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ABSTRACT Non-volatile NAND flash memories store information as an electrical charge. Different read
reference voltages are applied to read the data. However, the threshold voltage distributions vary due to aging
effects like program erase cycling and data retention time. It is necessary to adapt the read reference voltages
for different life-cycle conditions to minimize the error probability during readout. In the past, methods
based on pilot data or high-resolution threshold voltage histograms were proposed to estimate the changes in
voltage distributions. In this work, we propose a machine learning approach with neural networks to estimate
the read reference voltages. The proposed method utilizes sparse histogram data for the threshold voltage
distributions. For reading the information from triple-level cell (TLC) memories, several read reference
voltages are applied in sequence. We consider two histogram resolutions. The simplest histogram consists
of the zero-and-one ratios for the hard decision read operation, whereas a higher resolution is obtained by
considering the quantization levels for soft-input decoding. This approach does not require pilot data for
the voltage adaptation. Furthermore, only a few measurements of extreme points of the threshold voltage
distributions are required as training data. Measurements with different conditions verify the proposed
approach. The resulting neural networks perform well under other life-cycle conditions.

INDEX TERMS Non-volatile NAND flash, channel estimation, machine learning, neural network, read
reference adjustment.

I. INTRODUCTION
Due to its reliability against mechanical shocks, high storage
density, low power consumption, and low-cost production,
flashmemory is widely used [1], [2], [3], [4]. For applications
in safety-critical areas, e.g., Internet of Things, automotive,
and medical devices, the storage solution must demonstrate
high reliability. However, the reliability of flash memories
declines during the lifetime. Advanced signal processing is
required to adapt the reading process to the actual life-cycle
conditions.

The associate editor coordinating the review of this manuscript and

approving it for publication was Li He .

A flash cell stores data as an electrical charge. The thresh-
old voltage is the minimum voltage needed to turn the cell
on. The threshold voltage depends on the cell’s charge state.
To read the data, a certain read reference voltage (RRV)
must be applied [5]. The threshold voltage distributions and
the RRV change during the lifetime. They depend on the
number of program/erase (P/E) cycles and the data-retention
time (DRT) [6], [7] as well as on temperature-related charge
losses, fluctuations during programming, read and write
disturb effects [8], [9], [10], [11], [12]. All these effects
influence the error probabilities and the optimal RRVs.
To minimize the bit error rates, an adaptation of the RRV
is required.
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Different methods for RRV adaptation are proposed in
the literature [9], [13], [14], [15], [16], [17], [18], [19].
In [14], a Gaussian mixture model (GMM) was used to
estimate the threshold voltage distribution (TVD). However,
GMM are not suitable to approximate the TVDs of current
triple-level cell (TLC) NAND flash memories [19], [20],
[21]. A low complexity calibration approach based on the
decoding of metadata is proposed in [17] and [19]. This
method requires either pilot data or a strong error correc-
tion code error-correction code (ECC) for the metadata and
estimates the changes of the RRVs based on the observed
number of bit errors in the metadata. A possible adaptation
algorithm, using an error characteristic aware RRV acqui-
sition scheme, was proposed in [22]. This approach gains
the threshold voltage distribution polynomial to calculate
the minimum point between two neighboring charge states,
resulting in the optimal RRV. However, this method needs a
high number of measurements and large latency to calculate a
polynomial.

The life-cycle states of flash memories were estimated
using machine-learning. An approach to predict process vari-
ations of flash devices is being investigated by [23] and [24]
characterizes flash memory in different life-cycles to adapt
error correction. An machine-learning approach to identify
the life state of flash memory was proposed in [25]. Such
methods can be trained based on measured data and avoid
the difficult task of modeling the threshold distributions.

Methods to estimate the flash channel using neural network
(NN) were proposed in [26] and [27]. In [26], a NN approach
is proposed based on meta-information and ECC decoding,
i.e., the knowledge of the number of P/E cycles, the frame
error rate (FER), the average number of iterations of the
LDPC decoder, and the bit flip ratio of the decoder are used
as features. This method shows good results, but requires
metadata and therefore needs additional readouts. Mei et al.
recommend a different machine-learning approach using a
recurrent NN to dynamically estimate the RRV of multi-level
cell (MLC) flash memory [27]. The data for training and
verification are generated by a theoretical Gaussian mixture
model. The method is based on a deep learning technique in
combination with the ECC decoder. The adaption procedure
incurs additional read latency and power consumption and is
proposed as a background operation when the system is idle.

In order to reduce the average read and decoding
latency [28] presented an approach to predict the optimal
decoding method called dynamic error recovery flow. This
method does not predict optimal RRVs, rather it assumes
optimal RRVs. The underlying NN is designed to be reusable
for different flash memories with different process variations.
The chosen flash model is a Gaussian channel and noise
model. As input feature for the neural network the on-cell
ratio, P/E cycles, wordline and page index are necessary. The
on-cell ratio is the ratio between active and total cells at a fix
predefined RRV. Note that for the classification in [28], two
on-cell ratios at different RRV are required.

In this work, we use feedforward neural network (FNN)
to predict the optimal RRVs, for TLC NAND flash memo-
ries with different life-cycle conditions. The features of the
NN are sparse histograms. The sparse histogram component
is similar to the description of the on-cell ratio from [28].
However, we do not calculate a ratio, instead we count the
active cells between adjacent RRVs, and it is not strictly
necessary to use predefined RRVs. In contrast to [26], the
proposed approach uses only sparse histograms as features.
Furthermore, it does not require any information about the
current life-cycle condition. Reference [26] describes three
different machine-learning approaches based on RRV adap-
tation: k-nearest neighbors (k-NN), nearest centroids (NC),
and polynomial regression (PR). The highest complexity
across these approaches is reached with k-NN. The other
approaches require a similar storage overhead than the FNN
approach presented in this paper for good results. Compared
to the approach in [27], the proposed method does not use
a Gaussian mixture model for training and verification. The
NN network proposal from [27] is specialized for MLC flash
memory, but requires much higher complexity than the algo-
rithm used here. One reason is the used RNN, which is much
more complex than an FNN. On the other hand, the number
of neurons from [27] is considerably higher than the shallow
NN approach that we employ in our proposed approach.

With TLC, soft-input decoding techniques are used to
improve the ECC performance. For instance, the stan-
dard IEEE Std 1890-2018 provides strong LDPC codes for
non-volatile memory applications [29]. Generalized concate-
nated codes are also suitable for flash-based memories that
require a low guaranteed residual error rate [30], [31]. In this
work, we show that sparse histograms of the RRV thresholds
are good features for machine learning and inference of the
optimal RRVs. We consider different histogram resolutions.
The simplest histogram consists only of the relative frequen-
cies of zeros and ones at the different RRVs. More infor-
mation on the optimal RRVs is obtained by considering the
quantization levels with soft input decoding. This approach
requires no pilot data and enables efficient voltage adaptation
in the case of a decoding failure, because no additional read
operations are required for the adaptation.

For the training, we use measurements of flash mem-
ories with different life-cycle conditions. The NN has no
knowledge about the life-cycle state of the flash memory
and does not depend on any information from the decoder.
It is demonstrated that near-optimal RRVs can be obtained
with the suggested adaptation approach. The preliminary
work in [32] uses high-resolution histograms, whereas the
new histogram-based approach works with low resolution
applicable in real-life scenarios.

The suggested method may be used in combination with
other adaptation techniques. For instance, in [19] a calibration
and tracking procedure for the RRVs is presented, where the
tracking is required to adjust the prediction to the variations in
different pages. This method requires metadata or pilot data
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for the estimation. The new method omits the reading of the
metadata but requires the histograms of the current RRVs.
The first method is suitable for initial threshold calibration.
However, a single adaptation step does not guarantee suffi-
cient accuracy. Adaptation errors may lead to decoding fail-
ures. Moreover, the RRVs vary from page to page even in the
same flash block. The proposed approach enables efficient
voltage adaptation in the case of a decoding failure or voltage
changes because no additional read operations are required.
In the following, we also present a performance comparison
between the method from [19] and our NN approach.

The remainder of this paper is structured as follows. First,
we consider some basics of flash memories in Section II.
Then we describe flash memory aging in more detail and
describe the measurement data. Next, we introduce the NN
approach in Section IV. In Section V we present numerical
results. Finally, we conclude the paper in Section VI.

II. BASICS OF NAND FLASH MEMORY AND
MEASUREMENT DATA
This section describes some details about TLC NAND flash
memory for this work. More information about the flash
architecture can be found in [5].

A flash cell is either a floating gate (FG) or a charge
trap (CT) metal-oxide-semiconductor field-effect transistor
(MOSFET). An electrical charge is stored corresponding
to the data. This charge changes the threshold voltage Vth
required to switch the transistor on, i.e., to enable a current
between source to drain. In this work, we consider TLC
NAND flash memories. Therefore, each cell stores three bits
and there are eight possible charge states denoted as Si. Each
bit is mapped to a different page. These pages are referred to
as most significant bit (MSB), center significant bit (CSB),
and least significant bit (LSB) page, depending on the bit
associated to the page.

A TVD represents the conditional probability that a cell
is activated at a certain voltage given the programmed state.
Often the TVDs are considered as Gaussian distributions as
shown in Figure 1. The figure illustrates the eight charge
states S0, . . . , S7. The x-axis describes the threshold voltage,
i.e., the gate voltage, and the y-axis the state dependent
probability density. The voltages Vr0, . . . ,Vr6 illustrate the
optimal RRVs which minimize the readout error probability.

There are different schemes to label the charge states
with a binary representation, e.g., [33] presents optimized
bit-labeling for TLC flash memory. Gray codes are partic-
ularly suitable for pagewise reading because the adjacent bit
combination differs by only one position. We take the code
in Table 1 from [33] as bit-labeling. As explained before, the
charge states are distinguished by the RRVs. The bold lines
in the bit pattern of Table 1 represent the decision boundaries
between a binary ‘0’ and ‘1’ for the respective page. TheMSB
and LSB pages require two, and the CSB page needs three
readouts to determine the corresponding bit. Note that it is
not possible to create a code for TLC NAND flash with the
same number of readouts for each page.

TABLE 1. Gray code bit-labeling for TLC flash cell used in this work.

A. READOUT FOR SOFT-INPUT DECODING
TheRRVs are useful for hard-decision (HD) readout. The per-
formance of ECCwithHD is limited and a better performance
is achieved with soft-decision (SD) decoding. This decoding
method needs additional reliability information. For flash
memory, a high resolution of the soft information requires
more read operations and hence a higher readout latency
and power consumption. Furthermore, more read operations
increase the read disturb (RD) [8], [34]. Therefore, a small
number of readouts is pursued.

Figure 2 shows two exemplary readout methods. SD read-
out with low resolution for LDPC codes are considered
in [35]. Good performance is achieved with two additional
readouts per reference, which results in one additional soft
bit (SB). We can distinguish four intervals li,0, li,1, li,2, li,3
with this readout method as shown in Figure 2a. In [36]
and [30] quantization with four additional readouts are con-
sidered which result in two additional SBs. Together with the
hard bit, six quantization intervals li,0, . . . , li,5 are generated.
Figure 2b illustrates this method. In the following the soft
readout types are called 1 SB and 2 SB method, respectively.
Notice that in perfect conditions, the additional RRVs are
chosen such that the mutual information is maximized [35].

III. MEASUREMENT DATA
Numerous physical effects change the TVDs. Repeated pro-
gramming and erasing damages the tunnel oxide. The num-
ber of P/E cycles is a crucial metric of life expectancy [5].
An essential property of flash memory is retaining electrical
charge, i.e., information, for a long time. For some applica-
tions, the ability to maintain data is more important than the
ability to withstand many P/E cycles. The higher the number
of P/E cycles, theworse the oxide layer, and the faster the cells
can discharge. Therefore, P/E cycling reduces the possible
DRT of the charges.

A persistent source of interference in 3D-NAND flash is
the RD effect [5]. Reading a page several times without
erasing may cause a charge increase in the cells of the pages.
The probability of RD increases with the number of P/E
cycles and is more likely on already damaged cells. Erasing
the cells resets this disturbance, as this procedure discharges
the cells completely [5].

The temperature of the flash memory may affect the
possible operations on the flash cell. Significant tempera-
ture variations can lead to critical errors if the RRVs are
not adjusted. This is particularly problematic with cross-
temperature effects, i.e., writing at one temperature and read-
ing at another. Especially in the automotive sector, integrated
circuits have to pass special stress tests that require a certain
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FIGURE 1. Example for the theoretic TVD of a TLC flash memory and optimal RRVs (dashed lines).

FIGURE 2. TVD of two soft readout possibilities with corresponding RRV. (a) Readout with 2 additional RRV generating 1 SB.
(b) Readout with 4 additional RRV generating 2 SB.

operating temperature, e.g., for the AEC-Q100 Grade 3 qual-
ification, the temperature range is −40 ◦C to 85 ◦C.
Each life-cycle condition changes the TVD and the associ-

ated optimal, i.e., error minimizing, RRV. Due to the complex
modeling, measurements are necessary to characterize life-
cycle conditions. For the analysis in this research, we con-
ducted measurements under different life-cycle conditions.
We consider an industrial BiCS TLC NAND flash memory
that has a defined end-of-life (EOL) with 3000 P/E and one
year data retention time. For this study, we consider P/E,
DRT, RD and cross-temperature effects. The data set consists
of 151 measurements of flash blocks in different life-cycles,
i.e., with different aging.

One measurement consists of one flash block with
256 word-lines, i.e., 256 pages per block. The data contains
800 to 3000 P/E cycles with 200 P/E steps. DRT is sim-
ulated with a baking process where 83 h of baking corre-
spond to one year data retention. We have measurements
with 0 h, 13 h, 27 h, 42 h and 55 h baking time, which
corresponds to approximately 0 h, 1.4 × 103 h, 2.8 × 103 h,
4.4 × 103 h and 5.4 × 103 h data retention. The temperatures
used for cross-temperature measurements are −35 ◦C, 25 ◦C
and 85 ◦C, where 25 ◦C is room temperature. This tempera-
ture range is similar to the AEC-Q100 Grade 3 qualification.
Most measured sets have a combination of several effects, but
there are no measurements with DRT and cross-temperature.

Figure 3 shows the TVD of two life states, showing the
different variances and mean values. 200 pages are consid-
ered for these TVDs. The x-axis represents a discrete voltage
step, and the y-axis represents the number of cells switched
on. We use discrete voltage steps because the measurements’
exact values are unavailable. Note that S0 represents the
deleted state. The measurement setup does not allow mea-
suring the distribution of S0.
Figure 4a and 4b show TVDs at reference Vr6 under dif-

ferent life-cycle conditions. We see the distribution of S6 and
S7 as well as the sum of both, i.e., the mixture distribution.
The written data is generally unknown, and the observer
retrieves only the mixture distributions. A complete flash
page was read for this measurement, i.e., all cells in a word-
line. The distributions are shifted and have different vari-
ances. Applying the same fixed RRVs would result in high
error probabilities. The measurements for a single page are
noisy. Hence, the estimation of the optimal read reference is
not trivial.

Table 2 shows the optimal discrete RRVs with differ-
ent life-cycle conditions. The optimal RRV produces the
lowest error probability. Note that RRV Vr0 is ignored
because the measurement setup cannot correctly determine
the distribution of S0. We observe from Table 2 that large
changes of the optimal RRVs occur for different life-cycle
conditions.
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FIGURE 3. TVD for two measurements: blue curves correspond to 2400 PE cycles, no DRT, RD, −35 ◦C PTMP, 85 ◦C RTMP; red curves
correspond to 3000 PE 5.4 × 103 h DRT, no RD, 25 ◦C PTMP, 25 ◦C RTMP. 200 pages are considered per TVD.

FIGURE 4. TVDs for S6, S7, and the sum of both distributions (mixture distribution) for a single page. (a) 800 PE, 0 h DRT, no RD,
25 ◦C PTMP, - 35 ◦C RTMP. (b) 3000 PE, 5.4 × 103 h DRT, no RD, 25 ◦C PTMP, 25 ◦C RTMP.

IV. READ REFERENCE VOLTAGE ADAPTATION
In this section, we introduce a machine-learning approach
with NNs to adjust the RRVs. The input of the NNs should be
sparse to keep the overhead for adaption small. Histograms
of the threshold voltages with a high resolution, as consid-
ered in [32], cause high latency and power consumption.
To reduce this overhead, we consider the sparse histograms of
the readout for soft-input decoding. Thus, no additional infor-
mation is required for the adaption when soft-input decoding
is applied. Note that conditional histograms require known
data. Hence, we consider the unconditioned histograms of the
mixture distributions.

A. HISTOGRAM GENERATION
The sparse histograms are generated such that cells are
counted which are turned on by an RRV in the interval
between two reference voltages Vrk and Vrk+1. For instance,
to measure the sparse histogram for the MSB page using the
Gray code from Table 1 under hard decision readout, we need
to apply two reference voltages. These define three voltage
intervals. In [28], a similar figure is generated, called the on-
cell ratio, where the number of cells turned on at a reference
voltage is divided by the total number of cells.

The HD readout quantization levels are performed on stan-
dard RRV, and the quantization levels of the SD readout are

selected to maximize mutual information. This is the usual
approach for the selection of the SD RRVs. To avoid any
modeling and consider real-world distributions, the training
data for the NN is based on measurements of different life-
cycle scenarios.

For the considered TLC flash, the MSB and LSB page
require two and the CSB page needs three reference voltages
to determine the corresponding bit. For MSB and LSB page,
this results in histograms with three intervals for HD, seven
intervals for one SB and eleven intervals for two SB. For the
CSB page, we have four intervals for HD, ten intervals for
one SB and 16 intervals for two SB.

B. INFORMATION ANALYSIS
The input features for the neural network must contain as
much information as possible related to the expected output.
To investigate this dependency, we consider an informa-
tion theoretic measure, i.e., we use the mutual information
I (X;Y ), which is defined as [37]

I (X;Y ) = H (X ) − H (X |Y )

=

∑
x∈X

∑
y∈Y

fXY (x, y) · log2

(
fX |Y (x|y)
fX (x)

)
. (1)
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TABLE 2. Optimal discrete RRV for different life-cycle conditions.

Note that the mutual information is non-negative and the
minimum of the entropies of both random variables X and
Y defines an upper bound.
The features discussed in [19] for determining the optimal

RRV are obtained based on the successful decoding of the
metadata. In contrast, we investigate features that rely on
reading the payload data without decoding. In the following,
we compare the mutual information between the different
feature sets. First, we describe the features analyzed in [19],
where the RRV are inferred from the number of errors in the
metadata. We assume the same parameters and constraints
for this analysis as in [19]. The mutual information between
the number of errors E and the optimal reference voltage Vopt
is denoted by I (E;Vopt ). Themutual information is a function
of the distance 1Vth between the currently used read voltage
and the optimal reference voltage Vopt .

Another feature in [19] is the asymmetry A between the
error proportions at a reference voltage, where more errors
on the right side of the distribution lead to A = 1 and A =

0 otherwise. The mutual information between the asymmetry
and Vopt is denoted by I (A;Vopt ).
Next, we describe a feature set that relies on reading the

payload data without decoding. The variable B represents the
number of active cells within each interval of quantization
levels. Specifically, an instance of B is defined for each inter-
val, resulting in two values in the case of a HD. To quantify
the relationship between B and the optimal threshold voltage
Vopt , we define the mutual information I (B;Vopt ).
Figure 5 shows I (E;Vopt ) and I (A;Vopt ) regarding the

metadata and I (B;Vopt ) for the payload data, considering the
counter for the right interval for HD readout, on the RRVs
for the MSB page Vr2 and Vr6. The calculations consider all
available measurements and the x-axis of the figure is chosen,
such that 1Vth = 0 corresponds to the mean optimum RRV.

The mutual information I (E;Vopt ) shows noticeably
higher values compared to I (A;Vopt ), which is why in [19]

the number of errors in the metadata was used as the pri-
mary feature. I (B;Vopt ) show significantly larger values than
I (E;Vopt ) and I (A;Vopt ). The progression shows that an RRV
that is far from 1Vth = 0 provides even higher information.
Moreover, the range of high mutual information is very large,
which favors readout at different threshold voltages. There-
fore, the analysis of the variable Bwith respect to the payload
data leads to a larger statistical significance. This analysis
supports adopting the number of active cells per interval as
a feature over Vopt .

For reading out the soft information for SD decoding, the
RRV intervals should be chosen to maximize the mutual
information on each decision threshold. However, the mutual
information depends on the noise level and it is not feasible to
adapt the quantization intervals for each life-cycle condition.
The investigation of the optimal quantization level by neural
networks is not part of this study. Hence, the SD intervals
are chosen to maximize mutual information in the EOL case.
As shown in Figure 3 and described in [11], [19], [33], and
[38], the charge distributions of the flash memory are highly
asymmetric with exponential tails. This results in asymmet-
rical SD intervals.

C. NEURAL NETWORK APPROACH
In the following, we demonstrate that an adaptation with
NNs using sparse histograms of the soft values and the used
HD RRV can achieve near-optimal readout performance.
However, we do not focus on implementing an optimized
low-complexity NN approach for this problem. We use a
fully-connected FNN in the following to adapt the RRV to
different life-cycle conditions. As training function of the
NN we use the Levenberg-Marquardt (LM) algorithm [39].
The LM algorithm is a well-suited approach for backpropa-
gation training, that combines the gradient descent and the
Gauss-Newton method. It is theoretically justified, easy to
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FIGURE 5. Mutual information (MI) on Vr2 and Vr6. I(E; Vopt ) - MI
between the number of errors E and Vopt . I(A; Vopt ) - MI between error
asymmetry A and Vopt I(B; Vopt ) - MI between B and Vopt .

implement, and has proven robustness and efficiency in prac-
tice [40], [41]. Further details about NNs using LM training
algorithms are described in [42]. The FNN consists of an
input layer with a certain number of inputs, depending on
the readout method and the corresponding histogram, one or
more hidden layers with a specific number of neurons, and
an output layer with one or more outputs. As input we use
the current RRVs and the sparse histograms, that are mapped
to the range [-1, 1]. This is a common practice to normalize
the inputs for sigmoid activation functions, to prevent fast sat-
uration and accelerate the training process. Afterward, each
neuron j in the hidden layers manipulates the input vector x =

[x1, . . . , xn] with a weighting factorwi and a bias term bi such
that aj =

∑n
i=1 wi · xi + bi. The weighting factors are defined

during training with the LM algorithm. We use a supervised
learning approach, i.e., input values are associated with target
values during training. The weighting factors of the FNN are
changed by comparing the target and actual output values of
the FNN until the error between these is minimized. Each
hidden neuron uses a hyperbolic tangent sigmoid transfer
function zj = tansig(aj) = 2/(1+exp(-2aj))−1 as activation
function, where zj is the output value of a neuron. After the
hidden layers, the outputs are connected to the output layer.
This layer uses a linear transfer function to map the results
to the required numeric range. As final output of the FNN,
we get the optimal RRVs.

A diagram of such a network with three input neurons, one
hidden layer with three neurons, and two output neurons with
all connections is shown in Figure 6. In general this FNN
approach has a storage overhead of N (In + 1), where N is
the number of neurons of a layer and In is the number of
inputs. The specification of the total complexity in terms of
floating operation points (FLOPs) depends strongly on the
implementation of the mapping, tansig and linear transfer
function for the corresponding input, hidden and output layer.
Ignoring these special functions, the number of floating point
additions and multiplications required corresponds to the
storage overhead.

FIGURE 6. Diagram of a FNN with, three input neurons, one hidden layer
with three hidden neurons and two output neurons.

The goal is to improve the generalization capability of
the NN. If the neural network performs well on data, it has
not seen before, it generalizes well. In our case, the trained
FNN should predict the RRVs with unknown histograms of
life-cycle conditions that are not represented in the training
data. On the other hand, a high amount of training data can
lead to overfitting. Overfitting causes the NN to fit very well
to the training data, but the NN does not work correctly with
any other data. One option to counteract overfitting and to
improve the generalization is adding noise to the training
data. The performance of the NN is tested and verified with
independent sets.

Similar to [19], we assume that the data is initially read
at a default RRV Vri, i.e., these default RRVs are used to
generate the histogram data for the input features. For one
of the evaluations, the default RRVs are also used as static
references without adaptation. For the default RRVs, we aver-
age the optimal RRVs of the measurement data with 800
P/E, 0 h DRT, no RD, 25 ◦C program temperature (PTMP)
and −35 ◦C read temperature (RTMP). This is a nearly fresh
condition. In addition, the SD intervals used to generate one
and two SB at each Vri were chosen to maximize the mutual
information at EOL state. These default values are used for
the training and verification of the NNs. To generalize the
NN approach, we compute additional training data generating
sparse histograms at different RRVs. This generates some
uncertainty in the training process and avoids the use of fixed
predefined RRVs.

To avoid overfitting and reduce the requirements for the
measurements, we use as little training data as possible to
demonstrate that a few specific measurements are a sufficient
training basis.

V. PERFORMANCE OF READ REFERENCE VOLTAGE (RRV)
ADAPTION
In this section, we present the results of the proposed adap-
tation method. Furthermore, we compare the results with the
read reference calibration approach from [19].

Several NNs have been tested. We observed that a few
hidden layers with few neurons are sufficient to solve the esti-
mation problem. For the presented numerical results, we con-
sider two cases:

1) NN with one hidden layer and five neurons (NN1)
2) NN with two hidden layers with five neurons each

(NN2).
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TABLE 3. Size of the NN (number of weights) in the amount of floating
point numbers.

Depending on the used readout method and the target page,
we get different numbers of input features for the FNN,
which results in different storage overheads. Table 3 shows
the needed storage for each readout method for the presented
NN configurations.

We consider three different training sets (TSs) with differ-
ent measurements:

1) training set 1 (TS1): 2 data sets, two cases of extreme
measurements - consisting of test set 8 and 12.

2) training set 2 (TS2): 4 data sets, two cases of extreme
measurements - consisting of test set 8 and 5; two data
sets with condition 12.

3) training set 3 (TS3): 6 data sets consisting of TS2 with
two additional data sets (test set 10 and 11).

Additionally, we use eight different RRV sets to generate
multiple histograms of each training set. These RRV sets
are equally distributed between the minimum and maximum
of the mean RRVs of the data sets. In total, we use for the
training 256 pages per data set. The verification is performed
with other data sets but includes similar life-cycle conditions.

To compare the statistical performance of the different
training methods we use boxplot figures. The boxplot is
constructed such that the top and bottom of each box cor-
respond to 75% and 25% of the samples, respectively. The
red line in the box indicates the median. The top and bot-
tom whisker lengths are adjusted to be three times the
length of the interquartile range. Values exceeding this range
are considered extreme outliers and are not considered in
the boxplot figures. One measurement set consists of 256
pages, i.e., the total number of pages for verification is
151 · 256 = 38 656. Each page has a payload of 4 kB
with a code rate R = 0.9, resulting in 36 490 bits per page.
In addition, we consider the adaptation of the RRV on

individual measurement sets. As shown in Figure 3, the TVD
of flash memory shifts at different life-cycle conditions, and
therefore the optimal RRVs are shifted, too. To emulate other
life-cycle conditions, we shift the measurement data and
recalculate the optimal RRV. For the numerical results, the
results of five NNs were averaged to avoid anomalies.

We concentrate on applying the NN on the MSB page as
an example, i.e., we predict Vr2 and Vr6. According to the
bit-labeling on Table 1, the charge states S3 - S6 are assigned
to logical ‘0’, and S0, S1, S2, S7 are assigned to logical ‘1’.
The boxplots represent bit error rates. Additionally,

we show two residual error probabilities of an LDPC code
with a code rate of R = 0.91 and payload length of 1 kB
from [29]. This code has been standardized for flash mem-
ories with a high storage rate and the shortness of the code

enables fast processing. It is possible to split a longer code
to achieve faster performance through parallelization. At a
bit error rate (BER) of 0.011, this code reaches a residual
block error probability of about 10−6, wheres for a bit error
rate of 0.019, the decoder fails with a probability close to
one. This BER range is very narrow and shows how sensitive
the error-correcting is to estimation errors. Using the default
RRV, approximately 37% of the measured pages cannot be
successfully decoded. In contrast, using the optimal RRVs,
98% of the pages reach a block error rate below 10−6. How-
ever, some extreme outliers (0.2% of all codewords) are not
decodable even with perfect RRV adaptation.

First, we assume the case that the readings are taken with
the default RRV. We compare all the results with the RRV
calibration algorithm based on metadata from [19] denoted
as RRV calibration. Figure 7a shows numerical results using
histograms with one SB for the MSB page. This method
results in seven histogram values, i.e., the input features
consist of these seven values plus two values for the HD
RRVs, resulting in nine input features for the FNN. For the
small training sets (TS1), the NN with two hidden layers
(NN2) outperforms the NN with one hidden layer (NN1).
With the more extensive data set (TS3), both NNs achieve
close to optimal performance. The predicted RRVs from the
NNs provide in all cases a lower error rate than the static
default RRVs. The static RRVs lead to three timesmore errors
on average.

The NNs using two SBs readout show similar results as
using one SB. We observe, that the additional histogram
values do not significantly improve the resulting mean error
rate. Therefore, we omit numerical results.

In the following, we consider numerical results using a
HD readout for the histograms as input to the NN. This
means that we generate only five input values for the NN,
specifically three values as histogram data and two values for
the RRVs for the MSB page. As can be seen in Figure 7b
the estimation based on the HD readout always leads to some
performance loss for small sets of training data. Depending
on the selected neural network and training method, the hard
decision approach achieves similar results as the RRV cali-
bration from [19].

Next, we consider a two-step process, first performing the
RRV calibration of [19] and then using the presented FNN
approach to improve the adaptation. This scenario is more
realistic since an SD readout would only be used if the cali-
bration is not successful. The histograms are generated with
the RRV from the calibration result, i.e., for each page we
use the RRV suggested by the calibration. For this analysis,
we use the same NN and data sets as before. We analyze
the method where the calibration is performed first, followed
by an SD readout. Figure 8a shows the results using 1 SB.
The 2 SB approach show almost the same results in terms
of error rate and therefore we omit numerical results at this
point.

It is possible to generate more training data by data aug-
mentation (DA). In our case, shifting the measured histogram
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FIGURE 7. NN based on default readout against RRV calibration: Bit error rates for the MSB page with different readout methods
and training strategies compared to RRV calibration strategy based on metadata from [19]. (a) Quantization with one SB SD
readout. (b) Quantization based on HD readout.

FIGURE 8. Two-step process against RRV calibration: Bit error rates for the MSB page on NN with different training strategies
using one SB SD readout after using RRV calibration compared to RRV calibration strategy based on metadata from [19].
(a) Training without DA. (b) Training with DA.

FIGURE 9. Results with 1 SB SD readout on RRV of the calibration method (two-step process) for using NN1 using training set 2
(TS2) against RRV calibration on pages with 3000 P/E, 1.4 × 103 h DRT, no RD, 25 ◦C PTMP and 25 ◦C RTMP.

sets can lead to emulating other life-cycle conditions. This
is motivated by the observation that small changes in the

life-cycle conditions typically lead only to changes in the
mean value, but do not affect the shape of the distribution.
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DA allows reducing the number of life-cycle conditions used
for training and improves the generalization capability of the
NNs.We limit the use of DA in this paper to doubling the data
in the TSs. In Figure 8b we apply DA to enhance the training
sets. In this case, DA only leads to a significant improvement
in performance for TS1, i.e., only in cases where little training
data is available.

The boxplot graphs give an insight into the resulting error
rates using different NNs. In the following, we discuss the
performance of one exemplary life-cycle condition measure-
ment considering the variations over pages. One measure-
ment consists of 256 consecutive pages, and though these
are noisy measurements, we only show partial sections of a
measurement.

Figure 9 shows an example of the two-step process, con-
sisting of applying the RRV calibration from [19] first and
afterward the neural network approach in case of a decoding
failure. The default readout would lead to a high error rate,
which is an extensive problem in many scenarios. Therefore,
an adjustment of the RRV would be necessary in any case.
We show here results for NN1 with TS2. This example shows
that the two step-process enhances the performance signifi-
cantly, such that near-optimum results are achievable. Note
that in this case, both NN approaches reach almost the same
performance and therefore numerical results of NN2 are not
presented.

VI. CONCLUSION
The RRVs of non-volatile NAND flash memories are impor-
tant concerning achievable storage reliability. The optimal
RRVs depend on many aging effects, such as the number of
P/E cycles, DRT, RD, and others. Using fixed default RRVs
leads to high bit error rates andwill eventually cause decoding
failures.

In this work, we have addressed the issue of RRV predic-
tion. The proposed prediction method is based on shallow
FNNs, which utilize histograms of the soft-readout values
as features. By using the training sets for different life-cycle
conditions, we can show that only a few measurements cover
the essential aspects of the TVD variation. The NNs approach
achieves a near-optimum readout performance with a small
data set. We have shown, that DA improves the results when
very little data is used in the training sets. We have shown
that an NN with an HD readout achieves similar results to
conventional adaptation algorithms that employ pilot data
algorithms. Compared to the calibration method from [19],
HD readout achieves similar performance, while SD readout
yields even better results. We also have demonstrated that
the histogram generation for the input features of the NN
with HD and SD readout does not require fixed predefined
RRVs, enabling sequential application with other calibration
methods.

The question arises at which point an adaptation of the
RRV is necessary. If the HD decoding is not successful, the
SD is triggered afterward. At this point, the NN can estimate
the optimal RRV so that in case of continued decoding failure,

the readout is done with an improved RRV. When reading
again, the residual error rate could be reduced due to the
adjusted RRV that HD decoding is successful.

A data-driven estimation method cannot consider all pos-
sible life-cycle conditions. Future research should consider
other approaches for the DA, e.g., generating training data
based on more accurate probability density functions for
different life-cycle conditions.
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