
cryptography

Article

A New Class of Q-Ary Codes for the McEliece Cryptosystem

Jürgen Freudenberger * and Johann-Philipp Thiers

����������
�������

Citation: Freudenberger, J.; Thiers,

J.-P. A New Class of Q-Ary Codes for

the McEliece Cryptosystem.

Cryptography 2021, 5, 11.

https://doi.org/10.3390/

cryptography5010011

Received: 8 February 2021

Accepted: 9 March 2021

Published: 15 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute for System Dynamics (ISD), HTWG Konstanz, University of Applied Sciences,
78462 Konstanz, Germany; jthiers@htwg-konstanz.de
* Correspondence: jfreuden@htwg-konstanz.de; Tel.: +49-7531-206-647

Abstract: The McEliece cryptosystem is a promising candidate for post-quantum public-key encryp-
tion. In this work, we propose q-ary codes over Gaussian integers for the McEliece system and a
new channel model. With this one Mannheim error channel, errors are limited to weight one. We
investigate the channel capacity of this channel and discuss its relation to the McEliece system. The
proposed codes are based on a simple product code construction and have a low complexity decod-
ing algorithm. For the one Mannheim error channel, these codes achieve a higher error correction
capability than maximum distance separable codes with bounded minimum distance decoding. This
improves the work factor regarding decoding attacks based on information-set decoding.

Keywords: public-key cryptography; code-based cryptosystem; McEliece cryptosystem; Gaussian
integers; decoding attack; information-set decoding

1. Introduction

Today, the most common-used public-key cryptosystem are the Rivest-Shamir-Adleman
(RSA) system and elliptic curve cryptography (ECC). However, large-scale quantum com-
puters threaten the security of such public-key cryptosystems. For instance, RSA is based on
the intractability of integer factorization for which a polynomial-time quantum algorithm
was proposed by Shor [1].

The McEliece cryptosystem was proposed in 1978 [2] but did not gain wide practical
usage due to the large size of the public key. This code-based cryptosystem is among the
best candidates for post-quantum cryptography standardization [3]. So far, no effective
quantum algorithm is known to break the McEliece system. The security of this system is
based on the problem of decoding an arbitrary linear code. This task is computationally
demanding and known to be NP-complete [4]. Reed-Solomon (RS) codes [5,6], BCH
codes [7], LDPC codes [8–11], and polar codes [12] have been proposed for the McEliece
cryptosystem. These codes have polynomial-time decoding algorithms which is required
for deciphering.

Today, the best known attacks against the McEliece cryptosystem are based on
information-set decoding (ISD). For instance, such cryptanalytic attacks were developed
in [13–16]. Typically, the ISD attack determines the work factor of the McEliece cryptosys-
tem. The work factor is the expected number of computations potential attackers have
to perform.

In this work, we consider a new class of q-ary codes for the McEliece cryptosystem.
These codes are constructed over Gaussian integers which are complex numbers with
integer real and imaginary parts. Linear codes over Gaussian integer fields were first
studied by Huber in [17]. Huber also introduced the Mannheim distance as a performance
measure for such codes. Later on, codes over groups and rings of Gaussian integers were
considered in [18–20]. However, most of these code constructions can correct only a small
number of errors. A code-based cryptosystem with codes over Gaussian integers was
proposed in [21]. However, the limited error-correcting capability of the known code
constructions is not sufficient for a secure McEliece cryptosystem.
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In this work, we propose a code construction, which achieves a high error correction ca-
pability with a very simple decoding strategy. This construction is based on product codes.
Product codes over Gaussian integers were investigated in [22,23], where all component
codes are codes over Gaussian integers. In contrast, we consider a different construction
where ordinary RS codes over prime fields are combined with simple one Mannheim
error correcting (OMEC) codes. We compare the proposed codes with maximum distance
separable (MDS) codes. MDS codes are optimal with respect to the minimum Hamming
distance, that is, these codes achieve equality in the Singleton bound [24]. Nevertheless, we
demonstrate that the error correction capability of the proposed q-ary codes with bounded
minimum distance decoding can exceed that of MDS codes. This is possible because we
restrict the elements of the error vector to Mannheim weight one. This restriction increases
the correctable number of errors and improves the work factor compared with MDS codes
with comparable parameters. Furthermore, we investigate the one Mannheim error chan-
nel, where errors are limited to Mannheim weight one. We derive the channel capacity of
this channel and discuss its relation to the McEliece system.

This publication is organized as follows—in Section 2, we introduce the notation and
review the basic concept of the McEliece cryptosystem, the information-set decoding attack
and of codes over Gaussian integers. The new product code construction is presented in
Section 3. We provide some code examples that achieve a higher error correction capability than
maximum distance separable codes with bounded minimum distance decoding. The decoding
procedure is discussed in more detail in Section 4. In Section 5, we consider the performance
for decoding beyond the guaranteed error correction capability. In Section 6, we investigate
the capacity of the one Mannheim error channel and its relation to the McEliece system.
Conclusions are drawn in Section 7.

2. Preliminaries and Problem Statement

In this section, we discuss the McEliece cryptosystem and the attack by information-set
decoding. Moreover, we review some basic properties of codes over Gaussian integers.

2.1. The McEliece Cryptosystem

We briefly review the McEliece public-key cryptosystem for q-ary codes [2]. We
assume that the plaintext is represented as a q-ary vector u of length k. The original
McEliece cryptosystem is based on t-error correcting linear code C of length n, dimension
k, and minimum Hamming distance d = 2t + 1. We use the common notation C(n, k, d) to
denote the code parameters. The code can be represented by its k× n generator matrix G.
Moreover, an efficient decoding algorithm φ(·) is required that corrects up to t errors in
polynomial time.

The public key is the pair (G′, t), where G′ is a matrix used for encoding and t is
the error-correcting capability of the code. The matrix G′ = SGP, where S is a random
non-singular k× k matrix with elements from the Galois field GF(q). The n× n matrix P
is a random permutation matrix, that is, it has exactly one entry 1 in each row and each
column and 0s elsewhere. The secret key consist of the matrices (G, S, P).

Encryption: Using the public matrix G′, the plaintext u can be encoded as v = uG′+ e,
where e is a random q-ary error vector with at most t non-zero elements.

Decryption: With the knowledge of G, S, and P, the ciphertext v can be decrypted as
follows: Calculate r = vP−1 = uSG + eP−1. The matrix P−1 is the inverse permutation
and eP−1 is the permuted error vector which has at most t non-zero elements. Hence,
we can apply the decoding algorithm φ(·) which obtains φ(r) = φ(vP−1) = uS. Finally,
the plaintext is calculated as u = uSS−1.

Without knowledge of secret key, cryptanalysis has to solve the complex task of
decoding an arbitrary code described by the generator matrix G′. This task is known to be
NP-complete [4].
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2.2. Information-Set Decoding

One of the best known attacks against the McEliece cryptosystem is based on
information-set decoding (ISD). This type of attack was already mentioned in the initial
proposal of the cryptosystem. Such cryptanalytic attacks were developed by Lee and
Brickell [13] or Stern [14]. More recent, different improvements to Stern’s algorithm were
proposed in [15,16]. We review the general concept of these attacks.

Information-set decoding is a probabilistic decoding strategy. The task of the decoder
is to recover information vector u′ = uS from v = u′G′ + e. The attacker tries to guess k
correct positions u′′ in the ciphertext v such that the corresponding columns of G′ form
an invertible matrix G′′. A codeword v′′ agreeing with the ciphertext v on the guessed
positions u′′ can easily be computed using Gaussian elimination. If the codeword v′′

differs in at most t positions from v than there is no error in u′′. In this case, we obtain
u′ = u′′G′′−1.

The probability Ps of successful decoding is equal to the probability of having no
errors in the guessed k positions [25]

Ps =
(n−t

k )

(n
t)

=
(n−k

t )

(n
t)

. (1)

The complexity of Information-set decoding is the expected number of decoding attempts

NISD =
1
Ps

=
(n

t)

(n−k
t )

. (2)

For the McEliece cryptosystem, a complexity of order 280 is considered to be secure [9,10].
From (2), we observe that the code length n and the error correction capability t of the

code should be large to achieve a high complexity for the attack. Code families with large
minimum distances allow to use shorter codes. For instance, maximum distance separable
(MDS) codes achieve equality in the Singleton bound d ≤ n − k + 1 for the minimum
Hamming distance d [24]. Thus, MDS codes can correct t = (n− k)/2 errors with bounded
minimum distance decoding. Generalized Reed-Solomon (GRS) codes are MDS codes with
an efficient decoding algorithm and were proposed for the McEliece cryptosystem in [5,6].

In this work, we demonstrate that the error correction capability of a q-ary code can
exceed the value t = (n− k)/2. Due to the Singleton bound, this is not possible if the
non-zero elements of error vector are arbitrary q-ary symbols. However, by restricting the
values of the errors we can increase the number of errors. Note that the work factor in (2)
does not depend on the number of error values. Restricting the number of possible error
values can increase the work factor. We demonstrate this for codes over Gaussian integers.

2.3. Gaussian Integers

Most known code constructions for Gaussian integers are linear codes based on finite
Gaussian integer fields Gp. These finite fields are constructed from primes p of the form
p ≡ 1 mod 4 [17]. Such a prime is the sum of two perfect squares, that is, p = a2 + b2

with the integers a and b. In this case, we have p = π · π∗ = |a|2 + |b|2, with the Gaussian
integer π = a + bi. The Gaussian integer π∗ is the conjugate of the complex number π.
We use the notation [·] to denote rounding, that is, we have [z] = [a] + [b]i for a complex
number z = a + bi. The modulo function of a Gaussian integer z is defined as [17]

z mod π = z−
[

zπ∗

π · π∗
]
· π. (3)

The finite Gaussian integer field is the set Gp = {z mod π : z = 0, . . . , p− 1, z ∈ Z}.
This set is isomorphic to the finite field GF(p) [17].
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The Mannheim weight of a Gaussian integer z is defined as [26]

wtM(z) = min
a+bi∈K(z)

|a|+ |b|, (4)

where the classK(z) of a Gaussian integer z is the set of all numbers z′ such that z = z′ mod π.
The Mannheim weight of a vector y = (y0, y1,. . . , yn−1) is

wtM(y) =
n−1

∑
i=0

wtM(yi). (5)

The Mannheim distance between two Gaussian integers y and z is

dM(y, z) = wtM(y− z). (6)

Similarly, the Mannheim distance between the vectors y = (y0, y1,. . . , yn−1) and
z = (z0, z1,. . . , zn−1) is

dM(y, z) =
n−1

∑
i=0

dM(yi, zi) = wtM(y− z). (7)

2.4. One Mannheim Error Correcting (OMEC) Codes

OMEC codes were presented in [17] for Gaussian integer fields and in [20] for Gaussian
integer rings. We consider only codes over the Gaussian integer field Gp, where α is a
primitive element of the field. An OMEC code of length n ≤ (p− 1)/4 over Gp is defined
by its parity check matrix, where the elements are generated by powers of α, that is,

H = (α0, α1, . . . , αn−1). (8)

Codewords are all vectors v = (v0, v1,. . . , vn−1) with vi ∈ Gp for which HvT = 0.
An OMEC code has minimum Hamming distance dH = 2 and minimum Mannheim
distance dM = 3. It can correct a single error of Mannheim weight one with simple
syndrome decoding [17].

In the following, we consider a slightly different OMEC construction for codes of
length n = 2. For sufficiently large field sizes, we can obtain codes with minimum
Mannheim distance dM = 4 based on an element a ∈ Gp of Mannheim weight wtM(a) = 3.
Such a code has parity check matrix H = (1, a) and the generator matrix G = c(−a, 1),
where c is an arbitrary non-zero field element. Hence, we have HGT = 0. This code can
correct a single error of Mannheim weight one and detect any error of weight two with
syndrome decoding.

Example 1. We consider an OMEC code for the prime p = 41 with π = 5 + 4i. With a = 3 + i
we construct the parity check matrix H = (1, a) = (1, 3 + i) and the generator matrix G =
(−a, 1) = (−3− i, 1). Assume the transmitted codeword v = (−3− i, 1) and the received vector
r = (−3, 1) with an error in the first symbol. To decode this vector, we calculate the syndrome

σ = H · rT = i. (9)

Based on the syndrome we can determine the error position and the error value using a table
look-up procedure. An error of weight one in the first position corresponds to syndrome values
σ ∈ {±1,±i}, whereas an error of weight one in the second position corresponds to syndrome
values σ ∈ {±a,±ia}. All other syndrome values indicate uncorrectable error patterns.

The syndrome decoding of OMEC codes can be implemented efficiently using the
Montgomery arithmetic for Gaussian integers proposed in [27] for the syndrome calculation.
The error correction can be implemented using two-dimensional look-up tables for the
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error positions and error values, where the real and imaginary parts of the syndrome are
the arrays’ indices.

On the other hand, the Gaussian integer field Gp is isomorphic to the finite field GF(p).
Hence, we can use the set Gp only to determine the elements i ∈ GF(p) and a ∈ GF(p)
corresponding to the complex numbers i ∈ Gp and a ∈ Gp such that i = i mod π and
a = a mod π. The other error and syndrome values can be calculated in the ordinary
integer field, since −1 = p− 1 mod π and −i = p− i mod π. Similarly, we have −a =
p− a mod π, ia = ia mod π, and −ia = p− ia mod π. Consequently, the encoding and
decoding can be implemented with ordinary prime field arithmetic.

A code-based cryptosystem with OMEC codes over Gaussian integers was proposed
in [21]. The results in [21] demonstrate some advantages of codes over Gaussian integers
compared with binary codes. However, OMEC codes are not sufficient to achieve a high
work factor. In [21], the work factor for ISD was considered but not according to (2). Yet
there exists an even simpler decoding attack which was not considered in [21]. When the
weight of the errors is fixed to Mannheim weight one and the number of errors is fixed to t,
then the number of correctable error patterns is

NP = 4t
(

n
t

)
≥

(
4

n
t

)t
, (10)

which follows from the lower bound on binomial coefficients(n
t

)t
≤

(
n
t

)
.

Hence, a code with large error correction capability t is needed to prevent a decoding
attack, where all possible error patterns are tested. An attacker can determine the parity
check matrix H′ for the public key G′. An error pattern that satisfies (r− e)H′ = 0 solves
the decoding problem. OMEC codes with t = 1 result in NP = 4n. Thus, the decoding
attack on the cryptosystem from [21] can be performed in polynomial time.

Most known code constructions over Gaussian integers can correct only a small
number of errors [17–20]. The error-correcting capability of these code constructions does
not suffice for a secure McEliece cryptosystem. A suitable code family is proposed in the
next section, where we demonstrate that the error correction capability of the proposed
q-ary codes with bounded minimum distance decoding can exceed that of MDS codes.
This is possible because we restrict the non-zero elements of the error vector to Mannheim
weight one.

3. Product Codes Based on OMEC Codes

Product codes over Gaussian integers were investigated in [22,23], where all com-
ponent codes are codes over Gaussian integers. In contrast, we consider a different con-
struction where outer RS codes Co(no, ko, do) over the prime field GF(p) are combined with
inner codes Ci(ni, ki, di) over Gp. The parameter do = no − ko + 1 denotes the minimum
Hamming distance of the RS code, whereas di is the minimum Mannheim distance of the
inner code.

A codeword is represented by an (no × ni)-matrix. For encoding, we first encode ki
codewords of the RS code and store these codewords row-wise into the first ki columns of
the codeword matrix, where the code symbols are mapped to elements from Gp. Then, we
use the OMEC code no-times to encode each column of the matrix.

Proposition 1. The product code with outer RS codes Co(no, ko, do) and inner codes Ci(ni, ki, di)
over Gp has length n = noni, dimension k = koki, and minimum Mannheim distance d = dodi =
di(no − ko + 1).
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Proof. The length and dimension directly follow from the construction. The product code
C is a linear code, that is, the sum of two codewords v′, v′′ ∈ C is also a codeword. Hence,
we have

d = min
v′ ,v′′∈C,v′ 6=v′′

dM(v′, v′′) = min
v∈C,v 6=0

wtM(v). (11)

According to (11), the minimum Mannheim distance of the product code is equivalent
to the minimum Mannheim weight of a non-zero codeword. A non-zero codeword has at
least one non-zero row. This row is a codeword of the code Co(no, ko, do) and has at least
Hamming weight do, that is, a non-zero row contains at least do non-zero elements. Each
non-zero element of this row results in a non-zero column, where each non-zero column is
a codeword of the code Ci(ni, ki, di) and has at least Mannheim weight di. Consequently,
a non-zero codeword has at least do non-zero columns with minimum weight di.

In order to demonstrate the error correction capability, we consider a special case
of these product codes with Ci(2, 1, 4) inner codes as introduced in Section 2.4. To avoid
systematic encoding for the inner codes, we use the generator matrices Gl = cl(−a, 1), l =
0, . . . , no − 1, where cl are random non-zero field elements.

According to Proposition 1, the resulting code has length n = 2no, dimension k = ko
and even minimum Mannheim distance d = 4do = 4(no − ko + 1). Thus, the code should
correct t = (d− 2)/2 = 2(no − ko) + 1 = n− 2k + 1 errors. This can be achieved with
a simple error and erasure decoding procedure. Note that the inner codes can correct
any error of Mannheim weight one, whereas two errors of Mannheim weight one result
in a decoding failure. If the errors are limited to Mannheim weight one then the inner
decoding results in a correct decoding or a decoding failure. Erroneous decoding cannot
occur. A decoding failure can be utilized for erasure decoding of the outer Reed-Solomon
code. An RS code can correct no − ko erasures. Hence, we can decode all error patterns with
up to no − ko erasures in the outer codeword, that is, no − ko codewords of the inner code
with two errors. Additionally, the inner codes can correct all single errors in the remaining
ko columns of the codeword matrix. Consequently, at least 2(no − ko) + 1 channel errors
and up to 2(no − ko) + ko = n− k of Mannheim weight one are correctable. This proves
the following proposition.

Proposition 2. The product code with outer RS codes Co(no, ko, do) and inner codes Ci(2, 1, 4) over
Gp has length n = 2no, dimension k = ko, and minimum Mannheim distance d = 4(no − ko + 1),
where error and erasure decoding can correct any error pattern with t = n − 2k + 1 errors of
Mannheim weight one.

Due to the rate of the inner codes, this construction is limited to code rates R = k/n ≤
1/2. For n− 3k ≥ 2, the proposed product codes can correct more errors than an MDS
code, that is, t ≥ (n− k)/2. Hence, the proposed construction is favorable for low code
rates. We illustrate this in the following example.

Example 2. We consider a product code C(272, 55, 328) for p = 137 with the outer RS code
Co(136, 55, 81). The product code has length n = 2no = 272 and dimension k = ko = 55.
The minimum Mannheim distance is d = 4(no − ko + 1) = 328. The error and erasure decoding
procedure can correct at least t = 163 errors of Mannheim weight one which exceeds the MDS
bound (n − k)/2 = 108 by 55 errors. This code contains more than 2390 codewords and the
number of error patterns exceeds 2587. The work factor for information-set decoding is NISD = 288

according to (2). A comparable RS code can be constructed over the field GF(277), for example, the
RS code Co(272, 55, 218). This MDS code can correct t = 108 errors of arbitrary weight which
corresponds to a work factor NISD = 246 for information-set decoding. Note that we can achieve
higher work factors by using RS codes with larger dimension but this results in a larger public key.
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The parameters of some codes with work factors between 288 and 2124 are summarized
in Table 1. For comparison this table provides work factors of MDS codes with comparable
code parameters.

Table 1. Parameters of some codes with work factors between 288 and 2124.

Proposed Codes Over Gaussian Integers MDS Codes

p n k t NISD p n k t NISD

137 272 55 163 288 277 272 55 109 246

157 312 63 187 2101 313 312 63 124 253

173 344 69 207 2111 347 344 69 137 258

193 384 77 231 2124 389 384 77 153 265

4. Erasure Only Decoding of RS Codes

The decoding of the RS codes can be simplified due to the fact that we require only
erasure decoding. In this section, we discuss this decoding procedure in more detail.
The decoding of RS codes typically consists of four steps: syndrome calculation, solv-
ing the key-equation, Chien search, and the Forney algorithm [24,28,29]. For instance,
the Berlekamp-Massey algorithm (BMA) can be used for solving the key-equation which
results in the error-location polynomial. The Chien search determines the roots of the
error-location polynomial which indicate the error positions. Finally, the Forney algorithm
calculates the error values. With the proposed code construction, we can avoid the BMA
and Chien search for the algebraic decoding.

For decoding the proposed product code we first decode the no inner OMEC codes.
We calculate the no syndrome values. For the error correction, we use a look-up table for
the non-zero syndrome values. The table stores the error position and error value for each
syndrome resulting from a single error of Mannheim weight one. For these values the
errors can be corrected by subtracting the stored error values from the received vector.
Note, that the proposed OMEC code of length two is able to detect any error of weight
two and therefore no decoding error can happen. Instead an erasure is declared and the
erasure location is stored. This decoding of the OMEC codes can be performed in linear
time since only two field multiplications and one field addition are required per syndrome
value. Additionally, one table look-up and at most one field subtraction is required for
each non-zero syndrome.

Afterward, the no symbols of the outer RS code are the information symbols of the
OMEC codes and can be used to determine the received symbols rRS(x) = r0 + r1x +
. . . + rno−1xno−1 of the RS code. These received symbols only have errors in the positions
where the OMEC decoders declare erasures. Hence, the error-location polynomial can be
calculated from the erasure positions as

Λ(x) =
ν

∏
i=1

(1− xXi), (12)

where ν is the number of erasures and Λ(x) has roots at X−1
1 , . . . , X−1

ν with Xi = αji .
The values ji for i = 1, . . . , ν are the erasure positions. Hence, neither the BMA nor the
Chien search are required to determine the error positions.

However, we need the Forney algorithm to determine the error values. For the
Forney algorithm, we first calculate the syndrome polynomial S(x) = s0 + s1x + . . . +
sno−k−1xno−k−1 with the syndrome values si = rRS(α

i+1). Next, the error-evaluator polyno-
mial Ω(x) can be computed using the key-equation

Ω(x) = S(x)Λ(x) mod xno−k. (13)
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Finally, the error values are calculated as

ei = −
Ω
(

X−1
i

)
Λ′

(
X−1

i

) , (14)

where Λ′(x) is the derivative of Λ(x).
Consequently, the erasure only decoding of the outer RS code requires the syndrome

calculation and the Forney algorithm but omits the BMA and the Chien search. This reduces
the overall decoding complexity significantly because the BMA typically dominates the
computational complexity. Consider for instance the RS decoder architectures for error
and erasure decoding reported in [30,31]. In [30], the BMA requires 84% of the total logic
of the decoder for an RS code of length n = 508, whereas the syndrome calculation and
the Forney algorithm need only 11%. Similarly, in [31] a decoder for RS codes of length
n = 334 is considered. The BMA occupies 51%, the syndrome calculation 14%, and the
Forney algorithm 14% of the area for logic, respectively.

The syndrome calculation and the Forney algorithm have a complexity of order
O(n2). Hence, the complexity order of the decryption is not increased by the decoding
of the proposed codes since the matrix operations required for the McEliece system have
complexity of order O(n2).

5. Decoding beyond Half the Minimum Distance

In Section 3 we have shown that the proposed decoding algorithm is not limited to
bounded minimum distance decoding. Hence, it is possible to increase the number of
errors and the work factor by allowing a certain failure probability for the decryption. Such
a failure probability is inherent in all McEliece systems that decode beyond the guaranteed
error correction capability of the code, for example, systems based on LDPC codes [8–11].
However, there is an important difference with the proposed coding scheme. A decoding
error with LDPC codes results typically in an erroneous message. The proposed decoding
approach can fail, when the number of errors exceeds the error-correcting capability
t = n− 2k + 1. Yet such a failure can always be detected since it implies that the number of
erasures for the outer code exceeds no − ko and the number of erasures is known after the
inner decoding stage.

In this section, we present results for the decoding beyond half the minimum distance.
We present numerical results for the one Mannheim error channel. The one Mannheim
error channel was introduced in [23] as an approximation to the additive white Gaussian
noise channel. The numerical results demonstrate that the proposed decoding can correct
many error patterns where the number of errors exceeds t = n− 2k + 1. We show that
the work factor for information-set decoding can be increased by exploiting this decoding
beyond half the minimum distance.

The one Mannheim error channel is a discrete, symmetric, and memory-less channel,
which considers only errors of Mannheim weight one. This channel model is defined by

r = v + e mod π, (15)

where addition is performed element-wise and modulo π. The vector v denotes the
transmitted codeword with vi ∈ Gp and r is the received vector. The error vector e contains
elements ei ∈ {0,±1,±i}. Errors (non-zero values ei) occur independently with probability
ε, where all error symbols {±1,±i} are equally likely.

We assume that bounded minimum distance (BMD) decoding fails when the actual
number of error exceeds the error-correcting capability t = n− 2k + 1. This error probability is

PBMD =
n

∑
i=t+1

εi(1− ε)n−i
(

n
i

)
. (16)
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Similarity, we can determine the error probability PF of a decoding failure with the
proposed decoding. An erasure in the decoding of an inner code occurs with probability
ε2, that is, when both received symbols are in error. The outer decoding fails when the
number of erasures exceeds no − ko which happens with probability

PF =
no

∑
i=no−ko+1

ε2i(1− ε2)no−i
(

no

i

)
. (17)

Figure 1 depicts the probability of a decoding failure with BMD decoding and the
proposed decoding algorithm for the one Mannheim error channel with error probability
ε, where we consider the code from Example 2. The solid and dashed lines are calculated
according to (16) and (17), whereas the markers depict simulation results. These results
demonstrate that the proposed decoding achieves a significant performance gain compared
with BMD decoding.
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Figure 1. Probability of a decoding failure with bounded minimum distance (BMD) decoding and
the proposed decoding algorithm for the one Mannheim error channel with error probability ε (code
from Example 2).

Figure 2 also depicts results for the code from Example 2. Now, the number of errors
is fixed and only the error positions and error values are chosen randomly. We observe that
the number of errors can be much higher than the guaranteed error correction capability
t = 168. For instance with t = 199 errors, we achieve a failure probability PF = 10−4 which
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might be acceptable. The increased number of errors also increases the work factor for ISD
from 288 with BMD decoding to 2138 with t = 199 channel errors.
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Figure 2. Probability of a decoding failure versus the number of errors with the proposed decoding
algorithm (code from Example 2).

6. Capacity of the One Mannheim Error Channel

In the previous sections, we have shown that a code over Gaussian integers can correct
up to n− k errors of Mannheim weight one. Note that for t > n− k there exist no error
free information set. In this section, we show that t > n− k is attainable with capacity
achieving codes, that is, we consider the decoding problem from an information theoretic
point of view. We investigate the one Mannheim error channel model and discuss its
channel capacity.

The channel capacity C is the supremum of all achievable code rates. We calculate the
channel capacity in bits per transmitted symbol.

Proposition 3. The channel capacity C of the one Mannheim error channel with transmitted
symbols vi ∈ Gp is

C = log2(p) + (1− ε) · log2(1− ε) + ε · log2

( ε

4

)
. (18)

Proof. The one Mannheim error channel is a discrete memory-less channel which can
be characterized by a transition matrix that contains all transmission probabilities from
an input symbol V to the channel output R (see Figure 3). For the one Mannheim error
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channel, we have V = R = Gp. Errors (non-zero values ei) occur independently with
probability ε, where all error symbols {±1,±i} are equally likely, that is,

P(ei = 0) = 1− ε (19)

P(ei = 1) = P(ei = −1) =

P(ei = i) = P(ei = −i) =
ε

4
. (20)

Hence, each row of the transition matrix contains the non-zero elements 1− ε, ε
4 , ε

4 , ε
4 , ε

4
and all other elements are zero. All rows of the transition matrix are permutations of each
other and all columns are permutations of each other. Hence, the channel is symmetric.
The capacity of a symmetric discrete memory-less channel is [32]

C = log2(|R|)− H(P) (21)

where |R| = p denotes the cardinality of the output alphabet and H(P) is the entropy of a
row P of the transition matrix. We have

H(P) = −(1− ε) log2(1− ε)− ε · log2

( ε

4

)
(22)

for the one Mannheim error channel. Hence, we obtain Equation (18).

vi vi

vi + 1 mod π

vi − 1 mod π

vi + i mod π

vi − i mod π

V R

ǫ
4

ǫ
4

ǫ
4

ǫ
4

1− ǫ

Figure 3. Channel model for the one Mannheim error channel.
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Figure 4 shows two examples for the channel capacity as a function of the symbol
error probability ε for the field sizes p = 41 and p = 89. In this figure, we have plotted the
normalized capacity C/ log2(p). The normalized channel capacity satisfies the inequality
C ≥ 1− logp(5), where the minimum occurs for ε = 0.8 when all values ei ∈ {0,±1,±i}
are equally likely. The expected number of errors is t = εn. The expected number of
errors t exceeds n− k = n(1− R) for R > 1− ε. Hence, we have plotted the line 1− ε in
both figures. For t > n− k there exist no error free information sets. Figure 4 shows that
this condition is attainable with capacity achieving codes. We observe from Figure 4 that
t > n− k is attainable for R < 0.76 (p = 41) and R < 0.88 (p = 89), respectively.
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Figure 4. Channel capacity for the one Mannheim error channel for p = 41 and p = 89.

7. Conclusions

In this work, we have proposed q-ary codes over Gaussian integers for the McEliece
system. In particular, we have proposed codes based on a product code construction with
outer RS and inner OMEC codes. These codes can be decoded with a low complexity
decoding algorithm based on erasure only decoding of RS codes. For the one Mannheim
error channel, these codes achieve a higher error correction capability than maximum
distance separable codes with bounded minimum distance decoding. This improves the
work factor regarding decoding attacks based on information-set decoding. An analysis of
the security against other attacks is subject to future work, such as the attacks proposed
in [33,34].

The proposed decoding algorithm is not limited to bounded minimum distance
decoding. We have shown that some error patterns with up to n− k errors of Mannheim
weight one can be corrected. Hence, it is possible to increase the number of errors and
the work factor by allowing a certain failure probability for the decryption. Such a failure
probability is inherent in all McEliece systems that decode beyond the guaranteed error
correction capability of the code, for example, systems based on LDPC codes [8–11].
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Furthermore, we have investigated the channel capacity of one Mannheim error
channel and have discussed its relation to the McEliece system. These results demonstrate
that codes are attainable where the expected number of errors t exceeds the number of
redundancy symbols n− k which prevents error free information sets.

On the other hand, the proposed codes have some limitations. Codes over Gaussian
integers can only be constructed for primes of the form p ≡ 1 mod 4. A generalization
of the construction to codes over Eisenstein integers should be possible [35]. This would
enable similar codes for primes of the form p ≡ 1 mod 6. Moreover, the code design is
limited to codes of rates R = k/n < 1/2. In comparison with MDS codes, these codes are
favorable for rates R < 1/3 only. To construct good codes with higher rates, the short inner
codes have to be replaced. Further improvements could be achieved by using generalized
concatenated codes instead of the product code construction [20,28].
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