeled linearly and therefore it is valid
to use the simpler model SI LSx for further progression. Accordingly, when comparing
the performance of CIx model with the linear shift model SI LSx, the same log-score is
achieved, as can be seen in table 5.1. However, it must be emphasized that with the
addition of the image or other tabular predictors, the relationship between age and the
target variable does not have to be linear. This needs to be further investigated and is not
covered in this thesis.

3 2 1 0 1 2 3
standardized age x1

2

1

0

1

2

z

CIx (x)
LSx 1x1

Figure 5.1: Estimated non-linear effect compared to estimated linear effect of standardized age.
CIx: Complex intercept β(x) for tabular data to model standardized age in a complex manner as a
log odds ratio function. LSx: Linear Shift of tabular data β1x1 to model linear dependencies from
standardized age, where β1 is the log odds ratio. The outcome of the two models is z, which is
defined as log odds.

5.1.3 Image data: Complex intercept (M3 CIb)

The prediction performance of the complex intercept h = ϑ(B) (CIb) is significantly better
compared to the model containing only tabular data, as can be seen in table 5.1 and figure
5.2. The outcome as ϑ(B) can be interpreted as log-odds-ratio. However, it is not clear
which features in the image are responsible for the prediction.

5.1.4 Image and tabular data: Complex intercept, linear shift (M4 CIb LSx)

Adding tabular data to the image h = ϑ(B) + β1x1 (CIb LSx) yields a better test
performance, compared to the models where both components are modeled alone (see
table 5.1). Additionally, the main advantage of this common model is the possibility of
interpreting the coefficients, which is especially crucial in the medical field. The estimated
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regression coefficient of patient’s age β1 shifts from the original value 0.70 with the addition
of the image to 0.60, so the OR is with 1.83 lower than before, where the OR was 2.01.
This indicates a smaller effect of age after inclusion of the image. The interpretation would
be as follows: The odds to have a malignant melanoma, when increasing by one standard
derivation x, is ORAge = eβAge = 1.83 higher when holding the image ϑ(B) constant.

Model Log-Score AUC (95% -CI) ORAge

Logistic regression −0.085 0.66
[0.61− 0.71]

2.01
[1.82− 2.25]

M1 SI LSx
h =β0 + β1x1

−0.085 0.66
[0.61− 0.71]

2.01

M2 CIx
h =β(x)

−0.085 0.66
[0.61− 0.70]

-

M3 CIb
h =ϑ(B)

−0.078 0.81
[0.77− 0.84]

-

M4 CIb + LSx
h = ϑ(B) + β1x1

−0.075 0.84
[0.80− 0.87]

1.83

Table 5.1: Summary of performance measures log-score, area under the ROC curve (AUC), and
estimated odds ratio (OR) of tabular part with age as the only predictor. SI LSx: Simple intercept,
linear shift for tabular data, CIx: Complex intercept for tabular data, CIb: Complex intercept for
image data, and CIb LSx: Complex intercept for image data, linear shift for tabular data. Higher
values for log-score and AUC indicate higher model performance. For AUC, the 95% confidence
interval (CI) is calculated with bootstrapping; the 95% CI of the coefficient in the logistic regression
part is calculated with the Wald-interval.
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Figure 5.2: ROC curves of the different models. LogReg: Logistic regression, SI LSx: Simple
intercept, linear shift for tabular data, CIx: Complex intercept for tabular data, CIb: Complex
intercept for image data, CIb LSx: Complex intercept for image data, linear shift for tabular data.
The closer the curve is to the left corner, indicating a perfect classifier, the better. The grey dashed
line indicates a random classifier. ROC curves for models LogReg, SI LSx, and CIx based on the
tabular data lie on top of each other (purple, blue and orange line), as they achieve the same
performance.

5.2 Bayesian models

In this section we introduce Bayes to the three models: M1: SI LSx, M3: CIb and M4:
CIb LSx by using the TM-VI method, as described in section 4.1.

5.2.1 Tabular data: Simple intercept, linear shift (M1 SI LSx)

Before using TM-VI to set up a Bayesian model h = β0 + β1x1 (SI LSx), the method is
evaluated on one-parameter models to avoid the mean-field assumption (see section 3.4.1).
This is done once using a fix intercept and once as a null model (described in section 4.1.2).
As can be seen in figure 5.3 panel A and B, an accurate posterior approximation can be
achieved using the respective one-parameter models. This is in accordance with the results
of Hörtling et al. [11].
Using the mean-field TM-VI method to approximate two parameters of the model SI LSx
(M1) shows that the variational approximation of β0 and β1 deviates slightly compared to
the true posterior (figure 5.3 panel B), which can be caused by the mean-field assumption.
Again, since the sigmoid function is used as a link function at the results, eβ1 can be
interpreted as odds ratio. However, instead of a point estimation of the interpretable
parameter, the posterior distribution represents the parameters uncertainty. To get the
interval, which includes the most credible values, the 95% high density interval (HDI) is
calculated. Furthermore the maximum a posteriori (MAP) is used to get the most likely
value for the interpretable parameter. Calculating the MAP and the 95% HDI of eβ1 ,
resulting in a value and credible interval of 2.07 [1.84, 2.20]. Considering the prediction
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performance (see table 5.2), the Bayesian modeling does not lead to any difference of the
log score and AUC compared to the SI LSx model without uncertainty modeling (see table
5.1).
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Figure 5.3: Posterior distribution of the parameter β1 and β0 based on tabular data compared to
the true posterior resulting from Markov-Chain-Monte-Carlo (MCMC). The first row demonstrates
the posterior approximation of a one parameter model modeled by the TM-VI method. A:
Approximation of intercept parameter β0 as a null model without predictors. B: Approximation of
slope parameter β1 with a fix intercept term from the maximum likelihood estimation. Second row
demonstrates posterior approximation of the two parameters of the model SI LSx (simple intercept,
linear shift for tabular data) by using the mean-field TM-VI approach. C: Posterior distribution of
parameter β0. D: Posterior distribution of slope parameter β1.

5.2.2 Image data: Complex intercept (M3: CIb)

Using the TM-VI method in the last layer of the fully connected part of the CNN h = ϑ(B)
(CIb) yields the same log-score for Gaussian-VI and TM-VI (see table 5.2). Both models
provide a better prediction performance compared to the SI LSx model, which was to be
expected due to the results of section 5.1.3, which shows a better prediction performance
using image data. The uncertainty of ϑ(B) can be evaluated using the posterior predictive
distribution. The results are demonstrated in section 5.2.4.

5.2.3 Image and tabular data: Complex intercept, linear shift (M4 CIb LSx)

As mentioned in section 4.1.2, the combined model h = ϑ(B)+β1x1 (CIb LSx) is compared
with two model variants, where the image part ϑ(B) is modeled once without (M4a) and
once with Bayesian modeling (M4b). In both cases, the interpretable parameter β1 of the
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LSx part is modeled in a Bayesian way. Considering the prediction performance, both
models again have a higher log-score and AUC as the tabular and image model alone (see
table 5.2). Modeling the mean-field TM-VI method in the tabular and image part (M4b)
leads to a further increase of the log-score and AUC value. As shown in figure 5.4, with
the addition of the image, the effect of patient’s age related to the melanoma type becomes
smaller than without the image. By using the MF-TM-VI method in the last layer of
the fully connected part of the CNN, the position of the posterior distribution changes
slightly (see figure 5.4). However, in both models, with the addition of the image, the odds
for malignant melanoma, when age is increased by one standard deviation, is lower than
without the lesion image (holding image ϑ(B) constant). Calculating the MAP and the
95% HDI of β1 provides a value and credible interval of 0.59 [0.20, 0.79] for M4a and 0.51
[0.14, 0.79] for M4b (see table 5.2).
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MF-TM-VI tabular only 
TM-VI tabular + image
MF-TM-VI image + tabular

Figure 5.4: Posterior distribution of the slope parameter β1 compared for different models. MCMC:
Markov-Chain-Monte-Carlo, MF: Mean-field, TM-VI: Transformation model-based variational
inference. The dark green, dotted line is the true posterior of β1 modeled only with tabular data
by MCMC. The blue line represents the MF-TM-VI method of β1 modeled only with tabular data.
Adding the image part to the model is illustrated by the orange and green lines. Orange line:
Tabular data is modeled by the TM-VI method while using a non-bayesian CNN. The green line:
Image and tabular data are modeled with MF-TM-VI method.
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Model Log-Score AUC (95% -CI) ORAge(95%-HDI)

M1 SI LSx (MF-TM-VI)
h =β0 + β1x1

−0.085 0.66
[0.61, 0.71]

2.07
[1.84, 2.20]

M3 CIb (MF-Gaussian-VI)
h =ϑ(B)

−0.076 0.83
[0.80, 0.86]

-

M3 CIb (MF-TM-VI)
h =ϑ(B)

−0.076 0.83
[0.80, 0.86]

-

M4a CIb LSx (TM-VI)
h =ϑ(B) + β1x1

−0.075 0.84
[0.80, 0.87]

1.80
[1.21, 2.20]

M4b CIb LSx (MF-TM-VI)
h =ϑ(B) + β1x1

−0.074 0.85
[0.82, 0.88]

1.67
[1.15, 2.00]

Table 5.2: Summary of performance measures log-score, the area under the ROC curve (AUC),
and estimated odds ratio (OR) of the tabular part. SI LSx: Simple intercept, linear shift for tabular
data, CIb: Complex intercept for image data and CIb LSx: Complex intercept for image data, linear
shift for tabular data. Higher values for log-score and AUC indicate higher model performance. For
AUC the 95% confidence interval (CI) is calculated with bootstrapping. For models with tabular
part, 95% high density interval (HDI) is specified.

5.2.4 Uncertainty evaluation: Complex intercept, linear shift (M4 CIb LSx)

Example of out-of-distribution detection
To evaluate the modeled uncertainty, we look at the posterior predictive distribution (PPD)
and check if it is possible to detect out-of-distribution (OOD) data. It is important to
note that the evaluation of OOD behavior is challenging, since extreme values of the latent
variable z = h(y|D) can be reached, which is not reflected in y = σ(z). Therefore σ yields
outside its working range around 0. Furthermore, the outputs from the image and tabular
parts can influence each other through their combination. To better understand this, it is
beneficial to demonstrate the uncertainty distribution of the three model components β1,
ϑ(B) as well as the combination of both ϑ(B)+ β1x1 by example inputs, before entering
the sigmoid function for the PPD p(y = 1|x,B).
Figure 5.5 illustrates an OOD example once using a standardized age of x = 10, once a
standardized age of x = −10, while the image is random in both cases1. As expected, both
OOD cases show larger variability corresponding to high uncertainty (see panel A in figure
5.5). In contrast, the variabilities of in-distribution (ID) image and standardized age (x)
are smaller, indicating the model is more confident about the outcome (see panel B in
figure 5.5). When taking a standardized age value of x = −10, the range of the combined
model ϑ(B) + β1x1 shifts to negative values, which lies outside the working range of the
sigmoid function. This results to small variability corresponding to low uncertainty within
the resulting PPD (see panel C in figure 5.5). This effect can also be seen in the next two
examples illustrated in figures 5.6 and 5.7, where once only an OOD standardized age and
once only a random image is taken.

1The range of the in-distribution data of standardized age is from −3 to 3 (described in section 4.2).

23



Chapter 5. Results and Discussion

In summary, it can be said, that these examples clearly show the problems that can arise
when extreme values before the sigmoid function are used for prediction. For this reason,
it is important to consider the uncertainties before the sigmoid function is used for the
prediction.

A B C

x!= 10 (OOD)

x!= -10 (OOD)

(OOD)

(OOD)

(ID, y = 0)

(ID, y = 0)
x!= 0.81 (ID)

x!= 0.81 (ID)

Figure 5.5: Impact and interaction of the individual model components ϑ(B), β1x1, ϑ(B) + β1x1
based on two example inputs for OOD and ID data and the corresponding posterior predictive
distribution (PPD) of the combined model p(y = 1|x,B). For the OOD example (column A,
colored in blue), once using a standardized age of x1 = 10 (first row) and a standardized age of
x1 = −10 (second row), while the image is random in both cases. For the in-distribution (ID)
example (column B, colored in orange), a known image and standardized age x1 = 0.81 is taken
in both examples. Column C represents the PPD of the combined log-odds model of image and
tabular data after entering the sigmoid function p(y = 1|x,B) = σ(ϑ(B) + β1x1).
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x!= 10 (OOD)
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(ID, y = 0)

(ID, y = 0)

(ID, y = 0)

(ID, y = 0)
x!= 0.81 (ID)

x!= 0.81 (ID)

Figure 5.6: Impact and interaction of the individual model components ϑ(B), β1x1, ϑ(B) + β1x1
based on two example inputs for OOD and ID data and the corresponding posterior predictive
distribution (PPD) of the combined model p(y = 1|x,B). For the OOD example (column A, colored
in blue), once using a standardized age of x1 = 10 (first row) and a standardized age of x1 = −10
(second row), while the image is taken from the test data set. For the in-distribution (ID) example
(column B, colored in orange) in both examples a known image and standardized age x1 = 0.81 is
taken. Column C represent the PPD of the combined log-odds model of image and tabular data
after entering the sigmoid function p(y = 1|x,B) = σ(h).

A B C

(OOD) (ID, y = 0)
x!= 0.81 (ID)x!= 0.81 (ID)

Figure 5.7: Impact and interaction of the individual model components ϑ(B), β1x1, ϑ(B) + β1x1
based on two example inputs for OOD and ID data and the corresponding posterior predictive
distribution (PPD) of the combined model p(y = 1|x,B). For the OOD example (panel A), a
random image is used, while for the standardized age a value from the test data set x1 = 0.81
is taken. For the in-distribution (ID) example (panel B) in both examples a known image and
standardized age x1 = 0.81 is taken. Panel C represent the PPD of the combined log-odds model
of image and tabular data after entering the sigmoid function p(y = 1|x,B) = σ(h).

25



Chapter 5. Results and Discussion

Uncertainty evaluation on multiple data
To enable a more systematic evaluation, multiple test data points, labeled as in-distribution
data (ID), as well as OOD data, are considered with different input possibilities for image
and tabular data, as shown in figure 5.8. For the OOD images, 17 random images and 103
slightly modified images of the test dataset are taken. Example OOD images with the used
augmentation methods can be seen in appendix C. For OOD examples of standardized age,
120 data points from a range of [-10,4] and [4,10] are used.
The following model components are considered: β1x1 (panel A in figure 5.8), ϑ(B) (panel
B in figure 5.8) as well as the combination of both ϑ(B)+β1x1 (panels C-E in figure 5.8).
For the combined model, the uncertainty is evaluated by three different model setups: First
with OOD examples for image and tabular data (panel C in figure 5.8), second with OOD
examples only for image data (panel D in figure 5.8), and last with OOD examples only for
tabular data (panel E in figure 5.8). The uncertainty is quantified with the interquartile
range (IQR) to summarize the dispersion in a single number. The higher the IQR is, the
more uncertain the model. We would expect that in the cases with OOD examples the
range is higher than for the ID data. As can be seen in figure 5.8, for most cases this
assumption applies to be correct. However, for modified and random images the distinction
between in-distribution and OOD data is not as clear as for the tabular data, so that there
are some OOD examples where the model underestimates the uncertainties. This is shown
by a similar IQR value of ID and OOD images. For some random images, the IQR is even
very small, which indicates the model is certain for these images (panels B and D in figure
5.8). However, if the standardized age is taken from an OOD for the combined model, a
good separation of ID and OOD is achieved in terms of IQR value (panels C and E in
figure 5.8).
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Figure 5.8: Uncertainty evaluation of multiple data with different input setups. IQR: Interquartile
range of the model components indicated on the title of each plot (A-E), OOD: Out-of-distribution,
ID: In-distribution, x: Tabular data, B: Image data, β1x1: Linear shift term, ϑ(B): Complex
intercept model. Light blue dots represent the OOD data of modified images and standardized age,
orange dots are the ID test data and dark blue are random OOD images. A: Outcome of the linear
shift term with standardized ID and OOD examples. B: Outcome of the complex intercept with
ID, random and slightly modified images. C: Outcome of the combined model with ID and OOD
random, slightly modified images and standardized age. D: Outcome of the combined model with
OOD images only. E: Outcome of the combined model with only OOD standardized age.

5.2.5 Uncertainty evaluation: Simple intercept, linear shift (M1 SI LSx)

As it can be seen in figure 5.9 (panel A), the uncertainties on the logit scale h = β0+β1x1
for OOD examples become wider as soon as the known distribution is left. However,
the resulting PPD σ(h) only has wide uncertainties for a positive extreme value of the
standardized age (see figure 5.9 panel B). For negative extreme values for standardized
age, the uncertainties are not visible caused by the extreme negative value for h before
entering the sigmoid function. Again, for model uncertainty, it has to be captured before.
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Figure 5.9: Uncertainty evaluation of tabular based model SI LSx. TM-VI: Transformation
model-based variational inference, ID: In-distribution, PI: Prediction interval. A: Outcome of the
log odds model z = h = β0+β1 with mean, 2.5 and 97.5 quantiles. Orange dotted line represent
the range of the ID, which is taken from the test data set. B: Posterior predictive distribution as a
CPD p(y = 1|x) with mean, 2.5 and 97.5 quantiles. Orange dots represent the test data.

5.2.6 Uncertainty evaluation: Complex intercept (M3 CIb)

For the image-based model, Gaussian-VI and TM-VI are compared. Figure 5.10 shows
the range of uncertainties of the ID test data sets (120 data points) as well as 120 OOD
images consisting of random and slightly modified images (example images can be found
in appendix C). If the outcome of ϑ(B) is taken into account, it is noticeable that TM-VI
is more uncertainty aware in the case of OOD examples than Gaussian-VI.
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Figure 5.10: Uncertainty evaluation of image-based model CIb: TM-VI (A) and Gaussian-VI
(B). TM-VI: Transformation model-based variational inference, Gaussian-VI: Gaussian variational
inference, IQR: Interquartile range, OOD: Out-of-distribution, ID: In-distribution. Light blue dots
represent the OOD data of modified images, orange dots are the ID test data and dark blue are
random OOD images. For the evaluation, the value of an IQR is taken, which indicates the higher
the value the more uncertain the model.
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Chapter 6

Summary and Outlook

In this thesis, the implementation of semi-structured Bayesian models is demonstrated,
comprise of skin lesion images and the corresponding patient’s age, to predict the melanoma
types. In the analysis, we have seen that the additional consideration of tabular data in the
classification task achieves interpretability of the effect of patient’s age. Furthermore, using
the TM-VI method leads to a model that gives the possibility to quantify the uncertainty.
In order to achieve the goal and the resulting objectives, various models with different
complexity are fitted. Therefore, the models are evaluated once without and once with
the Bayesian variant. The evaluated models are SI LSx (simple intercept, linear shift for
tabular data), CIx (complex intercept for tabular data) CIb (complex shift for image data)
and CIb LSx (complex shift for image data, linear shift for tabular data). In the following,
the results are described for the non-Bayesian and Bayesian models.

6.1 Results of non-Bayesian models

As baseline models, a 2D CNN based on patient’s lesion images (CIb), corresponding to a
binary DL model, and a single layer NN based on patient’s age (SI LSx), corresponding to
a logistic regression, were developed. The improved prediction power in terms of log-score
and AUC of the CNN became clear in contrast to the simple NN model with age as the
only predictor. These results were to be expected, as the images usually contain more
information than just the age of the patient. The combination of both led, once again, to an
improvement of the prediction power. In addition, there is the advantage of interpreting the
patient’s age to break down the characteristic of the ’black-box’ DL model. The estimated
odds ratio (OR) for the predictor age shows a positive association between patient’s age
and the outcome of having a malignant melanoma. This was to be expected, since age
can be considered a risk factor. It could be observed that with the addition of the image,
the effect of age becomes smaller. The assumption that the effect of age might also be
nonlinear could not be confirmed by the addition of complexity in the NN. For this reason,
it was valid to perform the further steps involving uncertainty models, based only on the
three models: M1 SI LSx, M3 CIb, M4 Ib LSx.
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6.2 Results of Bayesian models

We have confirmed that the TM-VI method approximates the posterior distribution
accurately for one-parameter models. For the semi-structured model, which consists of
multiple parameters, the TM-VI was used, except for one model, within a mean-field
(MF) fashion. Modeling TM-VI only on the tabular linear shift part (LSx) within the
combined model yields an approximation of the posterior distribution without the mean-field
assumption.
In the case of tabular data (M1 SI LSx), modeling MF-TM-VI leads to the same pre-
dictive performance in terms of log score and AUC as the non-Bayesian variant of the
model. Instead of a point estimation, a whole posterior distribution is determined for the
interpretable coefficient. This distribution and the specification of credible intervals are
especially important in the medical field to avoid misdiagnosis by having an overconfident
model.
For the CNN-based models (CIb and CIb LSx), the MF-TM-VI method is only used in the
last layer of the fully connected part. The reason is that it proved difficult to apply the
method to multiple layers, recognizable by numerical instability. For this reason, it was also
necessary to train the joint model (CIb LSx) consisting of tabular and CNN with initialized
weights of both components. All models, except SI-LSx, achieve increasing log-score and
AUC values in their Bayesian variant. Also in the Bayesian variant, by adding the image
to the tabular part, the effect of age becomes smaller.
To evaluate the uncertainty, especially in the CNN-based models, we took a look at
the predictive posterior distribution (PPD). The focus relied on the detection of out-of-
distribution (OOD) examples, assuming large uncertainty ranges. This was demonstrated
in more detail by using one example input for image and tabular part within the combined
model CIb LSx. Five different combinations were used for tabular and image inputs, where
the MF-TM-VI method was used in both parts, LSx and CIb. On the one hand, the results
of the different experiments show how the model components influence each other. On the
other hand, it becomes clear that the uncertainties must be caught before the actual PPD.
The reason is that extreme values cause to leave the working range of the sigmoid function,
which is used for the prediction of a binary outcome. Thus, extreme values (0 or 1) are
reached, which leads to the fact that no uncertainties are recognized within the PPD. To
quantify the uncertainty by using multiple data, the interquartile range (IQR) of the h
components on the logit-scale was taken. It was observed that the OOD detection in the
image part is not always reliable. This effect is also shown by comparing MF-Gaussian-VI
and MF-TM-VI within the image-based models. However, TM-VI seems to be more aware
in detecting OOD examples compared to MF-Gaussian-VI. Here, the expectation would be
more that both methods would act similarly.

6.3 Outlook

While the primary interest of this thesis was to combine image and tabular data with
the ability of interpretation and uncertainty modeling, the CNN-based models achieve a
performance, which can be further improved by using different techniques, transfer learning,
or fine tuning the network. For example, the implementation of preprocessing techniques,
such as data augmentation, makes it possible to increase the diversity of the data. As a
result, it can increase the performance by using the right combination of augmentation
methods.
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In the case of facing novel images, the implemented models underestimate the uncertainty
for some types of images. It would be interesting to see how the results change when a
Bayes variant is used for the entire CNN. To do that, a further adaptation of the TM-VI
method is needed to provide results throughout a CNN. Furthermore, using the TM-VI
method on the CIx model to model the predictor variable age in a complex manner was not
covered in this thesis. What impact this might have on the performance and the uncertainty
detection is something that can still be evaluated. In future work, other predictors such as
gender or the location of the lesion could be included. For this, it would be advantageous
to drop the mean-field assumption so that the dependencies of the different predictors are
not ignored. Considering the interpretation task, the addition of several predictors can
for example cause the linear effect of age to become nonlinear. In addition, confounding
bias should be considered, which highlights the importance of adjusting the confounders in
future analyses.
In conclusion, this work served as a first step to combine interpretable semi-structured
models with the VI-procedure, which can be applied to other medical classification tasks.
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Appendix A

Evaluation Metrics

A.1 Log score

For the conditional outcome distribution p(yi|xi, D) ∼ Bernoulli(yi ∈ 0, 1), the log score is
used to compare models and is defined as:

log-score = 1
ntest

ntest∑
i=1

log(p(y = yi|xi, D))

= 1
ntest

ntest∑
i=1

(yi log(p1(xi)) + (1− yi) log(1− p1(xi)))

In Bayesian models the posterior predictive distribution is considered. For this, the integral
is replaced with the mean samples S for one datapoint xi from the posterior:

p(yi|xi, D) =
∫
w
p(yi|xi, w) · p(w|D)dw

p(yi|xi, D) = 1
S

S∑
i=1

p(yi|xi, w)

A.2 Area under the ROC Curve

A ROC curve (receiver operating characteristic curve) plots True Positive Rate (Sensitivity)
against True Negative Rate (1-Specificity) at different classification thresholds:

Sensitivity = True Positive
True Positive + False Negative

Specificity = True Negative
True Negative + False Positive

To summarizes the ROC curve to a single value, the area under the ROC curve is considered
(AUC). The output of AUC is between 0 and 1. The closer the value to 1, the better.
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Appendix B

Implementation details

GPU: NVIDIA GeForce RTX 2070 SUPER
Python: 3.9.7

B.1 Important packages

Models
Tensorflow: 2.4.1, scikit-learn 1.0 (logistic regression)
Image Preprocessing
Keras-Preprocessing: 1.1.2
Analysis and Visualization
matplotlib 3.4.3, seaborn 0.11.2, arviz 0.11.2
MCMC simulation
PyStan: 2.19.1.1

B.2 PyStan code for logistic regression

1 melanom_data = { ’N ’ : x_trainLR . shape [ 0 ] , ’M’ : x_trainLR . shape [ 1 ] ,
2 ’X ’ : x_trainLR , ’ y ’ : y_train }
3
4 lr_code = " " "
5
6 data {
7 i n t N;
8 i n t M;
9 r e a l X[N, M] ;

10 int <lower =0, upper=1> y [N ] ;
11 }
12
13 parameters {
14 r e a l beta [M] ;
15 r e a l beta0 ;
16 }
17
18
19 model {
20 f o r ( i i n 1 :N)
21 y [ i ] ~ b e r n o u l l i ( i n v _ l o g i t ( beta0 + dot_product (X[ i ] , beta ) ) ) ;
22 beta [M] ~ normal ( 0 , 1) ;
23 beta0 ~ normal ( 0 , 1) ;
24 }
25 " " "
26
27
28 stm = pystan . StanModel ( model_code=lr_code )
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Appendix C

Out-of-distribution examples

First row: Slightly modified from original images: Random rotation, random translation,
random flip, adjust brightness.
Second row: Random images.
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