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Abstract
Error correction coding for optical communication and storage requires high rate codes
that enable high data throughput and low residual errors. Recently, different concatenated
coding schemes were proposed that are based on binary BCH codes with low error
correcting capabilities. In this work, low‐complexity hard‐ and soft‐input decoding
methods for such codes are investigated. We propose three concepts to reduce the
complexity of the decoder. For the algebraic decoding we demonstrate that Peterson's
algorithm can be more efficient than the Berlekamp–Massey algorithm for single, double,
and triple error correcting BCH codes. We propose an inversion‐less version of Peter-
son's algorithm and a corresponding decoding architecture. Furthermore, we propose a
decoding approach that combines algebraic hard‐input decoding with soft‐input bit‐
flipping decoding. An acceptance criterion is utilised to determine the reliability of the
estimated codewords. For many received codewords the stopping criterion indicates that
the hard‐decoding result is sufficiently reliable, and the costly soft‐input decoding can be
omitted. To reduce the memory size for the soft‐values, we propose a bit‐flipping
decoder that stores only the positions and soft values of a small number of code symbols.
This method significantly reduces the memory requirements and has little adverse effect
on the decoding performance.

1 | INTRODUCTION

Concatenated codes using BCH codes of moderate length,
with low error correcting capability have recently been applied
for error correction in optical communication as well as in
storage systems. Such coding systems require very high
throughput with hard‐input decoding, but some applications
also demand efficient soft‐input decoding algorithms. These
requirements can be met by product codes, half‐product codes,
staircase codes, or generalized concatenated codes. For
instance, product code constructions based on BCH codes
were proposed in [1–3]. Moreover, generalized concatenated
codes (GCC) with inner BCH codes were investigated in [4–8].
Hardware architectures for such codes were proposed for
instance in [9–13]. Similarly, implementations for fast decoding
of staircase codes require fast BCH decoding [14, 15].

Due to the required code rates, BCH codes that can only
correct single, double, or triple errors are used. The decoding of
the concatenated codes typically uses multiple rounds of BCH
decoding. Hence, the achievable throughput depends strongly

on the speed of the BCH decoder. Moreover, BCH codes that
correct only two or three errors are used in random access
memory (RAM) applications [16–18], that need high data
throughput and a very low decoding latency. In this work, we
propose efficient methods for hard‐ and soft‐input decoding for
single, double, or triple error correcting BCH codes.We propose
three concepts to reduce the complexity of the decoder
hardware.

First, we consider the algebraic hard‐input decoding.
Algebraic BCH decoding consists of three steps: syndrome
calculation, calculation of the error location polynomial, and
the Chien search which determines the error positions. For
BCH codes of moderate length (over Galois fields GF(26), …,
GF(212)), the syndrome calculation and the Chien search can
be performed in parallel structures that calculate all syndrome
values and all error positions within a single clock cycle,
whereas the calculation of the error location polynomial is
often performed using the Berlekamp–Massey algorithm
(BMA) which requires several iterations. Alternatively, de-
coders based on Peterson's algorithm [19] were proposed in [9,
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10, 20, 21]. Both algorithms determine the error location
polynomial. However, we demonstrate that for BCH codes
with small error correcting capabilities Peterson's algorithm
can be more efficient in terms of decoding complexity than the
BMA. We propose an inversion‐less version of Peterson's al-
gorithm and a corresponding decoding architecture for single,
double, and triple error correcting BCH codes. This decoder is
faster than the fully parallel BMA at a comparable circuit size.1

Next, we investigate a hybrid decoding approach that
combines algebraic hard‐input decoding of binary block codes
with soft‐input decoding. In particular, an acceptance criterion
is utilised which determines the reliability of a candidate
codeword. This acceptance criterion was proposed in [8] for
decoding concatenated codes with binary inner codes and
outer Reed–Solomon (RS) codes. In particular, an error and
erasure decoding of the outer RS codes was considered in [8],
where the acceptance criterion improves the decoding per-
formance. We demonstrate that this acceptance criterion can
also be used as a stopping rule to reduce the decoding
complexity. For many received codewords the stopping crite-
rion indicates that the hard‐decoding result is sufficiently
reliable, and the costly soft‐input decoding can be omitted.
This hybrid decoding approach can enhance the decoder
throughput for GC codes as proposed in [13].

Finally, we consider the hardware costs for the soft‐input
decoder. The hardware size of the soft‐input decoder proposed
in [13] is dominated by the memory for the soft‐values. In
order to reduce the memory requirements, we propose a bit‐
flipping decoder that stores only the positions and soft values
of the least reliable code symbols. The number of stored
symbols depends on the minimum Hamming distance of the
code. For high rate BCH codes, this method significantly re-
duces the memory requirements and has little adverse effect on
the decoding performance.

The remaining article is organised as follows. In Section 2,
we propose an inversion‐less version of Peterson's algorithm
for triple error correcting BCH codes and a pipelined decoder
architecture. The bit‐flipping decoding is described in Sec-
tion 3, where we also analyse the stopping rule. In Section 4,
we discussed applications of the proposed decoding concepts
for concatenated codes and present an approach to reduce the
memory requirements for soft values. Performance results and
conclusions are provided in Sections 5 and 6, respectively.

2 | ALGEBRAIC BCH DECODER

In this section, we suggest an inversion‐less version of Peter-
son's algorithm for triple error correcting BCH codes. This al-
gorithm is more efficient than the decoders employing Galois
field inversion [10, 20]. Moreover, the proposed algorithm
provides more flexibility regarding the hardware implementa-
tion and enables pipelining to speed up the decoding. A

decoding architecture for such a pipelined architecture is pre-
sented. Furthermore, we present conditions for decoding failure
detection with extended BCH codes. If the actual number of
errors exceeds the error correction capability of the BCH code,
the decoder may fail to determine a valid codeword. However,
such failures can be detected and this failure detection can be
utilised for the decoding of concatenated codes [23].

2.1 | Peterson's algorithm

In this section, we briefly review Peterson's algorithm and
introduce the notations. The received vector is r(x)= v(x)+ e(x),
where v(x) = v0 + v1x + ⋯ + vn−1xn−1 is a codeword of
length n and e(x) = e0 + e1x + ⋯ + en−1xn−1 is the error
vector. S1, S2, …, S2t−1 denote the syndrome values which are
defined as

Si ¼ rðαiÞ ¼ eðαiÞ; ð1Þ

where α is the primitive element of the Galois field GF(2m).
For binary BCH codes, the following relation holds

S2i ¼ S2i : ð2Þ

Let ν be the actual number of errors and t the error cor-
recting capability of the BCH code. The coefficients of the
error location polynomial σ(x) = σ0 + σ1x + ⋯ + σtxν satisfy a
set of equations called Newton's identities. In matrix form
these equations are

AνΔν ¼ Sν: ð3Þ

Ai = is the (i � i) matrix

Ai ¼

1 0 0 0 … 0
S2 S1 1 0 … 0
S4 S3 S2 S1 … 0
⋮ ⋮ ⋮ ⋮ … ⋮
S2i S2i−1 S2i−2 …

0

B
B
B
B
@

1

C
C
C
C
A
: ð4Þ

σ0 = 1 and Δi denote the vector of coefficients:

Δi ¼

σ1
σ2
⋮
σi

0

B
B
@

1

C
C
A: ð5Þ

Moreover, Si is the syndrome vector:

Si ¼

−S1
−S2

⋮
−S2iþ1

0

B
B
@

1

C
C
A: ð6Þ

1
The material in this paper was presented in part at the International ITG Conference on
Systems, Communications and Coding, 2019 [22].
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Note that the matrix Ai is singular for i > ν. Hence,
Peterson's algorithm first calculates the number of errors ν.
Starting with i = t the determinant Di = det(Ai) is
calculated. If Di = 0 then the algorithm reduces the matrix
Ai until Di = det(Ai) ≠ 0 holds and Equation (3) can be
solved.

Finally, the Chien search determines the error positions by
searching for the roots of the error location polynomial. The
calculation of σ(αi) for i = 0, …, n − 1 can be conducted in
parallel using simple logic operations [12, 16].

2.2 | Calculating the error location
polynomial for single, double, and triple errors

For single, double, and triple errors the following direct solu-
tions of the Newton's identities follow [24, 25]:

σðxÞ ¼ 1þ S1x for ν¼ 1 ð7Þ

σðxÞ ¼ 1þ S1xþ
S3 þ S31

S1
x2 for ν¼ 2 ð8Þ

σðxÞ ¼ 1þ S1xþ
S21S3 þ S5
S3 þ S31

x2

þ S31 þ S3 þ S1
S21S3 þ S5
S3 þ S31

 !

x3 for ν¼ 3

ð9Þ

These solutions are used in [10, 20, 26] for decoding
BCH codes. The main difference between [10, 20] is the
implementation of the Galois field inversion in Equation (9).
For instance, in [10], a parallel hardware implementation is
proposed. This architecture requires only four Galois field
multipliers, but additionally a Galois field inversion is
required. The complexity and the throughput of this archi-
tecture are determined by the inversion. For the Galois field
GF(210) the size of the inversion is about twice the size of a
multiplier and the length of the critical path is four times
longer than that of a multiplier. In [20], the inversion is
implemented using a look‐up table, which is only efficient
for small Galois fields, because the table size is of order
O(m2m). Even for moderate Galois field sizes, for example,
m = 8, …, 12, such look‐up tables are costly. In particular,
if multiple instances of the decoder are required. Moreover,
omitting inversion reduces hardware complexity and speeds
up the calculation.

In the following, we propose an algorithm for triple
errors that omits the Galois field inversion similar to the
approach in [26] that considers double errors. First, we
consider the case for single and double errors. Note that the
roots of the error location polynomial do not change, if we
multiply all coefficients with a non‐zero factor. For instance,
multiplying the right hand side of Equation (8) with S1 ≠ 0,
we obtain

σðxÞ ¼ S1 þ S21xþD2x2 ð10Þ

for ν = 2 with the determinant

D2 ¼ S3 þ S31: ð11Þ

Note that for ν = 1 and ν = 2, S1 is non‐zero. For a single
error in position i we have S1 = α i≠ 0. Similarly, for two errors
in positions i and j, we have S1 = αi + αj ≠ 0, because αi ≠ αj.
Equation (10) is also a solution for ν = 1, because D1 = S1 ≠ 0
and D2 = 0 holds for a single error.

Next, we consider the case ν ≥ 2. For ν = 2 and ν = 3, we
have D2 ≠ 0 [20]. To see that, consider ν = 2. We have
S1 = αi + αj and S3 = α3i + α3j. Hence,

S31 þ S3 ¼ ðαi þ αjÞ
3
þ α3i þ α3j

¼ αiþ2j þ α2iþj ≠ 0 for i ≠ j:
ð12Þ

Similarly, for ν = 3, we have S1 = αi + αj + αk and
S3 = α3i + α3j + α3k. Consequently,

S31 þ S3 ¼ ðαi þ αj þ αkÞ
3
þ α3i þ α3j þ α3k

¼ αiþ2j þ αiþ2k þ αjþ2kþ

αjþ2i þ αkþ2i þ αkþ2j:

ð13Þ

The last term is the determinant of the following matrix:

1 αi α2i

1 αj α2j

1 αk α2k

0

@

1

A: ð14Þ

This matrix has full rank, because the columns are linearly
independent. Hence, D2 ≠ 0 holds for ν = 3.

Now, multiplying the right hand side of Equation (9) byD2,
we obtain a solution for ν = three:

σðxÞ ¼D2 þ S1D2xþ δ2x2 þD3x3 ð15Þ

with

δ2 ¼ S21S3 þ S5 ð16Þ

and the determinant

D3 ¼ S1ðS2S3 þ S1S4Þ þ S23 þ S1S5: ð17Þ

Using Equations (1), (11) and (16), we obtain

D3 ¼ S1ðS21S3 þ S5Þ þ S61 þ S23
¼ S1δ2 þD2

2:
ð18Þ
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The decoding procedure is summarised in Algorithm 1. This
algorithm can easily be adapted to the decoding of single
and double error correcting codes, for example setting D3 = 0
for double error correcting BCH codes. This is important for the
decoding ofGCcodes that use nested inner codes [12, 13], where
the error correcting capability increases from level to level.

In [13, 23], concatenated codes based on extended BCH
codes were presented, where the additional parity bit for the
BCH codes can be used for failure detection after the algebraic
BCH decoding. This failure detection can improve the
decoding performance of the outer RS codes with error and
erasure decoding.

The proposed decoding approach can be applied to
extended BCH codes. Table 1 summarises the conditions for
a valid syndrome S0 of the parity check for extended BCH
codes, where X denotes unused conditions. For instance, if
the determinant D3 is non‐zero, the algebraic decoder as-
sumes that three errors have occurred. An error pattern with
an odd number of errors implies S0 = 1. Hence, D3 ≠ 0 and
S0 = 0 correspond to an uncorrectable error pattern and a
decoding failure can be detected. Similarly, the condition D2

≠ 0 and D3 = 0 indicates two errors, which implies S0 = 0.
Consequently, a failure is detected for D2 ≠ 0, D3 = 0, and
S0 = 1.

2.3 | Hardware architecture

In this section, we present a hardware architecture for the
proposed algebraic decoding algorithm and compare its speed
(critical path length) with the BMA. Note that the critical
path length and the circuit size is dominated by the Galois
field multipliers and Galois field inversion. For GF(2m), the
size of a bit‐parallel multiplier grows with order O(m2) and
the critical path with O(m). The Galois field inversion is
often implemented using Fermat's little theorem, which re-
quires only a single multiplier and a squaring operation, but
m − 1 clock cycles [27]. Hence, the total number of basic
logic operations per inversion is of the order O(m3). On the
other hand, the addition and squaring operations over GF
(2m) are of the order O(m) with a critical path length O(1).
Consequently, these two operations are neglected in the
following discussion.

Algorithm 1 can be implemented performing all operations
in parallel. Such a parallel implementation requires four mul-
tipliers and has a critical path length of two multipliers. It is

more efficient than the implementation proposed in [10],
which uses three multipliers and one inversion. The logic for
the inversion is about twice the size of a multiplier (for GF
(210)) and the critical path length of the inversion is equivalent
to four multiplications. The total critical path in [10] has a
length that is equivalent to six multiplications. Hence, at a
smaller size the proposed algorithm has a significantly shorter
critical path.

The Galois field inversion is an atomic operation which
limits the efficiency of pipelining, whereas the proposed al-
gorithm enables pipelined architectures that can speed up the
decoding. Figure 1 presents a decoder pipeline (without
control logic). In the first stage the variables D2 and δ2 are
calculated according to Equations (11) and (16), respectively.
The syndrome S1 is stored, as it is required for the calculation
of D3 in the second stage. In the second pipeline stage D3 is
determined according to Equation (18). The final error
location polynomial is provided as σ0 = D2, σ1 = S1D2,
σ2 = δ2, and σ3 = D3.

The pipeline requires four multipliers and additional reg-
isters (three registers of width m bits) to store intermediate
results. The pipeline reduces the critical path length to a single
multiplication. Hence, the pipelined architecture doubles the
throughput compared with the structure without pipeline.
Note that the fully parallel BMA also has a critical path length

TABLE 1 Conditions for the parity check for extended BCH codes

ν S0 D1 D2 D3

0 0 0 0 0

1 1 ≠ 0 0 0

2 0 X ≠ 0 0

3 1 X X ≠ 0

Algorithm 1 Inversion‐less Peterson algorithm

F I GURE 1 Hardware architecture of the decoder pipeline
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of a single multiplication. However, the parallel BMA requires
2t multipliers, at least 2t registers and t iterations [28, 29].
Hence, the proposed architecture is smaller and about three
times as fast as the parallel BMA.

To verify the above size considerations, the proposed
decoding algorithm has been implemented on a field‐pro-
grammable gate array (FPGA) in Verilog. Table 2 contains
results for the Xilinx Virtex‐7 FPGA, where throughput is
presented in terms of codewords per second. The funda-
mental building blocks of an FPGA are flip‐flops and the
look‐up tables (LUT). The size of the logic is represented by
the number of LUT. Table 2 represents data for m = 8 and
m = 12. Both decoders require 3m flip‐flops for the reg-
isters. The size of the decoder for m = 12 is dominated by
the four multipliers which require about 90% of the logic.
The speed of the decoders is determined by the achievable
clock frequency fclk. The circuit for m = 8 achieves a clock
frequency fclk = 500 MHz, that is a throughput of 500 ⋅ 106
BCH codewords per second, because one codeword is
processed per clock cycle. The latency is two clock cycles,
that is 4 ns. Moreover, the decoder for m = 8 is about 1.5
times faster than the decoder for m = 12 which confirms
that the critical path length is of order O(m). Similarly, the
ratio of 2.2 for the logic size for m = 12 and m = 8 agrees
well with the estimate O(m2) for the circuit size. The results
for the parallel BMA are estimates based on the required
number of multipliers and registers. The actual size will be
higher. The BMA requires three clock cycles per BCH
codeword. Hence, the achievable throughput is 111 ⋅ 106

BCH codewords per second at a clock frequency of
fclk = 333 MHz.

3 | SOFT‐INPUT DECODING

In the section, we discuss soft‐input decoding of BCH
codes based on a bit‐flipping procedure. Bit‐flipping
decoding of binary block codes was pioneered by chase [30].
Chase introduced reliability information‐based decoding
procedures that generate a list of candidate codewords by
flipping bits in the received word. The test patterns for the
bit‐flipping are based on the least reliable positions of the
received word. For instance, the p‐Chase algorithm decodes
the 2p binary n‐tuples obtained by considering all possible
values in the p least reliable positions [31]. The algebraic

hard‐input decoding is applied for each test pattern. At the
end, the most likely codeword is selected from this list of
candidates.

In [32, 33], acceptance criteria for bit‐flipping decoding
were proposed that aim on stopping the decoding, once the
ML codeword is found. Such stopping rules aim on achieving
near‐ML decoding performance and reducing the complexity
compared to chase decoding. We consider a similar acceptance
criterion for each estimated codeword. This criterion aims on
exploiting error and erasure decoding of the outer RS codes in
a concatenated coding scheme [8]. This scheme uses the p‐
Chase algorithm and the acceptance criterion to determine the
reliability of the final codeword candidate. This acceptance
criterion enables a trade‐off between the error and the erasure
probability. It was shown in [8], that the bit‐flipping combined
with error and erasure decoding can significantly improve the
soft‐input decoding performance compared with Kaneko's
rule [32]. It can even outperform ML decoding of the BCH
code in combination with outer RS decoding, because the
acceptance criterion can efficiently detect unreliable
codewords.

In contrast to [8, 13, 31], we do not use a fixed number
of decoding cycles. We propose a hybrid decoding approach
that combines algebraic hard‐input decoding of binary BCH
codes with bit‐flipping decoding. In particular, we use the
acceptance criterion to determine the reliability of each
candidate codeword. For many received words the stopping
criterion indicates that the hard‐decoding result is sufficiently
reliable, and the costly bit‐flipping decoding can be
omitted. In cases where bit‐flipping decoding is required, we
propose a procedure with a maximum number of decoding
cycles, and apply a decision rule to each candidate.
The decoder can stop after each decoding round if the
codeword fulfils the acceptance criterion. If no reliable
codeword is found after the final decoding round an erasure
is declared.

3.1 | Kaneko's acceptance criterion

Kaneko's rule is a sufficient condition that the ML codeword is
found. However, we show that Kaneko's rule can be too
restrictive. First, we briefly introduce notation and explain re-
view Kaneko's acceptance criterion. Afterwards we discuss the
new acceptance criterion.

TABLE 2 Results for the FPGA
implementation for the proposed algorithm

Module Number of LUT Number of flip‐flops Throughput

Proposed decoder m = 8 145 24 500 ⋅ 106

Multiplier m = 12 71 – 333 ⋅ 106

Proposed decoder m = 12 318 36 333 ⋅ 106

Parallel BMA m = 12 426 84 111 ⋅ 106

Abbreviations: BMA, Berlekamp–Massey algorithm; FPGA, field‐programmable gate array.
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Consider a binary linear code B ðn; k; dÞ, where n is the
codeword length, k is the dimension, and d denotes the min-
imum Hamming distance. We denote the Hamming distance
between two binary vectors a, b by dH(a), (b). We assume
transmission of codewords x¼ ðx1;…; xnÞ ∈ C over an addi-
tive white Gaussian noise (AWGN) channel with binary phase
shift keying. Let y be the received vector. The hard decision
vector by ¼ ð by1 ;…;bynÞ is obtained as

byi ¼
1; yi ≤ 0
0; yi > 0

�

ð19Þ

Furthermore, we use the vector of soft‐values z = (z1…,
zn) with zi = |yi|. The soft‐values z are sorted in ascending
order ez¼ ðez1;…;eznÞ, such that jez1j ≤ jez2j ≤ … ≤ jeznj.

The proposed criterion is similar to Kaneko's acceptance
criterion for bit‐flipping decoding [32] and uses the same
metric. The bit‐flipping metric between a codeword x and the
received vector y is defined as

lðy; xÞ ¼ ∑
xi≠byi

zi: ð20Þ

Let m¼ dHðx0; byÞ be the Hamming distance between the
codeword x0 and by. Furthermore, let x0 denote the codeword
found from a hard‐input decoder with Hamming distance
m0 ¼ dHðx0; byÞ. Kaneko's acceptance criterion

lðx0; yÞ ≤ ∑
d−⌊mþm0

2 ⌋

i¼1
ezi ð21Þ

is a sufficient condition for x0 being the ML codeword [32].

3.2 | Acceptance criterion

In order to motivate the stopping rule and the hybrid decoding
approach, we analyse Kaneko's acceptance criterion and some
properties of the bit‐flipping metric. Let p(y|x) be the condi-
tional density function for receiving y after transmitting the
codeword x over the AWGN channel.

Lemma 1 For the AWGN channel we have

lðy; x00Þ − lðy; x0Þ ¼ log
pðyjx0Þ
pðyjx00Þ

; ð22Þ

where x0 and x00 are two codewords.

Proof From the definition in Equation (20) follows:

lðy; x00Þ − lðy; x0Þ ¼ ∑
x00i ≠byi

zi − ∑
x0i≠byi

zi: ð23Þ

Cancelling all terms in both sums with x0i ¼ x00i results in

lðy; x00Þ − lðy; x0Þ ¼ ∑
x00i ≠byi∧x00i ≠x0i

zi − ∑
x0i≠byi∧x

00
i ≠x0i

zi: ð24Þ

The AWGN channel is memoryless. Hence, the probability
of receiving the vector y given the codeword x is

pðyjxÞ ¼∏
n

i¼1
pðyijxiÞ; ð25Þ

where p(yi|xi) is the conditional density function for receiving
yi given the symbol xi. Using this factorization, we obtain

log
pðyjx0Þ
pðyjx00Þ

¼ ∑
n

i¼1
logpðyijx

0
iÞ − ∑

n

i¼1
logpðyijx

00
i Þ

¼ ∑
x0i≠x00i

logpðyijx
0
iÞ − logpðyijx

00
i Þ

ð26Þ

¼ ∑
x0i≠x00i

log
pðyijx

0
iÞ

pðyijx
00
i Þ
; ð27Þ

where (26) follows from cancelling all terms with x0i ¼ x00i . For
x0i ≠ x00i , we have

log
pðyijx

0
iÞ

pðyijx00i Þ
¼

zi; x0i ¼ byi
−zi; x0i ≠ byi

(

ð28Þ

Using Equations (24) and (27), we obtain Equation (22).
Using Lemma 1, we can derive some interesting properties

of the bit‐flipping metric. In the following proposition, x0

denotes the ML codeword and x00 the second best codeword.

Proposition 1

(a) The bit‐flipping metric is a maximum likelihood metric.
(b) If the hard decision vector by is a codeword, then x0 ¼ by is

the ML codeword.
(c) Let m¼ dHðx0; byÞ be the Hamming distance between x0

and by. Then the metrics of the best and second best
codeword satisfy

lðx0; yÞ ≥ ∑
m

i¼1
ezi ð29Þ

lðx00; yÞ ≥ ∑
d−m

i¼1
ezi ð30Þ

Proof a) follows directly from Lemma 1. The bit‐flip-
ping metric can be used for maximum likelihood
decoding, because l(y, x0) ≤ l(y, x00) implies p(yjx0) ≥ p
(yjx00).
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(b) follows from the fact that the bit‐flipping metric is non‐
negative and lðby; yÞ ¼ 0.

To prove (c), we first consider the case where by is a
codeword, that is, m = 0 and l(x0, y) = 0. In this case the
Hamming metric dHðx00; byÞ ¼ dHðx00; x0Þ is at least d. Conse-
quently the metric l(x00, y) is the sum over at least d values zi.
This sum is lower bounded by

lðx00; yÞ ≥ ∑d
i¼1ezi

due to the ordering of the soft‐values.
Now let x0 be a codeword with Hamming distance m to the

vector by. In this case, the codeword x00 differs in at least d − m
positions from by. Hence the lower bound in Equation (30)
follows. Similarly, Equation (29) follows from the ordering of
the soft‐values.

From inequality (30), it is seen that

lðx0; yÞ ≤ ∑
d−m

i¼1
ezi ð31Þ

is a sufficient condition for x0 being the ML codeword. In fact
this is a special case of Kaneko's acceptance criterion according
to (21). Kaneko's acceptance criterion is a sufficient condition
for x0 being the ML codeword. However, Equation (21) is not
a necessary condition. In some cases Kaneko's rule is too
restrictive which is shown in the next proposition.

Proposition 2 Let x be a candidate codeword with
m¼ dHðx; byÞ x can only satisfy Kaneko's acceptance
criterion according to Equation (21), if

m <
2d þ 1

3
ð32Þ

holds.

Proof The lower bound in Equation (29) depends on
the Hamming distance m of the ML codeword. From
this lower bound it is observed that Kaneko's accep-
tance criterion can only be fulfilled, if

m ≤ d − ⌊
mþm0

2
⌋ ð33Þ

holds. To obtain an upper bound on m, we assume that m
takes on the maximum value:

m¼ d − ⌊
mþm0

2
⌋ : ð34Þ

Now we bound the term d − ⌊mþm0
2 ⌋. Due to

⌊mþm0
2 ⌋ > mþm0

2 − 1 we have

m < d −
mþm0

2
þ 1: ð35Þ

From Proposition 1 follows that m0 ≥ 1 if by is not a
codeword. Hence, we have

m < d −
m
2
þ
1
2
: ð36Þ

From which we obtain the upper bound in Equation (32).
It was shown by chase in [30] that bit‐flipping decoding can

achieve the near‐ML performance and can correct up to d − 1
errors. Consequently, the metric of the ML codeword can be
the sum over m = d − 1 reliability values which is much larger
than that indicated in Equation (32).

In order to improve the detection rate, we use the accep-
tance criterion proposed in [8]:

lðx0; yÞ ≤ ∑
M

i¼1
ezi − T ; ð37Þ

where M and T are parameters that enable a trade‐off between
the decoding performance and the number of test patterns.
The acceptance criterion is based on Yamamoto and Itoh's
decision rule [34], which is a simplification of the Forney's
optimal criterion on the trade‐off between erasure and error
probability [35]. It was shown in [8] that this criterion is a good
estimation of the acceptance criterion proposed by Yamamoto
and Itoh. However, to obtain the best possible trade‐off pa-
rameters, these parameters must be determined by Monte
Carlo simulation.

We utilise the acceptance criterion (37) for a hybrid
decoding approach. In the first decoding step, the syndrome
is checked. According to Proposition 1, we stop the
decoding if the received vector is a valid codeword. In the
second stage, algebraic hard‐input decoding is applied based
on the hard decision vector by. This step may result in an
estimated codeword or a decoding fail as mentioned in
Section 2. For instance, the error location polynomial in-
dicates an odd number of errors and the parity bit indicates
an even number. Hence, the solution of the error location
polynomial is inconsistent. In case of a coding failure, we
proceed with bit‐flipping decoding. Inconsistent solutions
are not considered as candidate codewords. After all alge-
braic decoding steps the reliability of the estimated code-
word is tested according to Equation (37). The decoding is
stopped if the criterion is fulfiled. Otherwise, the decoding
process enters the next decoding step. In contrast to [8],
we test the estimated codeword after each decoding
iteration.
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4 | GC CODES

In order to demonstrate that the proposed decoding methods
achieve a significant reduction of the decoder complexity, we
consider the decoding of GC codes with BCH codes as
component codes. First, we review the GC construction and its
parameters. A detailed discussion can be found in [5, 13, 36, 37].
Afterwards we design a GC code for comparison with a polar
code construction proposed in [38] for flash memories. In the
next section, we present simulation results for this code with
different decoding strategies of the inner BCH codes.

4.1 | GC encoding

The GC codeword is organised in an nb � na matrix as
depicted in Figure 2. All component codes are constructed
over GF(2m). The parameters na and nb denote the lengths of
the outer codes AðlÞ and inner codes BðlÞ, respectively. The
encoding starts with the outer codes. The rows of the code-
word matrix are protected by L Reed‐Solomon (RS) codes of
length na, where L denotes the number of levels. m elements
of each column represent one symbol from the Galois field GF
(2m). Hence, m rows of the matrix belong to a codeword of an
outer code AðlÞ; l ¼ 0…;L − 1. Note that the code rate of the
outer codes increases from level to level. The outer codes
protect Lm rows of the matrix. The code dimensions are
kð0Þb ¼ Lm; kð1Þb ¼ ðL − 1Þm;…; kðL−1Þ

b ¼m. The remaining
nb − Lm rows are used for the redundancy of the inner codes
or for information bits without outer encoding. Let ku denote
the number of rows without outer encoding. Then, the
dimension of the GC code is

k¼m ∑
L−1

l¼0
ka;j þ ku ⋅ na: ð38Þ

After the outer encoding, the columns of the codeword
matrix are encoded with binary BCH codes BðlÞ of length nb.
In the simulations, we consider only extended BCH codes as
inner codes. Each column of the codeword matrix is the sum
of L codewords of nested extended BCH codes.

BðL−1Þ ⊂ BðL−2Þ ⊂ … ⊂ Bð0Þ ð39Þ

Hence, a higher level code is a sub‐code of its predecessor,
where the higher levels have higher error correcting capabil-
ities, that is, tb,L−1 ≥ tb,L−2 ≥…≥, tb,0, where tb,l is the error
correcting capability of level l. The codeword of the jth column
is the sum of L codewords.

bj ¼ ∑
L−1

l¼0
bðlÞj : ð40Þ

These codewords bðlÞj are formed by encoding the symbols
aj,l with the corresponding sub‐code BðlÞ, where aj,l is the j‐th

symbol (m bits) of the outer code AðlÞ. For this encoding
(L − l − 1)m zero bits are prefixed onto the symbol aj,l. Note
that the every column bj of the matrix is a codeword of Bð0Þ,
because of the linearity of the nested codes.

Example 1 In this example, we construct a code for a
comparison with a polar code [38] for applications in
flash memories. The comparison will be discussed in
Section 5. The polar code is suitable for a block length
of 1 kilobyte. Similarly, a GC code with code rate
R = 0.875 and a code length of approx. 8192 is con-
structed. This code is designed according to the rules
proposed in [8] to achieve a word error probability
10−5 at a channel bit error rate of 0.008. All component
codes are constructed over GF(27).

The outer RS codes have a length of na = 89. The inner
codes are binary extended BCH codes of length nb = 92. For
this GC code, we use L = 12 levels, where only the first six
levels are protected by outer RS codes. Table 3 summarises the
parameters of the GC code, where we use the same RS code
from level 6 to level 11. To reduce the complexity, only the first
three decoding levels use soft‐decoding. The fourth level is
protected by the code of the third level. The last six levels do
not require error correction of the outer decoder, because the
inner decoder guarantees the required word error probability.

In Table 3, kb,l and db,l are the dimension and minimum
Hamming distance of the binary inner codes at level l. ka,l and
da,l are the dimension and minimum Hamming distance of the
outer RS codes, respectively. Overall, the code has dimension
k¼m∑L−1

l¼0 ka;j ¼ 7168, length n = na ⋅ nb = 8188, and rate
R = k/n = 0.8754.

F I GURE 2 Codeword matrix

TABLE 3 Parameters of a generalized concatenated code of length
8188 and rate R = 0.875

level l kb,l db,l ka,l da,l

0 84 4 65 25

1 77 6 81 9

2–3 70 8 85 5

4 56 12 87 3

5 49 14 87 3

6‐11 42 16 89 1
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4.2 | GC decoding

Figure 3 illustrates the GC decoding steps, where the decoder
processes level by level starting with l = 0. Let l be the index of
the current level. First the columns are decoded with respect to
the BCH code BðlÞ. After inner decoding, the information bits
of the inner codes have to be inferred (re‐image) in order to
retrieve the code symbols aj,l of the outer RS codeAðlÞ, where j
is the column index. If all symbols of the code AðlÞ are inferred
the RS code can be decoded. Error and erasure decoding is
used in all levels of the RS code. After RS decoding, a partial
decoding result bal is available. This result has to be re‐encoded
using BðlÞ. The estimated codewords of the inner code BðlÞ are

subtracted from the codeword matrix before the next level can
be decoded. The detailed encoding and decoding process is
described in [13].

In this work, we consider two modifications of the decoder
proposed in [13] to reduce the decoding complexity. We apply
the acceptance criterion according to Section 3 as a stopping
criterion after each decoding iteration. Furthermore, we reduce
the memory required for storing LLR values.

The modifications are illustrated in the decoder architec-
tures in Figure 4. The first structure corresponds to the
decoder presented in [13]. The second structure depicts the
new decoder architecture. The first stage in both decoders is a
mapping function that maps the quantized input value to LLR
values depending on the estimated channel error probability.

F I GURE 3 Generalized concatenated decoding
schemes

(a)

(b)

F I GURE 4 Two soft decoder structures
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For the soft‐decoding, these LLR values have to be stored to
determine the least reliable positions. We utilise this sorting to
reduce the number of soft values that have to be stored.

In [13], the LLR values for all code symbols and index
values that indicate the positions of the least reliable sym-
bols are stored. These positions are needed to determine
the bit‐flipping patterns for the soft‐input decoder as
indicated by the block pattern generation in Figure 4. The

corresponding LLR values are required for the metric
calculation, which determines the sum over the magnitudes
of LLR values corresponding to all altered positions ac-
cording to (20). The positions altered by the bit‐flipping
patterns can be determined by sorting the soft‐values, but
the positions altered by the algebraic decoder are only
known after each algebraic decoding step. Hence, all LLR
values are stored in [13].

F I GURE 5 Comparison of BCH(92,84,4) soft
decoding using (31) (solid line) and the proposed
threshold (37) (dashed line) as the stopping criterion

F I GURE 6 Comparison of BCH(92,70,8) soft
decoding using Equation (31) (solid line) and the
proposed threshold (37) (dashed line) as the stopping
criterion
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In order to reduce the RAM requirements, we store only
the positions and the LLR values corresponding to the least
reliable values, where we increase the search depth for the LLR
values. This increases the size of the logic for the sorting, but
enables a compression of the soft‐values. This concept utilises
the fact that symbols with low reliability are more likely to be
altered by the algebraic decoder. Moreover, quantized input
and LLR values reduce the possible variations in the LLR
values. For the considered high‐rate BCH codes, most input
values are mapped to LLR values with maximal magnitude.
Only a small fraction of input symbols will have a small
magnitude. In [13], the search depths are determined by the
maximum number of flipped bit positions p for chase
decoding. We store only the LLR values and their positions for
the μ > p least reliable symbols. If the algebraic decoder alters
symbols within the stored positions, we can calculate the
correct metric value. For positions that are not stored, we set
the LLR value to the maximum possible magnitude. With a
sufficiently value of μ, this modification typically results in the
correct metric according to (20). However, occasionally the
metric calculation and the codeword selection will be affected.
This leads to a small performance loss as we will see in
Section 5.

Example 2 To demonstrate the size reduction for the
memory, we consider the BCH codes of length nb = 92
as presented in Example 1. For these codes, only the
μ = 10 smallest LLR values are needed to achieve good
simulation results, where we consider quantized soft
information with six sensing levels as in [38]. The
quantized input values are mapped to LLR values with
nLLR = 5 bits each. One bit is the hard decision bit and
four bits indicate the magnitude. To store all soft
values,

nall¼na ⋅ nb ⋅ ðnLLR − 1Þ
¼8 188 ⋅ 4¼ 32 752

bits have to be stored. Additionally, na ⋅ m ⋅ p = 1869 bits are
required to store symbol positions.

With the proposed approach, we store m bits for each
position and (nLLR − 1) bits for the corresponding magnitude.
This results in a total of

nμ¼μ ⋅ na ⋅ ðmþ ðnLLR − 1ÞÞ
nμ¼10 ⋅ 89 ⋅ ð7þ 4Þ ¼ 9 790

bits. In this example, the memory for soft values can be
reduced by 72%.

5 | SIMULATION RESULTS

In this section, we present simulation results for the GC code
over an AWGN channel with six sensing levels as in [38]. First,
we consider the performance of the BCH codes according to
Example 1.

The left‐hand side of Figure 5 shows different error rates for
the codes of the first level l = 0. For the inner BCH code
(92,84,4), the word error rate and failure (erasure) probability are
depicted with Kaneko's stopping rule (solid lines) and the

F I GURE 7 Word error rate for different decoding methods for the
GC code (n = 8188 and k = 7168) in comparison with a polar code
(n = 8192 and k = 7168) from [38]

TABLE 4 Parameters for acceptance criterion

Level Without stopping With stopping

0 M = 4; T = 2 M = 3; T = 1

1 M = 6; T = 2 M = 5; T = 0

2 M = 8; T = 2 M = 7; T = 1

F I GURE 8 Average number of decoding steps for the inner BCH
code with and without stopping
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proposed acceptance criterion (dashed lines). Moreover, word
error rates for the outer RS code with error and erasure
decoding are presented. In this case, Kaneko's rule results in
similar error and erasure probabilities. However, the RS code
can correct more erasures than errors. Hence, reducing the error
rate at the price of a higher failure rate can improve the per-
formance of RS decoding. This can be observed from the word
error rate of the RS code. The new stopping rule reduces the RS
word error rate by one order of magnitude at high channel error
rates. Note that the new stopping rule does hardly affect the
complexity of the decoding. This is demonstrated in the right‐
hand side of Figure 5, which depicts the percentage of decoding
rounds that are stopped after the indicated iteration.

Similar results are presented for the codes of the third level
(l = 2) in Figure 6. In this case, the performance of the RS
code is improved by two orders of magnitude and the decoding
complexity is slightly reduced compared with Kaneko's stop-
ping rule. Due to the good error correction capability of this
level, 95% to 99% of all received words in the third level can be
decoded with hard‐input decoding. As the error correction
capability increases from level to level, the probability of soft
decoding decreases from level to level. Hence, we omit soft‐
input decoding for the higher levels l > 2.

Figure 7 shows the performance of the overall GC code
with the different decoding methods. In particular, we use two
sets of trade‐off parameters for the proposed criterion. These
parameters are summarised in Table 4. One set is used for the
decoding without premature stopping. In this case, all 2p iter-
ations of the bit‐flipping decoder are used and the criterion
according to (37) is used as an acceptance criterion for the final
candidate codeword as proposed in [8]. The second set is used
for the decoding with premature stopping. All parameters were
obtained by simulation thus optimising the performance of the
outer RS code with error and erasure decoding.

All simulations were performed for two storage schemes
for the LLR values. For the curves denoted by μ = 92, all LLR
values were stored, whereas μ = 10 indicates results with
reduced memory size. As anticipated the setup without pre-
mature stopping and without memory restriction has the best
performance. However, differences occur only at higher
channel bit error rates. For the target error rate of the design at
0.008, there is only a very small performance loss with the
proposed decoding methods. For comparison, we present re-
sults for a polar code with similar parameters and with soft‐
input decoding as reported in [38]. The GC code has a
significantly better performance.

Finally, we consider the complexity reduction with the
stopping criterion compared with the decoding, as proposed in
[13]. The corresponding simulation results are depicted in
Figure 8. The figure depicts the average number of decoding
steps for the inner BCH code with and without stopping (as
well as with and without memory restriction) for the first 3 GC
levels. Note that all levels have the same complexity with the
decoding according to [13]. With the proposed stopping rule,
the number of decoding iterations is reduced by a factor 3 − 4
for the first level; for the higher levels the complexity is
reduced by a factor 4−6 depending on the channel error rate.

The memory reduction does hardly affect the number of it-
erations. The proposed soft‐input decoder achieves nearly the
performance of the hard‐input decoder reported in [13], that
is, the overall soft‐input decoding process is twice as fas as the
decoding in [13].

6 | CONCLUSION

In this work, we have proposed different methods to reduce
the decoding complexity for binary BCH codes. We have
investigated low‐complexity hard‐ and soft‐input decoding
methods for single, double, and triple error correcting BCH
codes. The algebraic decoder and the stopping rule for the bit‐
flipping decoder can significantly speed up the decoding pro-
cess. Furthermore, a concept was discussed to reduce the
memory requirements for soft‐values.

We have discussed the proposed decoding methods in the
context of generalized concatenated codes which are con-
structed from inner BCH codes and outer RS codes. Such
codes are used for error correction in flash memories [8, 13].
We have demonstrated that the decoding can be accelerated
and the memory size reduced with hardly any impact on the
overall decoding performance. The memory size could be
reduced further if the soft values are compressed additionally
by exploiting the different probabilities of occurrence.

The proposed concepts can be useful for other concate-
nated codes, for example, product codes, half‐product codes,
staircase codes. However, these concepts are limited to the
decoding of BCH codes with small error correction capability.
Peterson's algorithm is only useful for single, double, and triple
error correcting BCH codes. For t ≥ 4 we were not able to find
a solution, where Peterson's algorithm has a lower complexity
than the BMA. Moreover, the Chase‐2 decoder requires up to
2d−1 test patterns, that is, the worst case complexity increases
exponentially with minimum Hamming distance d of the code.
Hence, the proposed bit‐flipping decoding was also limited to
codes with low error correction capability.
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