
cryptography

Article

Generalized Concatenated Codes over Gaussian and Eisenstein
Integers for Code-Based Cryptography

Johann-Philipp Thiers and Jürgen Freudenberger *

����������
�������

Citation: Thiers, J.-P.; Freudenberger,

J. Generalized Concatenated Codes

over Gaussian and Eisenstein Integers

for Code-Based Cryptography.

Cryptography 2021, 5, 33.

https://doi.org/10.3390/

cryptography5040033

Academic Editors: Edoardo

Persichetti, Paolo Santini, Marco

Baldi and Qiang Wang

Received: 1 November 2021

Accepted: 25 November 2021

Published: 29 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute for System Dynamics (ISD), HTWG Konstanz, University of Applied Sciences,
78462 Konstanz, Germany; jthiers@htwg-konstanz.de
* Correspondence: juergen.freudenberger@htwg-konstanz.de; Tel.: +49-7531-206-647

Abstract: The code-based McEliece and Niederreiter cryptosystems are promising candidates for
post-quantum public-key encryption. Recently, q-ary concatenated codes over Gaussian integers
were proposed for the McEliece cryptosystem, together with the one-Mannheim error channel, where
the error values are limited to the Mannheim weight one. Due to the limited error values, the
codes over Gaussian integers achieve a higher error correction capability than maximum distance
separable (MDS) codes with bounded minimum distance decoding. This higher error correction
capability improves the work factor regarding decoding attacks based on information-set decoding.
The codes also enable a low complexity decoding algorithm for decoding beyond the guaranteed
error correction capability. In this work, we extend this coding scheme to codes over Eisenstein
integers. These codes have advantages for the Niederreiter system. Additionally, we propose an
improved code construction based on generalized concatenated codes. These codes extend to the
rate region, where the work factor is beneficial compared to MDS codes. Moreover, generalized
concatenated codes are more robust against structural attacks than ordinary concatenated codes.

Keywords: public-key cryptography; McEliece cryptosystem; Niederreiter cryptosystem; maximum
distance separable codes; concatenated codes

1. Introduction

Public-key cryptographic algorithms are important for today’s cyber security. They
are used for key exchange protocols or digital signatures, e.g., in communication standards
like transport layer security (TLS), S/MIME, and PGP. Public-key encryption is based on a
trapdoor-function which also defines the systems security. The most common public-key
cryptosystems nowadays are the Rivest–Shamir–Adleman algorithm (RSA) and the elliptic
curve cryptography (ECC). Those are based on the intractability of integer factorization
and the elliptic curve discrete logarithm problem, respectively. Both problems can be
solved using quantum algorithms [1,2]. Hence, large scale quantum computers threaten
the security of today’s RSA and ECC cryptosystems.

To cope with this issue, many post-quantum encryption methods were proposed [3],
e.g., code-based cryptography. Code-based cryptography is based on the problem of
decoding random linear codes, which is known to be NP-hard [4]. The best-known code-
based cryptosystems are the McEliece system [5] and the Niederreiter system [6].

For the McEliece system, the public key is a permuted and scrambled version of
the generator matrix of an error correcting code. The message is encrypted by encoding
the information with the scrambled generator matrix and adding intentional errors. The
private key is the original generator matrix and the matrices used for scrambling and
permutation. Using the private key, the received vector can be decoded into the original
message. Due to the scrambling of the generator matrix, it is not possible to obtain its
structure without the knowledge of the private key. Hence, an attacker needs to decode
the received vector for a random-looking linear code. The best-known decoding attacks
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for code-based cryptosystems are based on information-set decoding (ISD) [7], which
is therefore the most interesting attack scenario [8–11]. For information-set decoding,
the attacker tries to find an error-free information set, which is then used to re-encode
the codeword.

The Niederreiter system is comparable to the McEliece system. However, secure
digital signature schemes are only known for the Niederreiter system [12]. Instead of the
generator matrix, the scrambled parity check matrix is used as public key. For encryption,
the message is encoded as an error vector, and the cypher text is the syndrome calculated
with the public parity check matrix. The private key consists of the original parity check
matrix, as well as the matrices used for scrambling. For decryption, a syndrome decoding
algorithm is required, which recovers the error vector from the syndrome. As for the
McEliece scheme, the most relevant attacks are based on ISD.

Different code families were proposed for those systems, e.g., Reed–Solomon (RS)
codes [13,14], BCH codes [15], LDPC codes [16–19], or polar codes [20]. For some code
families, there exist structural attacks, which make use of the structure of the codes, e.g.,
the attacks in [21,22].

In [23], product codes of outer RS codes and inner one-Mannheim error correct-
ing (OMEC) codes were proposed for the McEliece system. Those codes are defined
over Gaussian integers, which are complex numbers with integers as real and imaginary
parts [24,25]. They are able to correct more errors than maximum distance separable (MDS)
codes. MDS codes are linear block codes which are optimal codes for the minimum Ham-
ming distance, i.e., they achieve equality in the Singleton bound. The codes over Gaussian
integers achieve a higher error correction capability due to restriction of the error values.
The used channel model allows only errors of Mannheim weight (magnitude) one. The
work factor of ISD only depends on the number of errors, but not on their values. A higher
error correction capability leads to a higher work factor for comparable parameters. On the
other hand, the concatenated codes presented in [23] can be attacked with a combination
of the structural attacks from [21,22].

In this work, we propose a new code construction based on generalized concatenated
(GC) codes. This construction is motivated by the results in [26], which show that GC codes
are more robust against structural attacks than ordinary concatenated codes. Furthermore,
we adapt the code construction to Eisenstein integers. Eisenstein integers are complex
numbers of the form a + bω, where a and b are integers and ω = −1/2− i

√
3/2 is a third

root of unity [27]. Eisenstein integers form a hexagonal lattice in the complex plain [28].
While the one-Mannheim error channel has four different error values, a similar channel
model for Eisenstein integers has six different error values. In the Niederreiter cryptosys-
tem, the message is encoded as an error vector. Hence, the representation with Eisenstein
integers allows for longer messages compared with codes over Gaussian integers. In this
work, we additionally derive and discuss the channel capacity of the considered weight-
one channel over Eisenstein integers. Moreover, we extend the GC code construction to
Eisenstein integers.

This publication is structured as follows. In Section 2, we review the McEliece and the
Niederreiter system, as well as the attacks based on information-set decoding. In Section 3,
we briefly explain Gaussian and Eisenstein integers, as well as the one-Mannheim error
channel. We investigate the weight-one error channel for Eisenstein integers in Section 4.
In Section 5, we adapt the product codes from [23] to Eisenstein integers. The new code
construction based on generalized concatenated codes is discussed in Section 6. Finally, we
conclude our work in Section 7.

2. Code-Based Cryptosystems

In this section, we review the basics of the McEliece and Niederreiter systems, as well
as information-set decoding.
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2.1. The McEliece System

The McEliece cryptosystem utilizes the problem of decoding random linear codes as
trapdoor function. In the following, we will shortly explain the basic concept of this system.

Consider a q-ary code C(n, k, t) of length n, dimension k, and error correction capability
t. The code can be represented by its generator matrix G, and should enable an efficient
decoding algorithm φ(·) for up to t errors. The public key is the pair (G′, t). The matrix G′

is a scrambled generator matrix G′ = SGP, with the random non-singular k× k scrambling
matrix S, and the n × n permutation matrix P. The private key consists of the three
matrices (G, S, P).

For encrypting a message u of length k, the message is encoded using the public
generator matrix G′ and a random error vector e, containing at most t non-zero error values
added, i.e., v = uG′ + e. Using the private key, the message can be decrypted by first
computing r = vP−1 = uSG + eP−1. Note that eP−1 is a permuted error vector and the
permutation does not change the number of errors. We decode r as φ(r) = φ(vP−1) = uS.
Finally, the message can be calculated using the inverse scrambling matrix.

2.2. The Niederreiter System

The Niederreiter system is based on the parity check matrix. Consider a code C(n, k, t)
with parity check matrix H and an efficient syndrome decoding algorithm φ(·). The public
key is (H′, t). The scrambled parity check matrix is calculated as H′ = SHP, where S
is a random non-singular (n− k)× (n− k) scrambling matrix, and P is a random n× n
permutation matrix. The private key consists of the three matrices (H, S, P).

For encryption, a message is first encoded as an error vector m of length n and at most
t non-zero symbols. The cyphertext is the syndrome calculated using the public parity
check matrix, i.e., sT = H′mT . The legitimate recipient receives sT = H′mT = SHPmT

and computes S−1sT = HPmT . Applying the syndrome decoding algorithm φ(·) results
in the permuted error vector PmT . Finally, the message m is obtained using the inverse
permutation P−1. As for the McEliece system, this decoding is only feasible with the
knowledge of the scrambling and permutation matrices S and P.

2.3. Information-Set Decoding

The best known attacks on the McEliece system as well as the Niederreiter system are
based on information-set decoding (ISD). Those attacks do not rely on any code structure
except linearity, i.e., the attacks try to decode a random-looking linear code. Such attacks
were proposed in [8,9], and more recently, some improvements were proposed in [10,11].
We only review the basic concept of attacks based on ISD.

For the McEliece system, the attacker tries to recover the information vector u′ = uS
from the cyphertext v = uG′ + e. To achieve this, the attacker tries to guess k error-free
positions u′′, such that the corresponding columns of the public generator matrix G′ form
a non-singular matrix G′′. If such positions are found, the attacker can use Gaussian
elimination on the guessed positions of G′ and re-encode a codeword v′′ = u′′G′′ agreeing
with v in the guessed positions. If v′′ differs in at most t positions from v, there are no
errors in u′′, and the attacker obtains u′ = u′′G′′−1.

For the Niederreiter system, the attacker tries to find an error vector m of weight t,
such that H′mT = sT . To achieve this, an attacker tries random permutations P̃ on the
public key H′ and computes the systematic form as H′′ = UH′P̃ = (A|In−k), where U
is the matrix that produces the systematic form and In−k is the (n− k)× (n− k) identity
matrix. The attacker searches for a permutation such that the permuted message vector
P̃m has all non-zeros in the rightmost n− k positions. Such a permutation can be detected
by the Hamming weight of the scrambled syndrome UsT = H′′mT . Due to the systematic
form of H′′, the permuted message vector is P̃m =

(
0, . . . , 0|UsT).
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The complexity of information-set decoding attacks is determined by the expected
number of trials required to find a permutation fulfilling those criteria. The probability for
such a permutation is

Ps =
(n−k

t )

(n
t)

(1)

and the expected number of trials is

NISD =
1
Ps

=
(n

t)

(n−k
t )

. (2)

We use NISD to measure the work factor for ISD attacks.

3. Codes over Gaussian and Eisenstein Integers

Next, we review some properties of Gaussian and Eisenstein integers, as well as some
known code constructions for these number fields.

3.1. Gaussian and Eisenstein Integers

Gaussian integers are a subset of complex numbers with integers as real and imaginary
parts, i.e., of the form a + bi, where a and b are integers. We denote the set of Gaussian
integers by G. The modulo operation in the complex plain is defined as

z mod π = z−
[

zπ∗

ππ∗

]
· π, (3)

where [·] denotes rounding to the closest Gaussian integer, which is equivalent to rounding
the real and imaginary parts individually. The set of Gaussian integers modulo π ∈ G with
p = ππ∗ elements is denoted by Gp. For π ∈ G, such that p mod 4 ≡ 1, the set Gp = G
mod π is a finite field which is isomorph to the prime field Fp [24].

We measure the weight wtM(z) of a Gaussian integer z as Mannheim weight which is
the sum of the absolute values of its real and imaginary parts, i.e.,

wtM(z) = min
a+bi∈K(z)

|a|+ |b|, (4)

where K(z) is the set of Gaussian integers z′, such that z = z′ mod π. The Mannheim
distance between two Gaussian integers is the weight of the difference

dM(z, y) = wtM(z− y). (5)

The Mannheim weight of a vector is the sum of Mannheim weights of all elements of
the vector. The same holds for the Mannheim distance between two vectors.

Eisenstein integers are similar to Gaussian integers, but of the form x = a + bω, where
a and b are integers, and ω = − 1

2 +
√

3
2 i is a third root of unity. Eisenstein integers form a

hexagonal structure in the complex plain and are denoted as E . As for Gaussian integers,
a finite field can be defined as the set Ep = E mod π, where π ∈ E and p = ππ∗. In
contrast to Gaussian integers, the prime p has to fulfill p mod 6 ≡ 1 due to the hexagonal
structure. For such π, the field Ep is isomorph to the prime field Fp [27].

We measure the weight of an Eisenstein integer as a hexagonal weight, which is
defined by the minimum number of unit steps in directions which are a multiples of 60◦.
An Eisenstein integer z can be written as z = g1ε1 + g2ε2, with ε1,2 ∈ {±1,±ω,±(1 + ω)}.
Note, that (1 + ω) is a sixth root of unity and ω is a third root of unity. Hence, ε1,2 can take
the six powers of the sixth root of unity. The weight is defined as

wtHX = min
{g1,g2 :g1ε1+g2ε2=z}

|g1|+ |g2|. (6)
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As for Gaussian integers, the weight of a vector is the sum of weights of the elements,
and the distance between two Eisenstein integers is the weight of the difference.

3.2. One Error Correcting (OEC) Codes

One error correcting (OEC) codes over Gaussian as well as over Eisenstein integers
fields were proposed in [24,27], respectively. The parity check matrix H is defined as

H =
(

α0, α1, α2, . . . , αn−1
)

, (7)

where α is a primitive element of the field. A vector v = (v0, v1, v2, . . . , vn−1) is a codeword
if, and only if, HvT = 0. For codes over Eisenstein integers, we have vi ∈ Ep, and the
length of an OEC code satisfies n ≤ p−1

6 . For OEC codes over Gaussian integers, we have
n ≤ p−1

4 and vi ∈ Gp.
The dimension of an OEC code is k = n− 1, and the minimum Hamming distance

is dH = 2. The minimum hexagonal distance is dHX = 3 for OEC codes over Eisenstein
integers, and the minimum Mannheim distance is dM = 3 for OEC codes over Gaussian
integers. Hence, such codes can detect any single error of arbitrary weight and correct a
single error of Mannheim weight one or hexagonal weight one, respectively.

3.3. Product Codes over Gaussian Integers

In [23] a product code construction from outer Reed–Solomon (RS) and inner one,
error correcting (OEC) codes over Gaussian integers was proposed. In the following,
we review this code construction. Later on, this construction is extended to codes over
Eisenstein integers.

We consider an outer RS code Co(no, ko, do) over Fp and an inner OEC code Ci(ni, ki, di)
over Gp, where p = ππ∗. Note that do denotes the minimum Hamming distance of the RS
code, while di denotes the minimum Mannheim distance of the OEC code. The codeword
of a product code can be represented as (ni × no)-matrix. For encoding, first, ki codewords
of the outer RS code are encoded and written to the first ki rows of the codeword matrix.
Next, the symbols are mapped from Fp to the isomorphic Gp, and each column of the
codeword matrix is encoded in the inner OEC code. The product code has length n = noni,
dimension k = koki = ko, and minimum Mannheim distance d = dodi, as shown in [23].

For instance, consider the special case of the inner OEC codes of length ni = 2 and
minimum Mannheim distance di = 4 [23]. These codes are generated by a field element a
of weight at least three. The parity check matrix is H = (1, a) and the generator matrix is
G = (−a, 1). Depending on the choice of a, this can result in a code of minimum Mannheim
distance di ≥ 4. Note, that this does not change the Hamming weight, hence, only one
error of arbitrary weight can be detected. Like the original OEC codes proposed in [24],
this code can only correct one error of Mannheim weight one, but it can detect any error
vector of weight two. The product code has length n = 2no and minimum Mannheim
distance d = 4(no − ko + 1).

In order to develop a low-complexity decoding algorithm that can decode up to half
the minimum distance, a new channel model was considered in [23]. This one-Mannheim
error channel is a discrete memoryless channel restricting the error values to Mannheim
weight one [29]. Given an error probability ε, each error symbol is zero with probability
1− ε. Error values are from the set {1,−1, i,−i}, which occur with probability ε/4. Due to
this restriction, the error vector in each inner codeword with ni = 2 can have a Mannheim
weight of at most two, and therefore can be detected by the inner OEC codes. While the
inner decoder corrects any error vector of Mannheim weight one, it declares an erasure for
each error vector of Mannheim weight two. Hence, all error positions are known for the
outer RS decoder, and an erasure-only decoding method can be applied. Using the Forney
algorithm, this erasure-only decoding can correct up to no − ko erasures.

The restriction of the error values allows for a guaranteed error correction capability
of t = 2(no − ko) + 1 = n− 2k + 1 errors, because no − ko erasures can be corrected, and
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each erasure requires at least two errors. One additional error can be corrected in any inner
codeword. For code rates R < 1/3, this error correction capability is higher than the error
correction capability of MDS codes, i.e., tMDS = (n−k)/2.

4. The Weight-One Error Channel

In this section, we extend the concept of the one Mannheim error channel from [23] to
Eisenstein integers. Furthermore, we derive the capacity for this weight-one error channel
and discuss its relation to code-based cryptosystems. These results demonstrate that codes
over Eisenstein integers are attainable, where the expected number of errors exceeds the
number of redundancy symbols n− k, which prevents error free information sets.

While the minimum Hamming distance of codes over Eisenstein integer fields is
comparable with other code constructions, they may have a significantly higher minimum
hexagonal distance. This leads to an increased error correction capability in terms of
hexagonal-weight errors. Hence, a channel model, which restricts the error weight, is
advantageous for such codes.

The weight-one error channel is a discrete memoryless channel, which restricts the
error values to hexagonal weight one. Hence, only error values ei ∈ {±1,±ω,±(1 + ω)}
are possible. Note that ω is a third root of unity and 1 + ω is a sixth root of unity. Hence,
these six possible values form a hexagon in the complex plain.

Figure 1 illustrates the channel model of the weight-one error channel. For a given
channel error probability ε, error-free transmission (ei = 0) occurs with probability 1− ε,
while each of the six errors has the same probability of ε

6 .

V ∈ Ep R ∈ Ep

vi vi

vi + 1 mod π

vi − 1 mod π

vi + ω mod π

vi −ω mod π

vi + (1 + ω) mod π

vi − (1 + ω) mod π

1−ε

ε/6

ε/6

ε/6

ε/6

ε/6

ε/6

Figure 1. Channel model of the weight-one error channel.

Proposition 1. The channel capacity of the weight-one error channel with transmitted symbols
vi ∈ Ep is

C = log2(p) + (1− ε) · log2(1− ε) + ε · log2

( ε

6

)
. (8)

Proof. The channel capacity of a symmetric discrete memory-less channel is [30]

C = log2(|R|)− H(P), (9)

where |R| is the cardinality of the output alphabetR = Ep and H(P) the entropy of a row
P of the transition matrix. The cardinality of the output alphabet Ep is p. Each row of the
transition matrix has seven non-zero elements, one element (1− ε) for the case that no
error happened, and six elements ε/6 for the six equally probable error values. Hence, the
entropy is
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H(P) = −
p−1

∑
i=0

Pi · log2(Pi)

= −(1− ε) · log2(1− ε)− 6 ·
( ε

6
· log2

( ε

6

))
(10)

and thus follows (8).

Example 1. Figure 2 shows the relative channel capacity C/log2(p) of the weight-one error channel.
This relative capacity is the supremum of all achievable code rates R. Moreover, the line 1− ε is
shown, on which the expected relative number of errors is equal to the relative amount of redundancy
(n−k)/n = 1− R. For the achievable rate region above this line, the expected number of errors εn
surpasses n− k, and therefore no error-free information sets exist. As shown in Figure 2, codes
which are able to correct more than n − k errors are possible for code rates above 0.3 or 0.2 for
p = 43 and p = 97, respectively.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

channel error probability ε

ra
te

R

p = 43

channel capacity C
1− ε

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

channel error probability ε

p = 97

channel capacity C
1− ε

Figure 2. Capacity of the weight-one error channel for p = 43 and p = 97.

5. Product Codes over Eisenstein Integers

In this section, we adapt the product code construction from [23] to Eisenstein integers
for the Niederreiter system. The adaptation of the product code construction is trivial,
i.e., we simply replace the inner codes over Gaussian integers by codes over Eisenstein
integers. The restriction of applicable primes is different for Gaussian and Eisenstein
integers. However, there are primes that fulfill both restrictions leading to the same
code parameters. Nevertheless, Eisenstein integers have advantages for the Niederreiter
cryptosystem, where the message is encoded as error vector of weight at most t. The
information mapping consists of two parts. One part defines the error positions, and can
take

⌊
log2 (

n
t)
⌋

bits of information. The other part defines the error values and can take⌊
log2

(
mt)⌋ bits of information, where m is the number of possible error values. Codes over

Eisenstein integers increase the message length compared to codes over Gaussian integers,
because the number of possible error values m for Eisenstein integers is higher than for
Gaussian integers.



Cryptography 2021, 5, 33 8 of 18

The Niederreiter cryptosystem requires an adaptation of decoding method, because
only the syndrome is available, and the decoding method needs to find the corresponding
error vector. In the following, we devise such a syndrome decoding procedure.

5.1. Syndrome Decoding

For the syndrome decoding, we use look-up tables for the inner OEC codes and
erasure decoding for the outer RS codes. We consider the private parity check matrix of
the form

H =

(
HRS 0
Ino a · Ino

)
, (11)

where HRS is the parity check matrix of the outer RS code, and the lower part (Ino a · Ino )
is the Kronecker-product of the parity check matrix of the OEC codes and an (no × no)
identity-matrix. With this definition, the first no − k syndrome values correspond to the
RS code, and the last no syndrome values belong to the inner OEC codes. The public key
is a scrambled version of the parity check matrix, i.e., H′ = SHP, where S is a random
invertible scrambling matrix, and P is a random permutation matrix.

To decode the scrambled syndrome sT = SHPmT , one first unscrambles the syndrome
as s̃T = S−1sT = HPmT , and then decodes the inner OEC codes using a look-up in a
precomputed syndrome table. Since the inner codewords have a length of two, and the
OEC codes have minimum hexagonal distance di ≥ 4, any single error resulting from the
weight-one error channel can be corrected, while any error vector of up to two errors can
be detected. The precomputed syndrome table provides the error location and value for
each correctable error pattern, i.e., each error pattern with only one error. For each error
pattern with two errors, an erasure is declared. These erasures are resolved in the outer
decoder. Since s̃T = HPeT , the inner decoder produces parts of the permuted error vector,
which is denoted as PêT .

After the inner decoding, we update the residual syndrome for the outer decoder. The
residual syndrome is the syndrome corresponding to an error vector e− ê of lower weight.
The syndrome to the partial error vector ê can be computed using the private matrices H
and P. This syndrome can be subtracted from the received syndrome

s̃T
res = HP(e− ê)T = s̃T −HPêT . (12)

The outer RS code is now decoded using the residual syndrome s̃res, as well as the
erasure positions declared by the inner decoders. Since the inner decoders detected all
error vectors, there are no unknown error positions, and erasure only decoding can be
applied to the RS code. This is done using the Forney algorithm [31]. Using the positions
ji, i = 1, . . . , ν corresponding to the ν erasures, the error location polynomial can be
calculated as

Λ(x) =
ν

∏
i=1

(1− xXi). (13)

This polynomial has roots at X−1
1 , . . . , X−1

ν , with Xi = αji . Similarly, we represent
the residual syndrome as polynomial, i.e., Sres(x) = s0 + s1x + . . . + sno−k−1xno−k−1 and
calculate the error-evaluator polynomial Ω(x) using the key equation

Ω(s) = Sres(x)Λ(x) mod xno−k. (14)

The error values are determined as

êi = −
Ω(X−1

i )

Λ′(X−1
i )

, (15)

where Λ′(x) is the derivative of Λ(x).
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The RS decoder is able to find all error values in the information digits of the OEC
codewords if the number of erasures ν does not exceed no − k. Now, the step in (12) can
be used again, with an updated error vector ê. Hence, the syndrome decoding of the
OEC codewords can be repeated to find all remaining errors. The inner codewords have
a length of two. Consequently, after correcting one position using the outer code, only a
single weight-one error can remain, which is corrected using the syndrome table for the
inner code.

Next, we estimate the error correcting capability of this decoding procedure. A
minimum of 2(no − k) channel errors is required to cause a decoding failure in the outer
decoder, because no − k erasures can be corrected by the outer decoder, and an erasure
requires two errors in an inner codeword. Additionally, the OEC code corrects all single
errors in the inner codewords. Therefore, at least t = 2(no − k) + 1 = n− 2k + 1 errors can
be corrected. Depending on the error positions, this decoding procedure can correct some
patterns with up to 2(no − k) + k = n− k errors. In comparison with MDS codes, which
have an error correction capability of (n−k)/2, the proposed construction is advantageous
for code rates R < 1/3.

5.2. Code Examples

Table 1 shows a comparison of the proposed code construction with MDS codes. The
table provides the field size p, code length n, dimension k, and error correction capability t,
as well as the work factor NISD for information-set decoding. The left-hand side of the table
considers the proposed code construction, while the right-hand side illustrates comparable
MDS codes. In all examples, the work factor for information-set decoding of the proposed
construction is significantly higher than for MDS codes.

Table 1. Parameters of codes with work factors between 289 and 2124.

Codes over Ep MDS Codes

p n k t NISD p n k t NISD

139 276 55 167 289 277 276 55 111 247

157 312 63 187 2101 313 312 63 124 253

193 384 77 231 2124 389 384 77 153 265

Table 2 shows a comparison of the proposed code construction over Eisenstein integers,
with the same construction over Gaussian integers from [23], where we compare the
message lengths for a Niederreiter system. Note that the restrictions of the field sizes are
different. For p = 137, we can construct only codes over Gaussian integers, whereas for
p = 139, we can construct only codes over Eisenstein integers. However, the corresponding
codes are comparable. For p = 157 and p = 193, Eisenstein and Gaussian integer fields
exist. The message size with Eisenstein integers is notably increased. This results from the
different channel models. Eisenstein integers allow for six different error values, instead
of four with Gaussian integers. Due to the same code parameters, the work factor for
information-set decoding is the same. Therefore, the codes over Eisenstein integers are
only advantageous for Niederreiter systems.

Table 2. Comparison of Eisenstein integers with Gaussian integers.

p n k t Message-Length [Bytes]

Gp Ep

137 272 55 163 73 -
139 276 55 167 - 86
157 312 63 187 84 97
193 384 77 231 103 120



Cryptography 2021, 5, 33 10 of 18

6. Generalized Concatenated (GC) Codes over Gaussian and Eisenstein Integers

While the product code construction shows a significantly increased work factor for
information-set decoding, the construction may not be secure against structural attacks.
The attack proposed in [22] may allow one to produce the concatenated structure of the
code construction. Afterwards, the attack proposed in [21] can produce the structure of the
outer Reed–Solomon code.

In [26], it was shown that generalized concatenated codes may withstand the afore-
mentioned structural attacks. Furthermore, those codes enable higher code rates. In the
following, we will discuss a generalize concatenated code construction, which may with-
stand the structural attacks, and has a higher work factor for information-set decoding
than MDS codes, as well as the proposed product codes.

In this section, we propose a generalized concatenated code construction. First, we
consider codes over Gaussian integers, which, in combination with the one-Mannheim
error channel, is advantageous for use in code-based cryptosystems. We investigate a
decoding procedure for those codes. Finally, we demonstrate that the GC construction can
be extended to codes over Eisenstein integers.

6.1. Code Construction

Generalized concatenated (GC) codes are multilevel codes with one inner code
B(ni, ki, di) and multiple outer codes A(l)

(
no, k(l)o , d(l)o

)
with different dimensions. The

basic idea of GC codes is to partition the inner code into multiple levels of subcodes, which
are then protected by different outer codes. For the sake of clarity, we only consider GC
codes with two outer codes A(0) and A(1) of same length no, but different dimensions.
Again, we represent a codeword as a matrix, where each column is a codeword of the inner
code B.

Figure 3 shows the encoding of GC codewords, where first the outer encoder encodes
the two codewords a1 ∈ A(1) and a0 ∈ A(0). Then, each column is encoded by the inner
encoder to a codeword bj ∈ B. The length of the GC code is n = noni, as can be seen from
the construction. The dimension is the sum of the outer dimensions.

outer encoder
a0 ∈ A(0)

a1 ∈ A(1)

inner encoder

b
0
∈
B

b
1
∈
B

b
2
∈
B

b
n o
∈
B

Figure 3. Encoding of GC codes.

For the inner codes, we consider codes over Gaussian integers which achieve a high
error correction capability over the one-Mannheim error channel, and enable a partitioning
into subcodes with increased minimum distance. Table 3 shows some examples for such
inner codes, with their field size p, their modulus π, their generator matrix, as well as the
minimum Mannheim distance d of the code and d(1) for the subcode. These codes are not
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constructed from one-Mannheim error correcting codes, but found by computed search.
The generator matrix of the code B is chosen in the form

G =

(
1 a b
0 1 c

)
, (16)

where a, b, and c are elements of Gp. In this case, the first row is the generator matrix of

a subcode B(1)
(

3, 1, d(1)
)
⊂ B with minimum Mannheim distance d(1) at least 7. This

distance allows one to correct any possible error pattern introduced by the one-Mannheim
error channel. Note that no codes with d ≥ 5 were found for field sizes p < 109.

Table 3. Examples for inner codes.

p π G d d(1)

109 10 + 3i
(

1 −1− 3i 3 + 4i
0 1 4− 3i

)
5 11

157 11 + 6i
(

1 −2− 2i 4− 3i
0 1 2 + 5i

)
5 12

197 14 + i
(

1 −4 + 3i −1− 5i
0 1 6− i

)
5 13

For the GC construction, we consider inner codes of length ni = 3 and dimension
ki = 2, i.e., B(3, 2, di), where di ≥ 5 is the minimum Mannheim distance. Those codes
can correct up to two errors of Mannheim weight one. For the first level outer code A(0),
we apply a Reed–Solomon code of length no and dimension ko. Since the subcodes in
Table 3 are able to correct at least three errors of Mannheim weight one, the information
digits of the second level need no further protection if the one-Mannheim error channel
model is used.

The resulting GC code has length n = 3no and dimension k = no + ko, because the
second outer level is uncoded. Figure 4 represents the encoding of a single column of the
codeword. The outer code symbol aj,0 is encoded with the second row of the generator

matrix G of the inner code, which results in a codeword b(0)
j ∈ B. The outer code symbol

aj,1 is encoded with the first row of G, which is the generator matrix of the subcode, and

results in b(1)
j ∈ B(1). The codeword in the j-th column is the sum of two codewords,

i.e., bj = b(0)
j + b(1)

j ∈ B. Note, that the upper part of Figure 4 has the same form as the
generator matrix (16), where the gray blocks represent the parity symbols.

b(1)
j ∈ B

(1)

b(0)
j ∈ B

bj = b(0)
j + b(1)

j

aj,1

0

aj,1

aj,0

Figure 4. Inner encoding of GCC.

6.2. Decoding

For decoding the GC code, we first decode the inner codes B(3, 2, 5). While those
codes are able to correct two errors of Mannheim weight one, we only correct one error,
and therefore can detect any possible error pattern generated by the one-Mannheim error
channel. A look-up table with precomputed syndromes is used for decoding all error
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patterns with a single error. In cases where more errors occur, we declare an erasure, and
store the erasure location. Note that all error patterns are detected. Hence, an erasure only
decoding can be applied for the outer RS code.

Decoding the outer code A(0) requires the code symbols aj,0 for all positions where
no erasure was declared. Note that the inner codeword in the j-th column is the sum of
two codewords of the subcodes, i.e., bj = b(0)

j + b(1)
j . The first digit of bj is the outer code

symbol aj,1 (cf. Figure 4), as the second row of G has a zero in the first position. Hence, this

symbol can be used to determine the codeword b(1)
j of the subcode B(1). Subtracting b(1)

j

from bj results in b(0)
j .

Now, we can decode the row consisting of the symbols aj,0; j = 0, . . . , no− 1, which we
obtained by re-encoding. We apply an erasure decoding to the Reed–Solomon code [31,32],
which is based on the Forney algorithm, as explained for the outer RS code in Section 5.1.
This method can correct up to no − ko erasures.

The outer decoding determines all symbols aj,0 in the codeword of the outer code

A(0). With these symbols, we can calculate the inner codewords b(0)
j for all columns with

erasures. Furthermore, we can determine the inner codewords b(1)
j = bj − b(0)

j ∈ B
(1) in

the subcode. Finally, we can decode the resulting codewords in the subcode B(1), which
has a minimum distance d(1) ≥ 7, and can correct all remaining errors.

We summarize the GC code parameters and the properties of the proposed decoding
algorithm in the next proposition.

Example 2. Consider the code over E109 with π = 10 + 3i, as given in the first row of Table 3.
In this example, we focus on the decoding of the j-th inner codeword. Let us assume aj,1 = 2− 4i
and aj,0 = −1 + 3i as information symbols of the inner codeword. The codewords encoded

with the two individual rows of the generator matrix are b(1)
j = (2− 4i, −4 + i, −1) and b(0)

j =

(0, −1 + 3i, −2 + 2i). The inner codeword is now bj = b(0)
j +b(1)

j = (2− 4i, −2− 6i, −3 + 2i).

We distinguish two cases for the decoding. First, consider the case where at most one error was
introduced in the inner codeword. In this case, the inner codeword can be corrected and no errors
remain for outer decoding. The first symbol of bj is equal to the information symbol aj,1 = 2− 4i.

This symbol can be used to re-encode the codeword b(1)
j = (2− 4i, −4 + i, −1). Subtracting b(1)

j

from bj gives b(0)
j = (0, −1 + 3i, −2 + 2i), which has aj,0 = −1 + 3i as its second symbol. This

symbol is used by the outer RS decoder to correct the symbols corresponding to the erasures.
In the second case, more than one error was introduced in the inner codeword. In this case, the

inner decoder results in an erasure. Note that the RS decoder does not need any symbol value for the
erasure positions. Hence, no re-encoding is required to obtain aj,0. The value of aj,0 is determined
by the outer RS decoder. If the RS decoder is successful, we obtain the correct information digit
aj,0 = −1 + 3i. This value can be used to re-encode the codeword b(0)

j = (0, −1 + 3i, −2 + 2i),

which is subtracted from the received vector bj + e, resulting in the vector b(1)
j + e. The error vector

is still the error introduced by the channel with restricted values. The error vector of Mannheim
weight of at most three can be corrected in this code, because the inner subcode B(1) has minimum
Mannheim distance d(1) = 11.

Proposition 2. The generalized concatenated code with outer Reed-Solomon codeA(0)
(

no, ko, d(0)o

)
and inner code B(3, 2, 5) over Gp with subcode B(1)

(
3, 1, d(1) ≥ 7

)
can correct

t ≥ 2(no − ko) + 1 (17)

errors of Mannheim weight one.
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Proof. Let b ∈ B(3, 2, 5) be a transmitted codeword of the inner code and e a length
three error vector with up to three errors of Mannheim weight one. For any codeword
b′ ∈ B(3, 2, 5), the Mannheim distance to the received sequence is lower bounded by

dM
(
b′, b + e

)
= wtM

(
b′ − b− e

)
≥ d− wtM(e) ≥ 2 (18)

Hence, any error pattern of a Mannheim weight one can be corrected, and any error
pattern of Mannheim weight two or three can be detected. For error patterns of weight
greater than one, an erasure is declared. The outer Reed–Solomon code can correct up to
no − ko erasures [32], and each erasure requires at least two errors. Hence, 2(no − ko) errors
can be corrected in the erasure positions, and at least one additional error in any position.
This results in (17) for the first level. If the first level decoding is successful, the second
level is decoded in the inner subcode B(1)

(
3, 1, d(1)

)
with d(1) ≥ 7. Note that this subcode

is able to correct any possible error pattern with up to three errors, thus no outer decoding
is required in the second level. The decoding procedure only fails if the first level fails, i.e.,
if more than no − ko erasures happen, which requires more than 2(no − ko) + 1 errors.

The maximum number of errors, which can be corrected by this decoding procedure,
is 3(no − ko) + ko. For this we assume, that each erasure results from three errors and each
of the ko inner codewords, which does not result in an erasure with exactly one error. On
the other hand, this requires a very specific distribution of the errors. Nevertheless, the
decoder is able to decode many error patterns with more than 2(no − ko) + 1 errors. This is
demonstrated in Section 6.4.

6.3. GC Code Examples

The guaranteed error correction capability of the proposed code construction is t =
2(no − ko) + 1, which for code rates R ≤ 5/9, is higher than the error correction capability
(n−k)/2 of MDS codes. We compare the proposed code construction with the product
code construction from [23], as well as MDS codes with respect to the work factor for
information-set decoding, created according to (2).

Table 4 shows a comparison of the proposed GC codes with comparable MDS codes.
We compare the codes with varying code rate R for constant code length n = 312. For low
code rates, a significant gain is achieved, which decreases for higher code rates. This effect
is also shown in Figure 5, where the work factors for ISD of GC codes and MDS codes are
plotted over the code rate R for different code length n.

In Table 5, we compare the proposed code construction with product codes over
Gaussian integers proposed in [23], since those codes are constructed for the same channel
model. Note that those product codes are only applicable for low code rates, and have
a higher work factor than MDS codes only for code rates R < 1/3. Hence, we compare
rate 0.2 product codes with rate 0.5 GC codes with comparable lengths. While the error
correction capability is significantly higher for the product codes, due to the lower code
rate, the work factor is much lower.

Table 4. Comparison of proposed GC codes with MDS codes.

Reference p n R t NISD

proposed 157 312 0.34 207 2283

proposed 157 312 0.45 127 2182

proposed 157 312 0.55 95 2104

MDS 313 312 0.34 103 279

MDS 313 312 0.45 86 292

MDS 313 312 0.55 75 2100
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Figure 5. Work factor for information-set decoding over code rate.

Table 5. Comparison of proposed GC codes with product codes from [23].

Reference p n R t NISD

proposed 109 270 0.5 91 2125

proposed 157 312 0.5 105 2144

proposed 197 384 0.5 129 2177

[23] 137 272 0.2 163 288

[23] 157 312 0.2 187 2101

[23] 193 384 0.2 231 2124

6.4. Decoding beyond the Guaranteed Error Correction Capability

The guaranteed error correction capability of the proposed generalized concatenated
codes is given in (17). Up to this bound, all possible error patterns can be corrected, but
also, some error patterns with more errors are correctable. In this section, we discuss the
error correction capability for decoding beyond the guaranteed error correction capability.

Example 3. Figure 6 shows the residual word error rate (WER) versus the channel error probability
ε, with decoding beyond the guaranteed error correction capability. We compare the proposed
decoding method with bounded distance decoding up to the guaranteed error correction capability
for the GC code of length n = 270 and rate R = 0.5. As can be seen, the proposed decoding method
achieves a significant gain.

On the other hand, decoding beyond the guaranteed error correction capability leads
to a residual error rate. Note that this is the case for many decoders, which were proposed
for McEliece systems [16–19]. While in some cases this may be undesirable, this allows
for an increased number of errors, and therefore an increased work factor for information-
set decoding.

Example 4. As an example, we compare the work factor for information-set decoding with the
guaranteed error correction capability, with an expected number of errors such that the residual
error rate is at most 10−5. Consider the code for length n = 270 from Example 3. The proposed
decoding allows for 35% of errors, which corresponds to about 95 errors. According to (2), this
results in a work factor of 2133. The work factor for the guaranteed error correction capability is
only 2125, as shown in Table 5. Note that the work factor increases if a higher residual error rate is
allowed. For instance, the work factor is increased to about 2144 for a residual error rate of 10−4.
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Figure 6. WER over channel error probability in comparison to bounded minimum distance decoding.

6.5. Adaptation to Eisenstein Integers

As for the product code construction over Eisenstein integers, which was adapted
from the product code construction over Gaussian integers proposed in [23], the general-
ized concatenated code construction can also be applied to codes over Eisenstein integers.
While the restrictions for the primes are different, using the same field size leads to the
same code parameters, and therefore the same error correction capability. Hence, for the
McEliece systems, this would result in the same work factor for information-set decoding-
based attacks. However, for the Niederreiter system, the increased number of different
error values leads to an increased message length. The adaption of the GC code construc-
tion to Eisenstein integers is straightforward given the partitioning of the inner codes.
Table 6 shows some possible inner codes over Eisenstein integer fields, which were found
by computed search. For primes less than 223, no codes with d ≥ 5 were found.

Table 6. Examples for inner codes over Eisenstein integer fields.

p π G d d(1)

223 11 + 17ω

(
1 1 1− 7ω
0 1 −4− 7ω

)
5 8

229 12 + 17ω

(
1 2− 4ω −2− 5ω
0 1 −6 + 2ω

)
5 10

271 10 + 19ω

(
1 −4 + 5ω −6
0 1 −3 + 2ω

)
5 11

277 12 + 19ω

(
1 −2 + 4ω −2− 6ω
0 1 −6 + ω

)
5 10

Example 5. For a comparison of the message length, we consider codes over fields of size p = 229,
because this field size allows for inner codes over Gaussian as well as Eisenstein integers. Using the
outer RS code Co(80, 1, 80) of rate R = 1/80 leads to GC codes of length n = 3no = 240 and rate
R = 0.34. Those codes can correct at least t = 2 · (no − ko) + 1 = 159 errors of Mannheim weight
one or hexagonal weight one, respectively. The number of bits that can be mapped to the error vector
for the Gaussian integer code is
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t · log2(4) + log2

(
n
t

)
≈ 535. (19)

These bits are mapped to the error positions and to the error values. For the code over Eisenstein
integers, the error values can take t · log2(6) bits of information. Hence, the overall number of bits
that can be mapped to the error vector is 628, which is about 17% higher than for Gaussian integers.
To use the increased message length, the error values cannot be mapped independently, but as a
vector of length t, where each component can take six different values.

7. Conclusions

In this work, we have proposed a code construction based on generalized concatenated
codes over Gaussian and Eisenstein integers for their use in code-based cryptosystems.
These GC codes can be decoded with a simple decoding method that requires only table
look-ups for the inner codes and erasure decoding of the outer Reed–Solomon codes. The
proposed construction is a generalization of the ordinary concatenated codes proposed
in [23]. The GC codes enable higher code rates. While the number of correctable errors
is lower than with the concatenated codes, the work factor for information-set decoding
(ISD) is increased with GC codes. For rates R ≤ 5/9, the generalized concatenated codes
can correct more errors than MDS codes. Very high work factors are achievable with
short codes.

Codes over Eisenstein integers are advantageous for the Niederreiter system due to the
increased message length. An investigation of the channel capacity of the weight-one error
channel was performed. Capacity achieving codes over Eisenstein integers can correct more
than n− k errors, leading to increased security against information-set decoding attacks.

While we have adapted the GC code construction to Eisenstein integers, the syndrome
decoding for the corresponding Niederreiter system, is still an open issue. An investigation
of suitable decoding methods would be an interesting topic for further research.

The value of the proposed GC code construction can be seen when compared to the
classic McEliece key encapsulation mechanism (KEM), which is among the finalists of the
NIST standardization [3]. For example, the security against ISD attacks for the parameter
set McEliece 348864 is NISD = 2143 (according to (2)) and the public-key size is about
261 kByte. A GC code over p = 109, of length n = 159 and dimension k = 54, results
in the same work factor for ISD attacks, but its public-key size is only 7.3 kByte, which
is about 3% of the key size for the classic McEliece system. For the longer code McEliece
6688128, the work factor is about NISD = 2262, and the public-key size approximately
1045 kByte. A comparable GC code over p = 109 has length n = 291, dimension k = 98,
work factor NISD = 2264, and public-key size of only 24.4 kByte. However, the classic
McEliece KEM uses Goppa codes, as originally proposed by McEliece in 1984. Goppa
codes are still considered to be secure, as no structural attacks on these codes were found.
On the other hand, the proposed GC code construction has no complete security analysis
against structural attacks, such as the attacks proposed in [21,26,33]. This security analysis
is subject to future work.
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