
Hochschule Konstanz
Department of Computer Science

Bachelor Thesis
Simplifying Vulnerability-Scan Results

Submitted by
Tom Kosacki
Student Number

Konstanz, 11th July 2023

Bachelor Thesis

Simplifying Vulnerability-Scan
Results

by

Tom Kosacki
in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science
in Applied Computer Science

at the Hochschule Konstanz University of Applied Sciences,
Student Number:

Date of Submission: 11th July 2023

Supervisor: Prof. Dr. Hanno Langweg
Second Examiner: Prof. Dr. Dirk Staehle

This work is licensed under a Creative Commons “Attribution 4.0
International” license.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Abstract

This thesis emphasizes problems that reports generated by vulnerability scanners
impose on the process of vulnerability management, which are a. an overwhelming
amount of data and b. an insu�cient prioritization of the scan results.

To assist the process of developing means to counteract those problems and to
allow for quantitative evaluation of their solutions, two metrics are proposed for
their e�ectiveness and e�ciency. These metrics imply a focus on higher severity
vulnerabilities and can be applied to any simplification process of vulnerability
scan results, given it relies on a severity score and time of remediation estimation
for each vulnerability.

A priority score is introduced which aims to improve the widely used Common
Vulnerability Scoring System (CVSS) base score of each vulnerability dependent
on a vulnerability’s ease of exploit, estimated probability of exploitation and prob-
ability of its existence.

Patterns within the reports generated by the Open Vulnerability Assessment
System (OpenVAS) vulnerability scanner between vulnerabilities are discovered
which identify criteria by which they can be categorized from a remediation actor
standpoint. These categories lay the groundwork of a final simplified report and
consist of updates that need to be installed on a host, severe vulnerabilities, vul-
nerabilities that occur on multiple hosts and vulnerabilities that will take a lot of
time for remediation. The highest potential time savings are found to exist within
frequently occurring vulnerabilities, minor- and major suggested updates.

Processing of the results provided by the vulnerability scanner and creation of
the report is realized in the form of a python script. The resulting reports are
short, straight to the point and provide a top down remediation process which
should theoretically allow to minimize the institutions attack surface as fast as
possible. Evaluation of the practicality must follow as the reports are yet to be
introduced into the Information Security Management Lifecycle.

ii

Contents

1 Introduction 1
1.1 Related Works . 3
1.2 Structure . 3
1.3 Technical Terms and Tools used for Research 4

2 Vulnerability Scanning 9
2.1 Vulnerability Scanning: An Introduction 9
2.2 Types of Vulnerability Scanning . 10
2.3 Importance to Institutions of Higher Education 12

3 Complexity of Remediation 13
3.1 Estimating Vulnerability Scan Report Length 13
3.2 Actual Vulnerability Scan Report Length 14
3.3 Comparison and Handling of Scan Results 15

4 Simplification & Prioritization 17
4.1 Defining Usefulness of Prioritization Methods 17
4.2 Result Prioritization . 19

4.2.1 Priority Score . 20
4.2.2 Complexity . 22

4.3 Simplification of Results . 25
4.3.1 Vulnerability Scanning . 25
4.3.2 Data Categorization . 26

4.4 Expectancy Towards the Report . 30

5 Methodology 33
5.1 Prerequisites . 33
5.2 Implementation of the Simplification Framework 36

5.2.1 Vulnerability Pre-Processing. 37
5.2.2 Vulnerability Prioritization and Analysis 38
5.2.3 Report Creation . 43

iii

Contents iv

6 Results 45
6.1 Usefulness . 45
6.2 Report Length . 47

7 Conclusion and Future Work 48

Appendix 49

A Data 50
A.1 Single Result . 50
A.2 subnets.txt . 52
A.3 faculties.txt . 52
A.4 emails.txt . 52
A.5 .env . 52
A.6 Sample Report . 53

B Code 54
B.1 Script: split subnets.sh . 54
B.2 SQL Query: Major Updates . 56
B.3 HTML template: output template.html.j2 57
B.4 HTML template: single faculty report.html.j2 66
B.5 Script: simplify.py . 78
B.6 Script: send mail.py .109
B.7 Script: get envs.py .110

References 111

List of Figures

5.1 Simplification Pipeline . 34
5.2 Program Structure . 36
5.3 Initial Database Schema . 38
5.4 Wide Spread Threshold Statistics 42
5.5 High Priority Threshold Statistics 43

v

List of Tables

4.1 Vulnerability Scan Result Severities, Grouped by Scan 26
4.2 Excerpt of Identified Updates . 27
4.3 Excerpt of High Severity Vulnerabilities 28
4.4 Excerpt of Frequently Occurring Vulnerabilities 30

5.1 Execution Time for major updates Query 40

6.1 Baseline e�ectiveness and e�ciency in CVSS points per hour 45
6.2 Vulnerabilities by severity, before and after 46

vi

List of Source Codes

1 SQL Query: Discovering Updates 27
2 SQL Query: High Severity Vulnerabilities 28
3 SQL Query: Frequently Occurring Vulnerabilities 29
4 SQL Query Result: Explain Query Plan 41

vii

1
Introduction

Institutions of Higher Education (IHEs) are increasingly reliant on Information
Technology (IT) systems to support their teachings, research, and administration.
However, with this increasing reliance and the increasing willingness of threat ac-
tors to compromise IHEs comes the risk of data loss and inability to operate.
To mitigate these risks, vulnerability management has become a critical compo-
nent of IT security for IHEs. Automated vulnerability scanning is a common
approach used to identify vulnerabilities in IT systems, but the volume of vulnera-
bilities discovered can become overwhelming with increasing institution- and thus
network-size, making evaluation and remediation complex and resource-intensive
tasks.

In this Bachelor’s thesis the issue of vulnerability prioritization and report
simplification for IHEs are explored. Automated vulnerability scans are utilized
to identify vulnerabilities and a focus on optimizing the scan reports and the
prioritization of vulnerabilities to reduce the complexity of remediation is set.

The objective of this thesis is to provide practical guidance and tools for IHEs
to simplify existing vulnerability scan results using various techniques through-
out the scanning process. These tools include bash and python scripts as well as
Structured Query Language (SQL) queries. The thesis reviews existing literature
on vulnerability scan prioritization, modifies findings, if applicable, and presents
a case study on the use of vulnerability prioritization in a higher education insti-
tution.

1

2

Before developing means to simplify vulnerability scan results, four important
questions must be addressed first:

• What is the current complexity of vulnerability scan results?

• How do IHEs handle vulnerability scan results?

• How resource intensive is the remediation process that comes with the scan
results?

• What is considered a useful prioritization method?

Overall, this Bachelor’s thesis aims to contribute to the improvement of vul-
nerability management in IHEs by providing a framework for vulnerability scan
report simplification that is tailored to the resource constraints that exist within
IHEs.

1.1. Related Works 3

1.1. Related Works

No previous academic work has been found that focused on minimizing the amount
of information that comes from automated vulnerability scan reports, but the ne-
cessity for a simplification of vulnerability scan results has been noted several times
[Har+18; Alp+19]. Many systems for the prioritization of vulnerabilities exist with
the CVSS being the global standard. This standard does not perform well enough
in real world scenarios when it comes to vulnerability prioritization [Rey+22]. A
multitude of academic research has been conducted to find universally applicable
vulnerability prioritization methods. Some of which focused solely on the impor-
tance of remediation of certain vulnerabilities [Jac+23; Alm+17; Rey+22]. These
systems provide exploit probability estimations for each vulnerability that perform
better compared to the CVSS, but still lack context. Others explored prioritiza-
tion formulas that integrate further domain specific dimensions [Sha+22]. This
particular research concluded with no time savings and no time-to-remediation
improvements compared to a top down remediation process.

In general, although numerous studies have identified e�ective methods for
prioritizing significant vulnerabilities, none have e�ectively mitigated the e�ort
required to address an extensive vulnerability report.

1.2. Structure

This thesis is structured into four main chapters, each addressing a specific aspect
of vulnerability scanning in Institutions of Higher Education (IHEs).

Chapter 2 provides a short introduction to vulnerability scanning, encompass-
ing the various types of vulnerability scans and their significance in IHEs. This
section aims to establish a foundation for understanding the purpose and relevance
of vulnerability scanning within the context of IHEs.

Chapter 3 focuses on the evaluation of the complexity of the reports automat-
ically generated from vulnerability scans. By evaluating these reports, challenges
and issues that hinder the remediation process are identified. This evaluation
serves as a basis for recognizing the need for improvements in the prioritization of

1.3. Technical Terms and Tools used for Research 4

vulnerabilities and the simplification of scan reports.
Building upon the previous findings, chapter 4 focuses on developing means

to prioritize vulnerabilities and reduce the complexity of scan reports. By em-
ploying e�ective means of prioritization, the aim is to enhance the e�ciency and
e�ectiveness of the remediation process.

Finally, in chapter 5, the developed methods and techniques for prioritization
and simplification are implemented in a self-contained script. Challenges and
findings during implementation are documented in this section.

Case Study This thesis is accompanied by a case study, with the HTWG Kon-
stanz as an example. For information security reasons, no specific information
about the scanned systems is provided. Relevant key data about the scans per-
formed are:

1. the HTWG network has a /16 subnet.

2. the university is divided into 20 administrative units for the purpose of this
thesis.

3. scans were performed from outside as well as from inside the university.

1.3. Technical Terms and Tools used for Research

(Greenbone) OpenVAS

OpenVAS is a feature-rich vulnerability scanner that supports both authenticated
and unauthenticated testing. It o�ers extensive protocol coverage, performance
tuning options, and a powerful internal programming language for custom vulner-
ability tests. OpenVAS relies on a regularly updated feed to provide a wide range
of tests, ensuring accurate and up-to-date vulnerability detection [Grend].

1.3. Technical Terms and Tools used for Research 5

Nmap

”Nmap (’Network Mapper’) is a free and open source utility for network discovery
and security auditing.”[Lyond]

CVSS

The CVSS is a standardized framework used to assess and communicate the sever-
ity and impact of security vulnerabilities. It provides a score that represents the
relative severity of a vulnerability, helping organizations prioritize their remedia-
tion e�orts.

The CVSS score is based on several metrics that evaluate di�erent aspects of a
vulnerability, including its impact on confidentiality, integrity, and availability of
a system, as well as the complexity and exploitability of the vulnerability. These
metrics are divided into three groups: the Base metrics, Environmental metrics
and the Temporal metrics. ”The NVD does not currently provide ’temporal scores’
(metrics that change over time due to events external to the vulnerability) or
’environmental scores’ (scores customized to reflect the impact of the vulnerability
on your organization).”[NISnd]

SQLite

”SQLite is an embedded SQL database engine. Unlike most other SQL databases,
SQLite does not have a separate server process. SQLite reads and writes directly
to ordinary disk files. A complete SQL database with multiple tables, indices,
triggers, and views, is contained in a single disk file. The database file format is
cross-platform”[Connd].

DB Browser for SQLite

The DB Browser allows to visually interact with SQLite databases and can be
used as a GUI for the SQLite CLI.

1.3. Technical Terms and Tools used for Research 6

Exploit-DB

”The Exploit Database is a CVE compliant archive of public exploits and corre-
sponding vulnerable software, developed for use by penetration testers and vul-
nerability researchers.”[O�nd] While Exploit-DB is intended for the use of testers
and researchers, it can easily be used by threat actors as well.

1.3. Technical Terms and Tools used for Research 7

List of Acronyms

CTE Common Table Expression

CVE Common Vulnerability and Exposure

CVSS Common Vulnerability Scoring System

CWE Common Weakness Enumeration

DMZ Demilitarized Zone

DNS Domain Name Server

DoS Denial of Service

DoS Denial of Service

EOL End of Life

EPSS Exploit Prediction Scoring System

FiRST Forum of Incident Response and Security Teams

GPL General Purpose Language

HPT High Priority Threshold

IANA Internet Assigned Numbers Authority

IHE Institution of Higher Education

IP Internet Protocol

ISMS Information Security Management Systems

IT Information Technology

NVD National Vulnerability Database

OpenVAS Open Vulnerability Assessment System

QoD Quality of Detection

1.3. Technical Terms and Tools used for Research 8

RCE Remote Code Execution

RMS Root Mean Square

SHAP SHapley Additive exPlanations

SQL Structured Query Language

TCP Transmission Control Protocol

WST Wide Spread Threshold

2
Vulnerability Scanning

This chapter will explain what vulnerability scanning is and how it works. The
di�erent types of vulnerability scans that can be performed will be covered and
the importance of vulnerability scanning for IHEs explained.

2.1. Vulnerability Scanning: An Introduction

According to [Sca+08], vulnerability scanning goes beyond network port and ser-
vice identification by aiming to identify vulnerabilities instead of relying solely
on human interpretation of scanning results. In addition to identifying hosts and
their attributes, vulnerability scanners often integrate with network discovery and
port/service identification tools, reducing the workload required for comprehensive
scanning. Moreover, certain scanners are capable of conducting their own network
discovery and port/service identification. The primary objective of vulnerabil-
ity scanning is to detect various security weaknesses, including outdated software
versions, missing patches, and misconfigurations. It also plays a crucial role in
verifying compliance with an organization’s security policies or identifying devia-
tions from those policies. This is achieved by examining the operating systems and
major software applications installed on the scanned hosts and comparing them
against information on known vulnerabilities stored in the scanner’s vulnerability
databases.

9

2.2. Types of Vulnerability Scanning 10

Vulnerability scanning is an essential component of proactive cyber security
practices aimed at identifying potential weaknesses in computer systems, networks,
and applications. By conducting systematic scans, institutions can identify vulner-
abilities before they can be exploited by malicious actors. Vulnerability scanning
helps institutions assess their security posture, prioritize remediation e�orts, and
reduce the risk of cyber attacks.

2.2. Types of Vulnerability Scanning

One important aspect to consider is the distinction between active and passive
vulnerability scanning. Active scanning involves actively probing systems and
networks to identify vulnerabilities, while passive scanning relies on monitoring
network tra�c and analyzing system logs to identify intrusions and potential vul-
nerabilities [Wag22]. Both approaches have their own strengths and limitations,
and institutions may choose to employ a combination of active and passive scan-
ning techniques based on their specific requirements. In this thesis solely active
scanning will be covered.

It is worth noting that vulnerability scanning should be performed regularly
and consistently, as new vulnerabilities emerge on a regular basis due to software
updates, changes in configurations, or the discovery of previously unknown vul-
nerabilities.

There are various vulnerability scanning tools and techniques available to orga-
nizations for conducting e�ective vulnerability assessments. Vulnerability scanners
usually come in two financial variants:

Commercial Vulnerability Scanners Commercial vulnerability scanning tools,
such as Nessus, Qualys and Rapid7 Nexpose[OWA20], are widely used in the
industry. These tools o�er comprehensive scanning capabilities, extensive
vulnerability databases, and advanced reporting features. They can scan
networks, systems, and applications for known vulnerabilities, misconfigu-
rations, and compliance issues. Commercial scanners often provide regular
updates to their vulnerability databases to keep pace with emerging threats.

Open Source Vulnerability Scanners Open source vulnerability scanning tools,

2.2. Types of Vulnerability Scanning 11

such as OpenVAS, Nikto, and OWASP ZAP[OWA20], are freely available and
o�er similar functionality to commercial tools. Some companies (e.g. Green-
bone) o�er free and commercial solutions in which case the free solution
receives intentional drawbacks, i.e. smaller Internet Protocol (IP) batches
or less frequent database updates. Other open source scanners often have
active developer communities, allowing for community-driven updates and
improvements.

Within those variants four di�erent of vulnerability scanning exist which can
either be utilized each one on their own, or combined as described in the previous
section (2.1). These methods are:

Network Scanners Network scanners focus on identifying vulnerabilities in net-
work devices, such as routers, switches, and firewalls.[Lin04]

Host-based Scanners Host-based scanners focus on vulnerabilities present within
individual hosts, such as servers and workstations. These tools assess the
operating system, installed software, and configuration settings for known
vulnerabilities and weaknesses.[Lin04]

Web Application Scanners Web application scanners specifically target vul-
nerabilities in web applications. These tools simulate attacks and assess
the security posture of web applications by examining the code, inputs, and
responses.[MK15]

Manual Techniques In addition to automated scanning tools, manual tech-
niques are often employed to supplement vulnerability scanning e�orts. Man-
ual techniques involve in-depth analysis, verification, and penetration testing
conducted by skilled security professionals. This approach is usually very
time consuming and expensive.

These tools should be aligned with the institution’s specific needs and resources.
Factors such as the size and complexity of the IT infrastructure, available budget,
and level of expertise within the institution influence the selection of suitable
scanning tools and the allocation of time and resources for scanning activities.

In the case of this thesis the open source vulnerability scanner OpenVAS which
is maintained by Greenbone has been chosen, because it combines network, host-
based and web application scanning with little manual input needed in one tool.

2.3. Importance to Institutions of Higher Education 12

2.3. Importance to Institutions of Higher Education

In Microsoft’s report, ”Microsoft Security Intelligence”, 7,854,166 devices out of
9,794,732, or approximately 80% of all reported malware a�ected devices, were
reported from the educational sector [Micnd]. In the years 2021 and 2022 alone,
KonBriefing recorded hundreds of successful cyberattacks against international
higher education institutions [Konnd]. There are several reasons why the educa-
tional sector, especially IHEs, has become the target of cyberattacks on a continual
basis. IHEs accumulate lots of sensible personal information including, but not
limited to, names, addresses, phone numbers, birth dates, driver’s licenses, finan-
cial and medical data [Krs23]. This data is highly valuable in the 21st century and
is sometimes referred to as ”the new ’oil’”[Sch+11]. Secondly, many IHEs conduct
cutting-edge research that can be very expensive and labor intensive [Har+18].
The data connected to this research can be of inestimable value. Many IHEs work
with research partners in both the public and private sectors. They cannot a�ord
to have the intellectual property they are charged with collecting and protect-
ing breached or attacked [Krs23]. With these valuable resources concentrated in
one sector, it is of the utter most importance to detect possible attack vectors
before an adversary does. While extensive Information Security Management Sys-
tems (ISMS) protocols and IT-Grundschutz policies can provide a good foundation
for the IT security of an IHEs, only active evaluation of the institution’s systems
can provide an overview of the actual security and can be used as a starting point
for its hardening.

A significant factor that contributes to the importance of vulnerability scanning
in IHEs is their minimalist approach to access restrictions. With minimal e�ort,
it is relatively easy to gain local access to an IHE’s network, thereby providing the
opportunity to exploit a multitude of vulnerabilities that would otherwise remain
inaccessible. Additionally, the number of attack vectors through physical means
[Kro13] significantly increases in comparison to private enterprises or institutions,
where access to local facilities is typically subject to certain restrictions.

Since IHEs do not have the budget to consult external IT security providers
or to perform manual penetration testing on their systems, automated vulnera-
bility scans are the only way to make sense of the security situation within the
institutions.

3
Complexity of Remediation

In this chapter the challenges that institutions of higher education face when it
comes to remediating vulnerabilities will be discussed. Explanation on how the
complexity of the vulnerability scans can be a barrier to e�ective vulnerability
management and how prioritization can help to minimize the complexity of reme-
diation will be given.

The extensiveness of vulnerability scans in the context of IHEs are explored by
inferring insights from a larger-scale study and applying these findings to a specific
institution. These findings are then waged against the actual report length for a
specific IHE. The chapter aims to predict the extent of vulnerability scan report
evaluation and to discover potential optimization headroom of remediation e�orts
accordingly.

3.1. Estimating Vulnerability Scan Report Length

Research found that out of 272 IHEs with a total of 122,360 exposed unique de-
vices 48,218 devices had at least one vulnerability, out of which 31,567 devices had
informational vulnerabilities and 16,851 had vulnerabilities with CVSS scores as-
signed to them, that would make 450 exposed unique devices and 177 devices with
at least one vulnerability per IHE. Furthermore a total of 307,332 vulnerabilities

13

3.2. Actual Vulnerability Scan Report Length 14

were found on the 48,218 devices, 46,927 had CVSS scores assigned, ”Specifically,
4,143 were ’Critical,’ 12,452 were ’High,’ 26,519 were ’Medium,’ 3,813 were ’Low,’
and 260,405 were ’Informational’”[Har+18]. From these findings we could assume
that, with full network access, the number of vulnerable devices would grow sig-
nificantly, thus the vulnerability count would rise too. Since the 122,360 exposed
unique devices only made up 4.21% of potential devices and scanning the /16 sub-
net from outside of the HTWG network results in 47,758 alive hosts and 5,004
Domain Name Server (DNS) resolved hosts out of 65,534 potential devices evalu-
ating to 13.1% device exposure.1 The expected number of vulnerable devices in
said IHE increases to 550 ((48, 218/272) · (13.1/4.21)) and the amount of CVSS
vulnerabilities proportional to that to 535 ((46, 927/48, 218) · 550) and that of in-
formational vulnerabilities to 2,970 ((260, 405/48, 218) · 550) making up a total of
3,505 vulnerabilities to report.
Each report of an informational vulnerability takes up half a DIN A4 page, while
reports of a CVSS scored vulnerability can vary greatly in size and extent, but
usually span over one DIN A4 page. This would lead to an overall estimated report
length of about 2020 pages.

3.2. Actual Vulnerability Scan Report Length

When running an OpenVAS Full and Fast scan from inside the HTWG network,
as described in section 5.1, which includes up to 65,534 potential hosts, a total of
1,004 hosts were discovered in the institution. 23,688 total results were collected
which were automatically filtered based on a Quality of Detection (QoD) value of
70%. 16.649 of the results were informational (logs) and 2,461 had a CVSS score
assigned to them. The exported reports for the 1,004 hosts consists of just over
5,837 pages. When filtering out informational vulnerabilities the total size of the
reports shrank to 4,028 pages. Each vulnerability has 2.39 reference URLs and
1.52 Common Vulnerabilities and Exposures (CVEs) assigned to them on average.

Considering an average reading time of 15 minutes per vulnerability, which
encompasses comprehending the vulnerability description, examining references,

1These are the numbers reported by a network scan with Nmap from outside the institution.
Many hosts have later been determined o�ine, this was caused by firewall protection mechanisms
to slow down adversaries.

3.3. Comparison and Handling of Scan Results 15

and assessing the urgency of remediation, the evaluation of the report for the
entire institution would demand 615.25 hours. In other terms, this equates to
approximately 77 full workdays, assuming an eight-hour workday. It is important
to note that this estimation solely pertains to the evaluation phase and does not
account for any remediation e�orts.

When performing authenticated vulnerability scans, the number of results
would increase by a factor of approximately 10 [Hol+11] which would cause the
generated report to exceed 40,000 pages.

3.3. Comparison and Handling of Scan Results

The large di�erence between the estimated number of vulnerabilities, 3,505, and
actual number of vulnerabilities discovered, 23,688, was expected and is explained
in the following as well as the response of IHEs to the length of the reports.

Comparison The procedure utilized by Harrel et al. in [Har+18] relied on ex-
ternal vulnerability scans. Since each IHE is, or should be, protected from the
internet by firewalls, many requests to their underlying hosts would be blocked.
Firewall evasion is possible, but it requires individual scan configurations for each
institution and maybe even host. Evasion techniques that can be applied to a
multitude of firewalls, such as package fragmentation, slow down the scan pro-
cess significantly. The research performed scans on 272 IHEs which renders both
approaches almost impossible. Thereby only those hosts and especially specific
ports that were allowed through the firewall were probably scanned in the scope
of the research. Additionally some firewalls report scanned hosts which are o�ine
as online to impede network scans. Losing out on hosts would have been compen-
sated by the calculations performed in section 3.1, but a reduction in scannable
ports was and could not realistically been taken into account since the number of
open ports varies greatly between hosts and the firewall configurations regarding
allowed ports can vary as well.

The actual length of the report was not calculated but observed from vulner-
ability scans performed from within the IHE’s Demilitarized Zones (DMZs) and
thereby circumvented part of the firewall filtering. This allowed for a larger cov-

3.3. Comparison and Handling of Scan Results 16

erage in hosts and ports as well as less ”noise” of wrongly reported hosts.
The estimation provides a general overview of an institutions potential attack

surface which could be discovered by adversaries performing large scale attacks,
while the actual confirmed report is important to vulnerability management and
provides an overview of what targeted attacks would find out about an institution.

Handling of Scan Results As deducted in section 3.2 the evaluation alone of
an automatically generated vulnerability report amounts to about 77 days. With
an average of 21 workdays per month the evaluation would require 4 full time
employees to work on only this report every month, as it is recommended to per-
form an automated vulnerability scan once every month [Wal23]. This workload is
simply not manageable by IHEs, i.e. Baden-Württemberg provides 58 IT security
positions to a total of 32 IHEs averaging to just under 2 positions per IHE [Bad20].
The provided workforce is only half of what would be required for continuous in-
formation security management, when expecting the employees to only work on
the evaluation of scan reports eight hours every day. Vulnerability scans are being
performed, but their resulting report omitted.

The IT security means provided to IHEs are not su�cient for thorough infor-
mation security management. Since these means are unlikely to change, reduction
of the workload is required.

4
Simplification & Prioritization

This chapter will cover the concept of vulnerability prioritization and the di�erent
approaches that can be used to simplify scan results. It will also discuss the
criteria that can be used to prioritize vulnerabilities, such as the severity of the
vulnerability, the likelihood of the vulnerability being exploited and the potential
impact of a successful attack.

4.1. Defining Usefulness of Prioritization Methods

Useful prioritization methods are those that e�ectively reduce the time needed for
remediation of likely to be exploited vulnerabilities. This can be achieved by dis-
covering services spread across the network that might require external expertise,
services and hosts for which updates are disabled, IP address ranges or domains
which pile up relatively large amounts of vulnerabilities and actions that can be
taken by the IT administration in order to mitigate wide spread issues. The goal is
not to develop an in-depth vulnerability exploit prediction system, which has been
done several times before [Jac+23], but a tool that maximizes the cost-benefit re-
lation by minimizing the administrative overhead that comes from overly extensive
vulnerability reports and thereby concede valuable time to the actual remediation
procedures. Prioritization methods that could fulfill the aforementioned criteria,

17

4.1. Defining Usefulness of Prioritization Methods 18

but the cost or time for implementation of which would be beyond the resources
available to this thesis, will not be considered useful. Methods that lie within this
exclusion are for example machine learning approaches or manual report analysis.

To consolidate the usefulness for prioritization methods, a quantitative proof
is required. The straight forward approach of using a simple CVSS score per hour,
as scvss

thours
is not su�cient for an important reason. The CVSS score scala is not

linear. This means ten vulnerabilities with a CVSS score of 1.0 are not as severe
as one vulnerability with a CVSS score of 10.0. With the CVSS score per hour
approach, and when assuming the former take 1.0 hours each and the latter takes
10.0 hours, prioritizing either the less severe vulnerabilities or the severe one would
result in the same CVSS score per hour of 1.0 even though remediating the severe
vulnerability would lead to a much greater security improvement. This changes
once the Root Mean Square (RMS) of the CVSS scores is calculated, which will
set higher CVSS scores apart from lower ones.

Considering the aforementioned factors, the equation 4.1 has been formulated
to calculate the e�ciency E in CVSS per hour. The equation incorporates param-
eters such as V , which represents the set of vulnerabilities with a specific CVSS
score s and associated time cost t.

E =

Û
Vq
s,t

s2

t

|R|
(4.1)

Additionally, the parameter R represents the set of vulnerabilities selected for
remediation. In the original report, R is equivalent to V , resulting in |R| = |V |

when applying the formula. However, when modifications are made to the initial
report, such as simplification, it is necessary to consider that R ™ P(V) applies,
since each remediation task addresses a set of vulnerabilities. In such cases, it is
desirable for |R| π |V | to hold.

Another significant metric to consider is the post-remediation count of high,
medium, and low severity vulnerabilities. The evaluation of the e�ectiveness of
the remediation e�ort is represented by an e�ectiveness score denoted as S, which
ranges between 0 and 1. A score of 1 signifies the highest level of e�ectiveness,
while a score of 0 indicates the lowest. It is crucial to prioritize the remediation
of high severity vulnerabilities over medium and low severity vulnerabilities. For-
mula 4.2 provides a calculation for the e�ectiveness score while incorporating this

4.2. Result Prioritization 19

prioritization criterion. The formula requires input values for the count of high
severity vulnerabilities (H), medium severity vulnerabilities (M), and low severity
vulnerabilities (L) both before and after the simplification process.

S = 6
Hb
Ha

· 3 + Mb
Ma

· 2 + Lb
La

(4.2)

Before simplification the e�ectiveness score should always be 1, afterwards a
score close to 1 is desirable.

4.2. Result Prioritization

As deducted in section 3 the time needed for result evaluation is way too high
for the IT security department of an IHE. Since the evaluation of severity that is
provided by the vulnerability scanner in use, which uses the CVSS scoring, does
not provide su�cient information for vulnerability management [Spr+21], means
of improving the prioritization of vulnerabilities required. Fortunately research
has already been conducted in this field. The approach used in this thesis borrows
some of those research’s findings and combines them not to replace, but to improve
the existing CVSS scores to emphasize existing vulnerabilities with high potential
impact on the IHE.

Every vulnerability scanner ranks the discovered vulnerabilities by a predefined
scoring system of some sort. Most of them, such as OpenVAS, rely on the CVSS
rating. These scoring systems provide a general overview for every individual
vulnerability. Most of them calculate the score based on multiple factors, e.g. the
proximity needed to make use of the vulnerability, the authentication status needed
by the attacker, to which extent integrity, confidentiality and availability could be
compromised, etc. When the resources to remediate every single vulnerability
exist, these scores provide a great sense of where to start with remediation. But
this is not the case for IHEs, which consist of thousands of potential targets with
very little resources for remediation. In this case the scoring systems do not take
enough domain specific vectors into account. Therefore new vectors have to be
introduced and their e�ciency will later evaluated.

1. Priority Score - a value derived from the CVSS base score, estimating a

4.2. Result Prioritization 20

vulnerability’s remediation priority.

2. Complexity - a value that estimates the complexity of remediation for each
vulnerability.

Combinations of these vectors and information gathered by the vulnerability scan-
ner are then used to generate a comprehensive prioritization overview for the sys-
tem administrators.

Some vectors frequently discussed in vulnerability remediation e�orts were ex-
cluded, e.g. available work hours and time since the vulnerability became known.
A mathematical model including both of those vectors only lead to a slight theoret-
ical improvement of the time to remediation [Sha+22] which did not yield enough
improvement when it came to real world application. The Priority Score approach
does not aim to mimic the Exploit Prediction Scoring System (EPSS) while still
incorporating some of its research published by the Forum of Incident Response
and Security Teams (FiRST).

The following sections will explore how these vectors can be automatically
generated from the vulnerability scan results.

4.2.1. Priority Score

A value representing the Probability of Exploitation, the QoD and the CVSS rating
are used to calculate a Priority Score for each vulnerability and host. This score
is made up of the CVSS base score which is modified by two vectors.

1. QoD - a vector generated from a percentage value provided by the vul-
nerability scanner. It indicates the probability of the vulnerability actually
existing.

2. Exploit Probability Indicator - a value that represents how likely it is to
for a vulnerability to be exploited.

Quality of Detection (QoD)
The QoD value is one that already comes with the OpenVAS vulnerability re-
port, but is not used to enhance its vulnerability score. ”The quality of detection
(QoD) is a value between 0 % and 100 % describing the reliability of the exe-
cuted vulnerability detection or product detection.”[Gre22a] By default the QoD

4.2. Result Prioritization 21

is set to 70% in OpenVAS. A vulnerability rated with this QoD percentage is
defined as ”remote analysis - Remote checks that do some analysis but which are
not always fully reliable”[Gre22a]. This ensures as little false positives as possible,
while still reporting every service that is potentially prone to exploits. A QoD
of 100% is present when a vulnerability has been verified by executing an active
exploit. The higher the QoD value has been determined, the higher the probability
of the vulnerability actually existing, hence that value is turned into a fraction:
QoDnew = QoDold

100 .

Exploit Probability Indicators
Another important vector taken into consideration is the simplicity and therefore
likelihood of each vulnerability to be exploited. This takes two factors into account.

Keywords/Tags In order to focus on the most crucial types of vulnerabilities,
those that can cause the most harm to the IHE, additional filtering, or in our case
modification of the Priority Score, had to be performed. To make out these most
crucial vulnerabilities, some of the ”30 most significant features” [Jac+23] found by
FiRST in their report of the third revision of the EPSS, a machine learning based
exploit prediction model, where repurposed. The values provided in the report
are SHapley Additive exPlanations (SHAP) values1 derived from their machine
learning model on exploit prediction (see [Jac+23, Fig. 7]).

The SHAP values themselves provide no substantial potential for improving the
Priority Score. Instead the ”Tag” texts are used to query the vulnerability descrip-
tions and tags, provided by the OpenVAS report, for their existence. Additionally,
8 additional tags that imply the existence of potentially dangerous vulnerabilities
were decided on, which together made up the following list:

• Remote

• Code Execution

• SQLi

• Local

• XSS

• Denial of Service

• Bu�er Overflow

• End Of Life

• File Write

• File Deletion

1SHAP values are a method used in machine learning to explain the contribution of individual
features in predicting model outcomes. They provide a way to quantify the importance of each
feature in a unified manner.

4.2. Result Prioritization 22

• File Modification

• Dangerous Methods

• Dangerous HTTP Methods

• Default Credentials

• Privilege Escalation

The tags inherited from [Jac+23] (highlighted in blue) are used to increase the
Priority Score by 10 points, since they are proven to be the most influential tags
when it comes to exploitation probability, while the additional tags increase it by
5 points. Combinations of the tags can occur, e.g. a vulnerability description with
Remote Code Execution would thereby receive 20 additional priority points.

Exploit-DB There are many vulnerability databases in existence such as the
National Vulnerability Database (NVD), MITRE’s Common Weakness Enumer-
ation (CWE) and Exploit-DB, just to name a few important ones. The NVD
and CWE are both extensive collections of known vulnerabilities that comprise of
their details such as the impact a successful exploit of a vulnerability can have
on the host. What they do not provide are concrete examples or executable ex-
ploits [MGS15]. In addition, only about 1-3% of vulnerabilities included in these
databases are being exploited in the wild [Alm+17]. This means that a higher
or lower probability of exploitation for any of the vulnerabilities listed in those
databases cannot be inferred. This is where Exploit-DB deviates from most other
vulnerability databases. Along with information from and references to other
databases, such as CWE, Exploit-DB also provides exploits for vulnerabilities for
which they exist. This includes Proof of Concepts, shellcodes and ready to use ex-
ploit code, most of which can easily be leveraged even by inexperienced adversaries
through means like metasploit. Even though some of the exploits require more ef-
fort to be of use, the risk that comes from a vulnerability that could theoretically
be exploited by anyone who wants to, has to be addressed immediately. Vulner-
abilities for which at least one entry in the Exploit-DB exists are consequently
immediately flagged and put to the top of the prioritized report.

4.2.2. Complexity

Determining the actual time cost of remediation in vulnerability management for
each and every vulnerability is not possible with reasonable expenditure, since the

4.2. Result Prioritization 23

remediation procedure of each vulnerability depends on the context in which it
occurs.

With that said, OpenVAS reports include some useful information for that
matter. To be specific, the ”Solution Type” suggested in those reports can at least
give a hint on the amount of work needed for remediation. Five solution types
exist in OpenVAS:

• Vendor Patch - The vendor released a patch for the vulnerability, usually
through an update. The complexity of remediation for this solution type is
expected to be very low.

• Mitigation - The vulnerability can be remediated by correcting a configura-
tion issue. The complexity of remediation for this solution type is expected
to be relatively low.

• Workaround - A workaround, that goes beyond configuration, exists. The
complexity of remediation for this solution type is expected to be mediocre.

• No solution exists - The vendor or a third party has not yet released a
solution for the vulnerability, but it is expected that there will be a solution
in the future since the service is still receiving updates. The complexity of
remediation for this solution type is expected to be high.

• No fix will be available - No solution to the vulnerability exists and it is
unlikely that there ever will be a fix. This is usually the case if there have
not been any updates for the service for a longer period of time or the service
has been announced to be discontinued. The complexity of remediation for
this solution type is expected to be very high.

To translate these categories into a complexity vector a static value is mapped to
each solution type respectively: Vendor Patch æ 1.0; Mitigation æ 2.0; Workaround
æ 4.0; No solution exists æ 9.0; No fix will be available æ 10.0.

To substantiate these values the required knowledge, impact on other systems
and research time that comes with each remediation technique has to be put into
perspective.

Vendor Patch - Updates and security patches can typically be implemented or
installed with ease. They generally do not necessitate in-depth knowledge

4.2. Result Prioritization 24

about the service or the underlying system. Moreover, they should not have
any adverse impact on other systems. Hence, a complexity of 1.0 is assigned.

Mitigation - With limited knowledge about the service and clear instructions on
where to make modifications, configuring changes does not require substan-
tial e�ort. Therefore, a complexity of 2.0 is assigned.

Workaround - Workarounds can encompass actions such as disabling specific
ports and assessing the potential impact on a�ected services, as well as in-
stalling or deactivating certain services. This necessitates understanding of
the system and the services operating on it. The initial complexity is set at
4.0, which may be adjusted subsequently after manual review of the results.

No solution exists - In situations where no viable solution is available, solu-
tions like deactivating the service or adequately isolating it are proposed as
workarounds. However, this can lead to compatibility challenges, as other
services or hosts may rely on the a�ected service. Determining the optimal
course of action in such cases requires advanced knowledge of the system and
a significant amount of time. Therefore, a complexity of 9.0 is assigned.

No fix will be available - When a solution to the vulnerability does not cur-
rently exist and will not be available in the future, the ideal approach is to
replace the a�ected service with an alternative that fulfills the same func-
tional requirements. This undertaking demands comprehensive understand-
ing of the system, the service, and the dependencies associated with it. Fur-
thermore, considerable time is expected to be devoted to researching suitable
replacement options and executing the migration process. Therefore, a com-
plexity of 10.0 is assigned.

In the following the complexity value is translated 1 to 1 to work hours. The
actual time in hours may vary, therefore the assumption is proposed, that, to
achieve the actual time, all time values may be scaled by a constant value and
thereby any discovery made regarding the time e�ciency will keep its validity,
since both before and after use the same complexity values.

4.3. Simplification of Results 25

4.3. Simplification of Results

With priority scores determined for each vulnerability, the order in which existing
vulnerabilities should be prioritized is set, but the amount of time it takes to
evaluate the report and to address the vulnerabilities remains the same. This is
where the simplification approach becomes important. This approach is discussed
in this section.

Before data analysis could be performed on the vulnerability scan report, the
data was first imported from XML into a SQLite database. Not all fields from the
initial XML report, from which a sample result can be seen in A.1, were chosen
for the import, since a. some fields are redundant, b. many fields appear in too
few results and c. even though the information in a field may be relevant, its
content di�ers greatly across results. The fields chosen for the import are: name
[line 2], service (extracted from the name)[line 2], host (as ip)[line 25], hostname
[line 27], port [line 29], solution type [line 43], solution text [line 43], severity [line
51], installed version [line 53] and fixed version [line 54].

4.3.1. Vulnerability Scanning

As noted in section 3.2 the scans performed on the institutions networks yielded
an expansive amount of information and notably more results than previously esti-
mated. When further breaking down the scan reports into their severity categories
high, medium and low, as shown in table 4.1, it becomes clear that some address
ranges accumulate many more, especially high severity, vulnerabilities than others.

The reports themselves group vulnerabilities by IP addresses only. Vulnerabil-
ities in the same service on the same host are not grouped together and no hint
is given that would suggest that multiple vulnerabilities can be traced back to
the same origin. The same applies to vulnerabilities that are caused by network
misconfigurations, those are reported for every host a�ected, even though the vul-
nerabilities may originate from a router, firewall or another networking device or
service.

In addition the reports are not text search friendly, e.g. the keyword ”firewall”
is only searchable as ”rewall”. This makes discovering common vulnerabilities

4.3. Simplification of Results 26

(Scan Nr.) Potential devices low medium high

(1.) 4088 144 207 32

(2.) 3818 171 190 3

(3.) 3320 106 235 122

(4.) 3320 311 440 136

(5.) 4070 218 115 31

Table 4.1: Vulnerability Scan Result Severities, Grouped by Scan

within each host or across multiple hosts tedious and non feasible.

4.3.2. Data Categorization

In order to allow aggregation of the data provided by a vulnerability scan report
it is important to categorize the fields of the results within those reports. To
identify fields that are worth categorizing, a closer look into the report’s content
and structure is vital. The following categories materialized from di�erent grouping
and filtering of the results inside the database.

Updates
When inspecting some hosts in the PDF format report, one main observation was
made. There were multiple vulnerabilities caused by the same service which are
fixed in di�erent versions. This is of course not unexpected, a quick lookup for
MySQL version 6 in searchsploit resulted in five vulnerabilities, SMB3.1.1 in two
vulnerabilities, PHP 7.0 in nine vulnerabilities and Samba 2.2.8 in six vulnerabil-
ities. Versions of services for which at least one known vulnerability is known get
tested more thorough than others and thereby more vulnerabilities for them are
detected.

In order to identify these updates the SQL query, listing 1, was constructed.
The resulting updates are listed with the oldest detected version of the running
service as well as the version which should remediate all detected vulnerabilities
of that service. Filtering by solution texts which start with ”update” and solution

4.3. Simplification of Results 27

1 SELECT ip, service, port, MIN(installed_version), MAX(fixed_version), COUNT(*)
2 FROM results
3 WHERE solution_text LIKE "update %"
4 AND solution_type = "VendorFix"
5 GROUP BY ip, service, port

Listing 1: SQL Query: Discovering Updates

IP (anonymized) Service Port Oldest Version Fixed Version Count

127.0.0.6 Oracle 3306/tcp 5.7.17 5.7.41 43

127.0.0.46 Oracle 3306/tcp 5.6.34 5.7.41 29

127.0.0.86 Apache 80/tcp 2.4.17 2.4.56 25

127.0.0.34 ownCloud 443/tcp 8.1.9 10.8 8

127.0.0.57 Atlassian 8090/tcp 5.2.3 6.5.2 4

Table 4.2: Excerpt of Identified Updates

types which are reported as ”VendorFix” makes sure only updates are included
in the results. Counting the number of rows for each result of the query showed
that indeed many vulnerabilities on the same hosts can be remediated by single
updates as can be seen in table4.2, with the associated, anonymized IPs 2.

Updates discovered by this technique will be included in the final report as
”Mandatory Updates”.

Minor Updates Table 4.2 shows only a small portion of identified updates, but
one fact allowed separating them further: the di�erence between the oldest and the
fixed version. While some updates require a major version change, i.e. versions
that might introduce incompatible API changes, others require a minor version
change, i.e. versions that add backward compatible functionality [Prend].

Updates that lie within the minor version changes were identified by adding

HAVING substr(installed_version, 0, instr(installed_version, ".")) =

2The IPs are randomized and not hashed as even low end CPUs take merely 4 seconds to hash
4 · 109 IP addresses[Lat22]. This would allow computation of the real addresses.

4.3. Simplification of Results 28

IP (anonymized) Service Port Severity Count

127.0.0.4 PHP 80/tcp 10.0 44

127.0.0.67 OpenSSL 80/tcp 10.0 16

127.0.0.77 SMB 445/tcp 10.0 1

127.0.0.98 phpBB 80/tcp 9.9 1

127.0.0.13 Lighttpd 80/tcp 9.8 1

Table 4.3: Excerpt of High Severity Vulnerabilities

substr(fixed_version, 0, instr(fixed_version, "."))

to the end of the query. Which checks for equality of the major version between
the installed and fixed versions.

These updates will be included in the final report as ”Minor Updates”.

High Severity
Another important category of vulnerabilities is that of high severity vulnerabili-
ties. These vulnerabilities are of high concern to the IHE as they pose an imminent
risk to its network’s and services’ confidentiality, integrity and availability.

1 SELECT ip, vulnerable_service, port, severity, COUNT(*) as cnt
2 FROM results
3 WHERE severity >= 7.0
4 GROUP BY ip, vulnerable_service, port

Listing 2: SQL Query: High Severity Vulnerabilities

Vulnerabilities which lie within the high severity range can be determined with
the query in listing 2. While the results of the query show some services for which
multiple high severity vulnerabilities were found, most of them were detected with
a single high severity vulnerability. Therefore almost no reduction in terms of
remediation time can be made here, but they are important nevertheless and will
be included in the final report as ”High Severity Vulnerabilities”.

4.3. Simplification of Results 29

It is important to not that the query presented here does not take advantage
of the previously discussed priority score, this score was used later in chapter 5.2.2
as the score is just determined before that.

Frequently Occurring
One prominent initial observation in the report was the appearance of a couple of
vulnerabilities on multiple hosts. This was also discovered by [CDN20]. The query
3 was constructed to confirm the observation on a larger scale.

1 SELECT name, solution_text, COUNT(*) as cnt, MAX(severity)
2 FROM results
3 GROUP BY name
4 ORDER BY cnt DESC

Listing 3: SQL Query: Frequently Occurring Vulnerabilities

Executing the query on the given data confirms the initial observation, as ta-
ble 4.4 shows. While the CVSS score of the vulnerabilities ranks most of the
widely spread vulnerabilities as low to medium severity, ”chaining” of such vul-
nerabilities can be leveraged increase their impact way beyond their initial CVSS
rating [CIS21]. Inspecting the solution texts of these vulnerabilities reveals that
many of them can be remediated by changes to the firewall or by disabling specific
algorithms.

Adding

WHERE solution_text LIKE "%firewall%" OR solution_text LIKE "disable%"

to the query reveals such cases. The following solution text provides an example
for this:

Various mitigations are possible:
- Disable the support for ICMP timestamp on the remote host completely
- Protect the remote host by a firewall, and block ICMP packets passing
through the firewall in either direction (either completely or only for
untrusted networks)

Since larger institutions usually utilize enterprise grade firewalls which allow to
block specific packages, in this case Internet Control Message Protocol (ICMP)

4.4. Expectancy Towards the Report 30

Vulnerability Name Count Max Severity

ICMP Timestamp Reply Information Disclosure 545 2.1

DCE/RPC and MSRPC Services Enumeration Reporting 335 5.0

TCP timestamps 290 2.6

SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection 261 4.3

ICMP Netmask Reply Information Disclosure 85 2.1

Table 4.4: Excerpt of Frequently Occurring Vulnerabilities

packages. This means the fix to those 545 vulnerabilities could be distributed
with a single configuration change.

The IHE in question split the network in multiple DMZs, which would require
additional grouping of the data by DMZ, subnet or, as elaborated in sections 5.2.1
and 5.2.2, faculty.

4.4. Expectancy Towards the Report

The goal of the simplified report is to provide an overview of vulnerabilities and
their remediation techniques, that is not overwhelming to the responsible person.
It has to include vulnerabilities that can be remediated by simply installing an up-
date, vulnerabilities that have a high priority, vulnerabilities that occur relatively
often and those that need attention but which remediation is expected to be very
complex. The vulnerabilities listed within the prioritized report have to cover the
majority of vulnerabilities from the original report while minimizing the cost of re-
mediation. The report should be divided by area of responsibility, e.g. by faculties,
system administration, etc. The report has to make clear in which order the vul-
nerabilities should be remediated, provide details on the vulnerabilities, such as its’
possible e�ect on the system, which IP addresses are a�ected and how to remediate
the vulnerability, and highlight vulnerabilities that need immediate attention due
to either the type of vulnerability (e.g. Remote Code Execution (RCE), Default

4.4. Expectancy Towards the Report 31

Credentials, etc.) or the existence of automated exploits for that vulnerability.
Leading the report has to be a list of ”Minor Updates” which should include all

vulnerabilities which are flagged by the vulnerability scanner as ”Vendor Patch”
and which only require a minor version change as explained in section 4.3.2. Re-
mediations listed in this section can be delegated to personnel with little to no
knowledge about the host.

The list of ”Major Updates” should include all vulnerabilities that are flagged
by the vulnerability scanner as ”Vendor Patch” or include a version to update to,
if multiple vulnerabilities exist for the same service on the same host, the version
that fixes all vulnerabilities for such service has to be provided to reduce the time
it takes to find the right version to update to.

Following the ”Major Updates” section, the ”High Priority” section has to in-
clude all vulnerabilities that have a Priority Score (see section 4.2.1) of at least
7.0 for which no updates exist. This has to include all confirmed high, CVSS score
of 7.0 ≠ 8.9 and a QoD of ≥ 100%, and all critical vulnerabilities, CVSS score
of 9.0 ≠ 10.0 and a QoD of 70 ≠ 100%. Additionally it should include easily ex-
ploitable vulnerabilities. (see section 4.2.1) Vulnerabilities with a high complexity
(see section 4.2.2) should not be included in this section.

The fourth section of ”Frequently Occurring Vulnerabilities” should cover all
vulnerabilities that exceed a threshold of hosts and services a�ected within each
area of responsibility. It can be expected, that even though the first remediation
of such vulnerabilities may take considerable amount of time, the following reme-
diations of the other hosts or services will be much lower, or the remediation could
be a one fix for all scenario where the remediation can be performed for the entire
system or network at once.

Finally the section of ”High E�ort Remediations” should include those vulner-
abilities that are expected to require a lot of resources for remediation.

Vulnerabilities covered in a previous section should not be listed in the following
sections, since the report is expected to be worked through from top to bottom,
which should provide optimal cost-benefit e�ciency and a fast way to remediate
the most critical issues.

In addition to all categorized vulnerabilities, which should have an increased
e�ciency (see section 4.1) compared to the initial report, those vulnerabilities that
do not fit into either category should be included at the end of each report to avoid
providing a false sense of security.

4.4. Expectancy Towards the Report 32

A search or filter functionality can be added to simplify the remediation process
further.

5
Methodology

The purpose of this chapter is to present the methodology employed in this thesis to
address the research objective of vulnerability prioritization and mitigation within
the context of an institution of higher education.

The full procedure that leads from a list of subnets to the final simplified
report is shown in figure 5.1. This chapter outlines the step-by-step approach
followed to e�ectively scan and analyze vulnerabilities using the OpenVAS scanner,
and subsequently evaluate the results through data analysis and simplification
techniques.

5.1. Prerequisites

The entire script is tested under kali linux since the OpenVAS scans were run there
as well.

In order to perform any steps of the result prioritization, the IHE provided
information about and access to its networks. All result prioritization is performed
on scan results exported from OpenVAS version v22.6.1.1

First of all, the IHE specified the vulnerability scan target. This could have
been provided in the form of a list of IP addresses or subnets and a list of ports

1https://github.com/greenbone/openvas-scanner/releases/tag/v22.6.1

33

5.1. Prerequisites 34

Figure 5.1: Simplification Pipeline

5.1. Prerequisites 35

to scan. A list of subnets was the starting point in this case. Since no list of ports
was provided and a thorough scan was requested, the top 5000 Internet Assigned
Numbers Authority (IANA) assigned Transmission Control Protocol (TCP) ports
available in OpenVAS were used.

Furthermore, during the entire process, a files that map Subnets to Faculties
(see A.2) and Faculties to Contact E-mails (see A.4) were utilized throughout
di�erent parts of the process.

Subnet Partitioning and Scan Configuration Since ”[the] maximum con-
figurable number of IP addresses is 4096”[Gre22b] in OpenVAS, networks with a
subnet-mask larger than /20 have to be split up into sets of /20 networks. For the
HTWG with a class B network (/16 subnet mask), this would mean that 16 scans
have to be performed. Fortunately only a fraction of all available IP addresses are
actually in use, 18,944 IPs in 36 subnets ranging from /24 to /22 to be specific.
This means the entire IHE network can be scanned in 5 separate vulnerability
scans. To assure maximum realistic coverage all scans were performed from within
the IHE’s DMZs.

In order to simplify the subnet splitting process a bash script was developed
that automates the process of determining the IP address count on the provided
list of subnets and splits them up accordingly. (see B.1) The script takes a file with
a list of subnets in the CIDR notation format as its only argument, determines
the number of hosts for each subnet, splits them up into chunks of a maximum of
4096 hosts and writes them to multiple files accordingly. Note that ipcalc has to
be installed on the system for the script to work as expected.

The ”Full and Fast” OpenVAS scan configuration was chosen in order to cover
the maximum amount of potential vulnerabilities in a reasonable time-frame. All
scans were performed unauthenticated as it provides a real-world portrayal of
existing vulnerabilities from an adversary perspective [Hol+11]. There are several
categories within the scan configuration, most of them were left unchanged. The
first setting that needed to be changed was in the ”Nmap (NASL wrapper)” section.
After testing several timing policies, the ”Aggressive” behaviour was chosen since
it performs the fastest without being interrupted by a firewall, this may vary
between IHEs. Additionally, since institutions of higher education have to comply
with the ”IT Grundschutz”, the ”Compliance Tests” are also activated. For the
”Brute force attacks” category, all but the default credential attacks have been

5.2. Implementation of the Simplification Framework 36

Figure 5.2: Program Structure

disabled to prevent password resets or accidental denial of services.
It has to be noted that the OpenVAS scan configuration ”Full and Fast” caused

a Denial of Service (DoS) on a small number of hosts even though the description of
the configuration explicitly states that ”[only] VTs that will not damage the target
system are used”[Gre22b]. (VTs stands for Vulnerability Tests in this context)

5.2. Implementation of the Simplification Framework

For the implementation Python3 (version 3.11) was chosen as the primary General
Purpose Language (GPL) since it provides native XML-Element-Tree and SQLite3
support. To ensure longevity and out-of-the-box usage of the script, only packages
included with Python3 were used. The Python scripts that were developed perform
three main steps to create the final simplified report. First, the XML files of
all scans exported from the OpenVAS scanner undergo a pre-processing pipeline
which also inserts its data into a SQL database. Second, the data gets analyzed and
prioritized with SQLite within the database. And in the final step a comprehensive,
simplified and prioritized report is generated from the data in the database and
sent out to the responsible personnel.

Figure 5.2 depicts the project structure of the python script B.5. The results

5.2. Implementation of the Simplification Framework 37

folder contains all exported scan results in XML format. The files faculties.txt,
emails.txt, output template.html.j2 and single faculty output template.html.j2 (see
A.3, A.4, A.1 respectively) have to be present in the working directory of the script.
send mail.py, get envs.py, mail body.txt and .env also need to be present as they
allow for the distribution of the results through e-mail. Since the implementation
of the e-mail sending scripts may vary without a�ecting the results of this thesis,
only a simple implementation is provided (see B.6, B.7, A.5).

The following line numbers all refer to B.5.

5.2.1. Vulnerability Pre-Processing

The script is initially provided with access to the data contained in the XML
files [lines 293-319]. Most information required is accessible within the XML
element-tree as text attribute [lines 348-372]. The values ”vulnerable version”,
”fixed version”, ”priority”, ”complexity”, ”subnet”, ”faculty” and ”exploit exists”
require additional processing before being used.

The vulnerable and fixed version can be found and captured from the vul-
nerability description with regular expression [lines 146-161, 166-204]. An excep-
tion exists for the fixed version if the version stated is ”eol version”, in this case
”99.99.99” is assigned as its value as an End of Life (EOL) indicator to remain
comparable in SQLite. The value is later replaced as described in section 5.2.3.
Determining the subnet the vulnerable host belongs to is important so that it can
then be associated with its corresponding faculty [lines 209-215, 384-386]. A file
that maps subnets to faculties is required in the form depicted in A.3. Following
the complexity mapping developed in section 4.2.2, each vulnerability is assigned
its complexity accordingly [lines 59-63, 248-260]. The existence of an exploit for
a vulnerability is evaluated by consulting searchsploit for each CVE belonging to
the vulnerability [lines 269-288]. Each vulnerability is then evaluated based on the
factors described in section 4.2.1 in order to assign a priority score [lines 410-422]
prior to being inserted into a database [lines 425-461] for later processing.

The objective of the pre-processing step is to attain all data required to con-
form with the database schema seen in figure 5.3. Since the database is needed
for analytic purposes only, a star schema was chosen. It allows for easy read ac-
cess with only a small JOIN overhead [Ecknd]. Apart from marking a result as

5.2. Implementation of the Simplification Framework 38

Figure 5.3: Initial Database Schema

”processed”, the initial database is never altered.

5.2.2. Vulnerability Prioritization and Analysis

Central to the prioritization script are five comprehensive SQL queries. These
queries each generate one table for each part of the final report which are ”mi-
nor updates”, ”major updates”, ”high priority vulnerabilities”, ”wide spread -
vulnerabilities” and ”high e�ort remediations”. All five queries follow a similar
pattern of collecting all CVE entries and solution URLs for a vulnerability name
and IP or faculty.

Since all five queries share the same structure, their behaviour will be explained
with the example of the ”major updates” table query, see B.5 [lines 580-625].

The query begins by usi ng two Common Table Expressions (CTEs): ”tmp cves”
and ”tmp -solution urls.” These CTEs are temporary result sets that will be used
in the subsequent query.

The ”tmp cves” CTE selects the ”result id” and a concatenated string of dis-
tinct CVEs associated with each result. It retrieves this information by joining the
”results” table with the ”cves” table on the ”id” column, and then grouping the
results by the IP address, service and port. The ”tmp solution urls” CTE follows
a similar pattern but retrieves the ”result id” and a concatenated string of distinct

5.2. Implementation of the Simplification Framework 39

solution URLs associated with each result instead.
The main query then selects various columns from the ”results” table and per-

forms several aggregate functions on other columns. These include calculating the
maximum, sum, and average of the ”priority” column. It also counts the number of
occurrences of the vulnerabilities. Additionally, it retrieves a concatenated string
of distinct solution texts and selects the minimum vulnerable version, maximum
fixed version, i.e. the version to update the service to, the list of CVEs from the
”tmp cves” CTE, the list of solutions from the ”tmp solution urls” CTE, maxi-
mum of the column ”exploit exists”, i.e. at least one exploit exists for the service
in question, and the maximum complexity.

In order to only include vendor fixes which are e�ectively updates or upgrades,
the results get filtered by their ”solution type” to be equal to ”VendorFix” and
the ”solution text” to contain ”update %” or ”upgrade %” (ignoring case).

The query then groups the results by the ”ip” and ”name” columns. Finally,
the results are ordered by the ”faculty” column, with the ”exploit exists” column
in descending order and the ”max priority” column in descending order as well.

Once the table is created, the ”results” tables ”processed” column entries of
the results included in the newly created table are updated to be ignored by the
following queries.

Di�erences between Queries To retrieve the widely spread vulnerabilities the
results are not grouped by IP addresses, but by faculty names instead. Thus the
corresponding ip and host name columns have to be concatenated, otherwise they
would be lost.

For the high priority vulnerabilities only the where clause changes to only
include vulnerabilities over a certain threshold but exclude those above a high
cost threshold of 8.0. Those vulnerabilities that cross this high cost threshold are
then included in the high e�ort remediations.

Time Complexity A queries time complexity is a crucial factor when evaluat-
ing the e�ciency of a framework that is focused on saving time. Therefore the
SQL query ”major updates”, as described before, underwent a small set of tests.
For these tests the ”results” table was filled with randomized entries, starting with
1,000 total entries up to 1,000,000 entries, and the time for execution of the ”ma-
jor updates” query was measured. The results, as seen in table 5.1, suggest a time

5.2. Implementation of the Simplification Framework 40

results table entries 1,000 10,000 100,000 1,000,000

time for execution 34ms 66ms 264ms 2432ms

Table 5.1: Execution Time for major updates Query

complexity of O(n). Another test with 10,000,000 entries was performed which
took 36036ms. This spike was traced back to the computer running out of main
memory which caused slower computation.

Formalizing the time complexity was done by analyzing the query plan. The
output of adding

EXPLAIN QUERY PLAN

to the beginning of the query is seen in listing 4. Crucial to the time complexity
are the lines 2, 7 and 11 as SCAN table iterates through every table entry. This
results in n + c1 · n + c2 · n table lookups or a time complexity of O(n) as c1 and c2

are small constant values as the tables ”cves” and ”solution urls” each contain an
average of one to three entries per result entry. B-TREE, or binary tree, searches
take logarithmic time, time complexities of O(log2n), therefore they do not weigh
into the time complexity as n ∫ log2n holds for large n.

Threshold Evaluation
The script enables the benchmarking of two thresholds that are crucial in the data
analysis queries. The first threshold, referred to as the WIDE SPREAD THRESH-
OLD, plays a vital role in categorizing a vulnerability as frequently occurring based
on the number of occurrences within a faculty. On the other hand, the second
threshold, referred to as the HIGH PRIORITY THRESHOLD, sets a threshold
for the Priority Score assigned to a vulnerability to be considered as high priority.
Evaluating the performance of these thresholds involves conducting tests where one
threshold remains at its default value while the other is assigned di�erent values
within a defined range. The prioritization and analysis of results are performed for
each value in the range, and the performance indicators are saved for comparison.

In the evaluation of the Wide Spread Threshold (WST), a range of values
from 10 to 40, with a step size of 5, has been utilized. Figure 5.4b illustrates the
impact of modifying the WST on the coverage of medium severity vulnerabilities.
It is evident that deviating from a WST of 10 leads to a significant decrease in

5.2. Implementation of the Simplification Framework 41

1 MATERIALIZE tmp_cves
2 SCAN c
3 SEARCH r USING INDEX result_ids (id=?)
4 USE TEMP B-TREE FOR GROUP BY
5 USE TEMP B-TREE FOR group_concat(DISTINCT)
6 MATERIALIZE tmp_solution_urls
7 SCAN s
8 SEARCH r USING INDEX result_ids (id=?)
9 USE TEMP B-TREE FOR GROUP BY

10 USE TEMP B-TREE FOR group_concat(DISTINCT)
11 SCAN r
12 SEARCH c USING AUTOMATIC COVERING INDEX (result_id=?)
13 SEARCH s USING AUTOMATIC COVERING INDEX (result_id=?)
14 USE TEMP B-TREE FOR GROUP BY
15 USE TEMP B-TREE FOR group_concat(DISTINCT)
16 USE TEMP B-TREE FOR ORDER BY

Listing 4: SQL Query Result: Explain Query Plan

coverage. Specifically, at a threshold of 10, there are 415 vulnerabilities remaining,
whereas at a threshold of 40, the number increases to 839. However, increasing
the threshold only results in a modest improvement in time e�ort, with 615 hours
required at a WST of 10 and 407 hours at a WST of 40. Moreover, the reduction
in the total number of vulnerabilities to be remediated is marginal, comparing
174 vulnerabilities at a WST of 10 to 151 at a WST of 40. Interestingly, the total
severity after remediation increases by 86%, from 1716.0 to 3191.8 (see figure 5.4a).
This great di�erence in the total severity with only relatively little di�erence in
the number of vulnerabilities to remediate can be traced back to many very widely
spread vulnerabilities which were summarized into a hand full of fixes due to their
similarity. Thereby the number of remaining vulnerabilities decreases significantly
with only little additional vulnerabilities to remediate, while the time needed to
remediate all vulnerabilities is still accounted for.

By evaluating the trade-o�s between vulnerability coverage, time e�ort, and
total severity after remediation, it becomes apparent that a lower WST value of
10 strikes an ideal balance. Although increasing the WST might provide a slight
improvement in time e�ciency, it leads to a higher number of vulnerabilities that
need to be addressed and potentially increases the severity of the remaining vul-
nerabilities. Therefore, a WST of 10 ensures that vulnerabilities are adequately

5.2. Implementation of the Simplification Framework 42

(a) Total Severity after remediation (b) Cost and Remaining Vulnerabilities

Figure 5.4: Wide Spread Threshold Statistics

categorized as ”wide spread” without unnecessarily burdening the remediation pro-
cess or compromising the overall severity reduction achieved. This value ensures a
practical and e�ective prioritization strategy for vulnerability management within
the studied context. Consequently, a default WST value of 10 has been assigned
based on these findings.

In the evaluation of the High Priority Threshold (HPT), a range of values from
7 to 19, with a step size of 2, has been utilized. Although intermediate steps and
di�erent ranges were experimented with, they did not yield any further insights.

When analyzing figure 5.5b, a significant issue becomes apparent. Increasing
the HPT only slightly from 7 to 9 results in a small percentage decrease in the
cost of remediation, specifically 8.4%. However, the number of remaining medium
and high priority vulnerabilities increases significantly by 30.7% and 463.6%, re-
spectively. This behavior is also reflected in the remaining severity, which rises by
more than 700 points or 42.9% (see figure 5.5c).

In this context it is crucial to ensure that lowering the HPT does not have
a negative impact on the cost-benefit relationship. To address this concern, an
examination of the CVSS points remediated per work-hour was conducted.

Figure 5.5a reveals an interesting trend: including more vulnerabilities by low-
ering the HPT actually increases the e�ectiveness of each work-hour in terms
of CVSS points remediated. This finding contradicts the initial expectation and
suggests that the benefits of including additional vulnerabilities outweigh the po-
tential, in this case marginal, increase in workload. The trade-o� is justifiable as
the slight increase in workload is compensated by the improved e�ciency in terms
of CVSS points remediated per work-hour. As a result, the decision was made to

5.2. Implementation of the Simplification Framework 43

(a) CVSS Points Remediated per Workhour (b) Cost and Remaining Vulnerabilities

(c) Severity after Remediation

Figure 5.5: High Priority Threshold Statistics

set the HPT at 7.

5.2.3. Report Creation

After the vulnerabilities from the report have been analyzed and prioritized ac-
cordingly, the five tables have to be made available to the system administrators
of each faculty in an easily readable format.

To accomplish this, two di�erent HTML Jinja2 templates were designed in
which the data is then added. The first template, see A.1, is used for each in-
dividual faculty. It includes an introduction on how to read the report, a search
function to filter the report by an IP address, an overview of the faculty’s vulnera-
bility statistics and five tables, for the five categories of vulnerabilities explained in
the previous section, which include all necessary information that the system ad-

2https://jinja.palletsprojects.com/en/3.1.x/

5.2. Implementation of the Simplification Framework 44

ministrators need for remediation. In addition to the five tables another optional
table exists which includes all uncategorized vulnerabilities. This table is only
shown when there exist no categorized vulnerabilities for the faculty. Otherwise
a hint is shown which indicates the number of vulnerabilities left which can be
”unlocked” by remediating all other vulnerabilities first. This approach of gami-
fication3 was chosen to motivate the person working on the report by providing
a milestone that is achievable. The approach of gamification has been discov-
ered to be of great value when it comes to enjoyment and productivity in a work
environment [Ger+20].

The second template, see A.6, is a version of the first one which includes all
faculties in one document to be sent to the IT security o�cer of the institution.

The process of report creation is split into three main steps. In the first step,
the data from all essential tables is extracted from the database and saved into an
object [lines 1067-1098], since the data is already sorted and grouped as required,
no further SQL data manipulation has to be done. The second step consists
of rearranging the retrieved data and setting it up to be used as input to the
templates [lines 1103-1193]. This includes concatenating IP addresses, host names
and CVEs and also to replace previously as version 99.99.99 saved versions with an
appropriate explanation. Afterwards statistics for each IP address are generated
including their maximum priority score and count of remediations split up into
each of the five categories [lines 1196-1216]. This data is then fed to the HTML
templates and rendered as standalone HTML files in the third step [lines 1218-
1231, 1239-1248].

After each report is created, it is sent to the system administrator responsible
for the faculty via e-mail [lines 1236-1238, 1252-1254].

3The Oxford Dictionary defines gamification as “the application of typical elements of game
playing (e.g. point scoring, competition with others, rules of play) to other areas of activity,
typically as an online marketing technique to encourage engagement with a product or service”.

6
Results

As described in section 5.2 the process of simplification focuses on choosing the
right vulnerabilities to remediate and group vulnerabilities that can be remediated
in one go. This leads to a great reduction in size and e�ort for remediation. In
this chapter the results of the simplification process are discussed.

6.1. Usefulness

In order to compare the characteristics of usefulness, described in section 4.1, as
well as other statistics that contribute to better understanding the results, the
baseline of those values was calculated.

The e�ectiveness of the pre-simplification report is as expected 1.0, since the
report schedules all vulnerabilities for remediation, which is, as deducted in chapter

e�ectiveness e�ciency

baseline 1.0 4.02

after simplification 0.87 11.44

Table 6.1: Baseline e�ectiveness and e�ciency in CVSS points per hour

45

6.1. Usefulness 46

high medium low

baseline 324 1187 950

addressed in simplified report 313 904 829

remaining 11 283 121

Table 6.2: Vulnerabilities by severity, before and after

3, way above an IHE’s capabilities. The e�ciency calculated from the initial report
is 4.02 CVSS points per hour, which corresponds to an average remediation of one
medium severity vulnerability per hour. After performing the simplification script
on the same data the e�ectiveness and e�ciency change as seen in table 6.1. While
the e�ectiveness drops by 0.12, the e�ciency almost triples to 11.44 CVSS points
per hour.

The decrease in e�ectiveness is the result of the result prioritization described
in sections 4.2.1 and 5.2.2, as some vulnerabilities do not fit in either criteria of the
five sections of minor updates, mandatory updates, high priority vulnerabilities,
wide spread vulnerabilities and high e�ort remediations. Table 6.2 depicts these
uncategorized vulnerabilities. Within those vulnerabilities the five most common
ones are as follows (ordered by number of occurrences):

1. ICMP Timestamp Reply Information Disclosure

2. ICMP Netmask Reply Information Disclosure

3. SSL/TLS: Report Weak Cipher Suites

4. SSL/TLS: Deprecated TLSv1.0 and TLSv1.1 Protocol Detection

5. DCE/RPC and MSRPC Services Enumeration Reporting

Even though those vulnerabilities occur multiple times, they are spread across
multiple faculties and are thereby not included in the wide spread category.

The large increase in e�ciency can be traced back to multiple factors. First
of all, in the final report just 174 vulnerabilities need to be remediated to address
83.14%, or 2,046 out of 2,461, vulnerabilities. This includes wide spread vulner-
abilities which might require more than just one remediation for a large group of
vulnerabilities. Therefore the time for their remediation was adjusted, for each

6.2. Report Length 47

reoccurence of a wide spread vulnerability 20% of its initial remediation cost was
added to its total remediation time. Even with this adjustment the 83.14% of vul-
nerabilities are addressed by the report with a predicted time e�ort of just 15,12%,
or 718.42 of an initial 4,752.0 hours, of the initial total time to remediation, with
the remaining vulnerabilities estimated at a 901 hour remediation time. Time sav-
ings through grouping of vulnerabilities are maximized in the wide spread, minor-
and missing updates sections which address 36.26, 7.89 and 5.23 vulnerabilities
per remediation step respectively. Meanwhile the high priority vulnerabilities and
high e�ort remediations address 3.13 and 1.67 vulnerabilities.

6.2. Report Length

The simplified report generated by the prioritization script comes in an HTML
format and not as PDF and thereby cannot be directly compared to the initial re-
port regarding its length. Nonetheless when exporting the report with a browser’s
print function the resulting PDF file is about 110 pages long.1 This results in an
average 5.2 pages per faculty, with 20 faculties included in this scan. An excerpt of
a faculty report can be seen in A.6. Since the vulnerability report is now present
in HTML format text search is possible throughout the report, even though this
should not be required as a built in search function serves to filter the scan results
by IP address. This allows system administrators to address all vulnerabilities on
a single host in one go without the distraction of unnecessary information.

Evaluation of the report, i.e. determining urgency as well as association be-
tween responsibilities and vulnerabilities, is already performed, reducing the im-
mense time cost discussed in chapter 3 to a couple of minutes, thereby freeing up
resources for the actual remediation procedure.

1The length may vary depending on screen-size and browser.

7
Conclusion and Future Work

Conclusion The implemented tool is capable of reducing the time required for
evaluating a vulnerability scan report significantly. This frees up resources which
can be used for remediation, by automatically prioritizing the most imminent
remediations and simplifying the remediation process through merging of similar
or connected vulnerabilities and categorizing them by the type of remediation.
The tool is self-contained and should not require any updates in the near future
when used in combination with the appropriate vulnerability scanner version.

The final simplified report includes a fraction of the remediation steps from the
initial report but still addresses the majority of vulnerabilities.

Future Work Subsequent research should focus on further improving the time
estimation for vulnerability remediation. A natural language processing model is
suitable for this purpose, both for identifying further distinctions within frequently
occurring vulnerabilities and to derive, not an estimation, but the actual time
needed for a vulnerability’s remediation from its provided information.

Similar approaches should be considered to locate vulnerabilities and services
which require external expertise or which are generally considered to be ideally
hosted by experts as the cost of providing sustained on-premise security is not
commensurate.

The current implementation could be enhanced with the addition of a (web-
)interface to avoid distributing emails and thereby allowing for a centralized vul-

48

49

nerability management which would make monitoring the remediation progress
much easier for the information security o�cer.

As of now only sporadic remediation attempts were performed based on this
thesis’ results, extensive vulnerability management in real world scenarios should
be performed to evaluate the accuracy of the calculated work-hour performance
increases.

In addition to simplifying scan results, an approach is proposed which provides
guidance for each vulnerability on how to prevent their occurrence henceforth and
thereby ensures long-lasting protection.

A
Data

A.1. Single Result

1 <result id="XXXX-XXXX-XXXX-XXXX-XXXX">
2 <name>Oracle MySQL Server <= X.XX.XX / X.X <= X.XX.XX</name>
3 <owner>
4 <name>admin</name>
5 </owner>
6 <modification_time>2023-04-25T10:45:12Z</modification_time>
7 <comment></comment>
8 <creation_time>2023-04-25T10:45:12Z</creation_time>
9 <detection>

10 <result id="XXXX-XXXX-XXXX-XXXX-XXXX">
11 <details>
12 <detail>
13 <name>product</name>
14 <value>cpe:/a:vendor:service:X.XX.XX-log</value>
15 </detail>
16 <detail>
17 <name>location</name>
18 <value>3306/tcp</value>
19 </detail>
20 <detail><name>source_oid</name><value>1.1.1.1.1.1.1.1</value></detail>
21 <detail><name>source_name</name><value>MySQL</value></detail>
22 </details>

50

A.1. Single Result 51

23 </result>
24 </detection>
25 <host>127.0.0.1
26 <asset asset_id="XXXX-XXXX-XXXX-XXXX-XXXX"></asset>
27 <hostname>example.com</hostname>
28 </host>
29 <port>3306/tcp</port>
30 <nvt oid="1.1.1.1.1.1.1.1.1">
31 <type>nvt</type>
32 <name>Oracle MySQL Server <= X.XX.XX / X.X <= X.XX.XX</name>
33 <family>Databases</family><cvss_base>9.8</cvss_base>
34 <severities score="9.8">
35 <severity type="cvss_base_v3">
36 <origin>NVD</origin>
37 <date>2021-08-31T16:37:00Z</date>
38 <score>9.8</score>
39 <value>CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H</value>
40 </severity>
41 </severities>
42 <tags>Lorem Ipsum</tags>
43 <solution type="VendorFix">Update to version X.XX.XX, X.XX.XX or later.</solution>
44 <refs>
45 <ref type="cve" id="CVE-2021-3711"></ref>
46 <ref type="url" id="https://www.example.com/fix"></ref>
47 </refs>
48 </nvt>
49 <scan_nvt_version>2021-10-23T08:58:44Z</scan_nvt_version>
50 <threat>High</threat>
51 <severity>9.8</severity>
52 <qod><value>80</value><type></type></qod>
53 <description>Installed version: X.XX.XX
54 Fixed version: X.XX.XX
55 Installation
56 path / port: 3306/tcp
57 </description>
58 <original_threat>High</original_threat>
59 <original_severity>9.8</original_severity>
60 </result>

A.2. subnets.txt 52

A.2. subnets.txt

1 127.0.0.1/24
2 127.0.0.2/24
3 127.0.0.4/22
4 ...

A.3. faculties.txt

1 127.0.0.1/24|Faculty_Name_1
2 127.0.0.2/24|Faculty_Name_2
3 127.0.0.4/22|Faculty_Name_3
4 ...

A.4. emails.txt

1 Faculty_Name_1|faculty1@example.com
2 Faculty_Name_2|faculty2@example.com
3 Faculty_Name_3|faculty3@example.com
4 ...

A.5. .env

1 EMAIL_ADDR=it-sec@example.com
2 PASSWORD=**password**
3 EMAIL_HOST=smtp.example.com
4 EMAIL_PORT=587

A.6. Sample Report 53

A.6. Sample Report

Vulnerability Report for faculty: Example
Reading the Report
This report is automatically generated from the results of a vulnerability scan report.
It is divided into six sections.
The first section contains general statistics about the faculties' security status.
The second section contains a list of vulnerabilities that can be remidiated by installing minor updates.
The third section contains a list of vulnerabilities that can be remidiated by installing missing updates.
The fourth section contains a list of vulnerabilities that have a high priority, either because they are exploitable or because they have a high priority score.
The fifth section contains a list of vulnerabilities that are widely spread across the network. Usually these vulnerabilities are caused by a misconfiguration of the network or
a widely used service.
The sixth section contains a list of vulnerabilities that are neither missing updates, high priority nor widely spread, but are expected to require a lot of time to fix.

The vulnerabilities are sorted by priority. So the report should be read from top to bottom.
Vulnerabilities that are marked with a red background color have a publicly available exploit or a priority score of 10 or higher. A maximum priority of above 10 is usually
caused by vulnerabilities like Remote Code Execution, Default Credentials or other vulnerabilities that, when exploited, can cause a lot of damage to the network. These
vulnerabilities should be fixed as soon as possible.

The "Latest Fixed Version" column contains the latest version of the software that fixes the vulnerability.

The time estimation is based on the remediation type of the vulnerability. The time estimation is only a rough estimate for the first fix. The time estimation for the following
fixes is usually much lower.
Vulnerabilities listed in one section are not listed in the following sections. So if a vulnerability has a high priority but an update is available, it will only be listed in the
missing updates section.

Results

Total Hosts Total Vulnerabilities Total Priority Total Severity Average Vulnerabilities per Host Average Priority per Host
63 197 705.89 770.2 3.13 11.2

Hosts
Use the Searchbar to filter the vulnerabilities for IP Addresses.

Search for ip... Search

IP Host Priority Minor Updates Major Updates High Priority Vulnerabilities Frequently Occuring Vulnerabilities High Effort Remediations
127.0.0.1 14.8 1 1 2
127.0.0.2 12.88 1 2
127.0.0.3 12.0 1 2
127.0.0.4 11.92 2
127.0.0.5 7.35 1 2

Minor Updates

IP Host Name Vulnerability
Description

Port Maximum
Priority

Occurences Oldest
Installed
Version

Latest
Fixed

Version

Solutions CVEs References Time
Estimation

127.0.0.1 example.com

Grafana <
8.5.21, 9.2.x <
9.2.13, 9.3.x <
9.3.8 Multiple
Vulnerabilities

3000/tcp, 14.8 6 9.3.2 9.3.8 Update to
version
8.5.21,
9.2.13,
9.3.8 or
later.
Update to
version
9.2.10,
9.3.4 or
later.
Update to
version
9.2.13,
9.3.8 or
later.
Update to
version
8.5.22,
9.2.15,
9.3.11,
9.4.7 or
later.

CVE-
2023-
0507,
CVE-
2023-
0594,
CVE-
2022-
23552,
CVE-
2022-
23498,
CVE-
2022-
39324,
CVE-
2023-
22462,
CVE-
2023-
1410,

https://grafana.com/blog/2023/02/28/grafana-security-release-
new-versions-with-security-fixes-for-cve-2023-0594-cve-2023-
0507-and-cve-2023-22462/
https://github.com/grafana/grafana/security/advisories/GHSA-
8xmm-x63g-f6xv
https://grafana.com/blog/2023/01/25/grafana-security-releases-
new-versions-with-fixes-for-cve-2022-23552-cve-2022-41912-
and-cve-2022-39324/
https://github.com/grafana/grafana/security/advisories/GHSA-
2j8f-6whh-frc8
https://github.com/grafana/grafana/security/advisories/GHSA-
4724-7jwc-3fpw
https://github.com/grafana/grafana/security/advisories/GHSA-
7rqg-hjwc-6mjf
https://github.com/grafana/bugbounty/security/advisories/GHSA-
qrrg-gw7w-vp76
https://grafana.com/blog/2023/03/22/grafana-security-release-
new-versions-with-security-fixes-for-cve-2023-1410/

1.0

Major Updates

No Major Updates found.

High Priority Vulnerabilities (No Updates Available)

IP Host Name Vulnerability
Description

Port Maximum
Priority

Occurences Oldest
Installed
Version

Latest Fixed
Version

Solutions CVEs References Time
Estimation

127.0.0.2 example2.com

Test HTTP
dangerous
methods

4447/tcp, 12.38 2 None EOL or
Version
Independent
Problem, see
Solutions for

Use access
restrictions
to these
dangerous
HTTP

None, http://www.securityfocus.com/bid/12141 2.0

B
Code

B.1. Script: split subnets.sh

1 #!/bin/bash
2 usage() {
3 echo "usage: $(basename "$0") <file>"
4 exit 1
5 }
6 if [$# -ne 1]; then
7 usage
8 fi
9 if [! -f "$1"]; then

10 echo "File $1 does not exist"
11 exit 1
12 fi
13

14 mkdir -p subnets
15 cd subnets
16

17 SUBNET=()
18 NRHOSTS=0
19 MAXHOSTS=4096
20

21 while read -r line; do
22 SUBNETSIZE=$(ipcalc "$line" | grep "Hosts/Net:" | cut -d " " -f 2)

54

B.1. Script: split subnets.sh 55

23 echo "$SUBNETSIZE"
24 if ["$(($NRHOSTS + $SUBNETSIZE))" -gt "$MAXHOSTS"]; then
25 FILENAME="${SUBNET[0]}-${SUBNET[${#SUBNET[@]}-1]}.txt"
26 touch ${FILENAME//\//_}
27 printf �%s\n� "${SUBNET[@]}" >> ${FILENAME//\//_}
28 SUBNET=()
29 NRHOSTS=0
30 fi
31 NRHOSTS=$(($NRHOSTS + $SUBNETSIZE))
32 SUBNET+=("$line")
33 done < "../$1"
34

35 if [${#SUBNET[@]} -gt 0]; then
36 FILENAME="${SUBNET[0]}-${SUBNET[${#SUBNET[@]}-1]}.txt"
37 touch ${FILENAME//\//_}
38 printf �%s\n� "${SUBNET[@]}" >> ${FILENAME//\//_}
39 fi
40 cd ..
41 exit 0

B.2. SQL Query: Major Updates 56

B.2. SQL Query: Major Updates

1 CREATE TABLE missing_updates AS
2 WITH tmp_cves AS (
3 SELECT
4 r.id as result_id,
5 rtrim(replace(group_concat(DISTINCT c.cve||�@!�), �@!,�, x�0a�),�@!�)
6 as "cves"
7 FROM results as r LEFT JOIN cves as c ON r.id = c.result_id
8 GROUP BY r.vulnerable_service, r.ip
9),

10 tmp_solution_urls AS (
11 SELECT
12 r.id as result_id,
13 rtrim(replace(group_concat(DISTINCT s.url||�@!�), �@!,�, x�0a�),�@!�)
14 as solutions
15 FROM results as r LEFT JOIN solution_urls as s ON r.id = s.result_id
16 GROUP BY r.vulnerable_service, r.ip
17)
18 SELECT
19 r.faculty as faculty,
20 r.ip as ip,
21 r.hostname as host_name,
22 r.vulnerable_service as service,
23 r.name as name,
24 r.port as port,
25 ROUND(MAX(r.priority), 2) as max_priority,
26 ROUND(SUM(r.priority), 2) as total_priority,
27 ROUND(AVG(r.priority), 2) as avg_priority,
28 COUNT(r.id) as occurences,
29 rtrim(
30 replace(group_concat(DISTINCT r.solution_text||�@!�), �@!,�, x�0a�),�@!�
31) as solution_text,
32 MIN(r.vulnerable_version) as installed_version,
33 MAX(r.fixed_version) as fixed_version,
34 MAX(c.cves) as "cves",
35 MAX(s.solutions) as solutions,
36 MAX(r.exploit_exists) as exploit_exists,
37 MAX(r.complexity) as cost,
38 r.severity as severity,
39 sqrt(SUM(pow(r.severity, 2)/r.complexity)) as cvss_per_hour

B.3. HTML template: output template.html.j2 57

40 FROM results as r
41 LEFT JOIN tmp_cves as c ON r.id = c.result_id
42 LEFT JOIN tmp_solution_urls as s ON r.id = s.result_id
43 WHERE r.processed = 0
44 AND r.solution_type = "VendorFix"
45 AND (
46 LOWER(r.solution_text) LIKE "update %"
47 OR LOWER(r.solution_text) LIKE "upgrade %"
48)
49 GROUP BY r.ip, r.vulnerable_service, r.port
50 ORDER BY faculty, exploit_exists DESC, max_priority DESC;

B.3. HTML template: output template.html.j2

1 <!DOCTYPE html>
2 <html>
3

4 <head>
5 <title>Vulnerability Report</title>
6 </head>
7

8 <body>
9 <h1>Vulnerability Report</h1>

10 <h2>Reading the Report</h2>
11 <p>
12 This report is automatically generated from the results of a vulnerability
13 scan report.

14 It is divided into six sections per faculty.

15 The first section contains general statistics about each faculties� security
16 status.

17 The second section contains a list of vulnerabilities that can be
18 remidiated by installing minor updates.

19 The third section contains a list of vulnerabilities that can be
20 remidiated by installing missing updates.

21 The fourth section contains a list of vulnerabilities that have a high
22 priority, either because they are
23 exploitable or because they have a high priority score.

24 The fifth section contains a list of vulnerabilities that are widely spread
25 across the network. Usually these

B.3. HTML template: output template.html.j2 58

26 vulnerabilities are caused by a misconfiguration of the network or a widely
27 used service.

28 The sixth section contains a list of vulnerabilities that are neither
29 missing updates, high priority nor widely
30 spread, but are expected to require a lot of time to fix.

31

32 The vulnerabilities are sorted by priority. So the report should be read
33 from top to bottom.
34

35 Vulnerabilities that are marked with a red background color have a publicly
36 available exploit or a priority
37 score of 10 or higher.
38 A maximum priority of above 10 is usually caused by vulnerabilities like
39 Remote Code Execution, Default
40 Credentials or other vulnerabilities that, when exploited, can cause a lot
41 of damage to the network.
42 These vulnerabilities should be fixed as soon as possible.
43

44

45 The "Latest Fixed Version" column contains the latest version of the software
46 that fixes the vulnerability.
47

48

49 The time estimation is based on the remediation type of the vulnerability.
50 The time estimation is only a rough
51 estimate for the first fix. The time estimation for the following fixes is
52 usually much lower.
53

54 Vulnerabilities listed in one section are not listed in the following
55 sections. So if a vulnerability has a high
56 priority but an update is available, it will only be listed in the missing
57 updates section.
58 </p>
59 <hr />
60 <hr />
61 {% for faculty in items.faculties %}
62 <h2>Faculty: {{ faculty }} </h2>
63 <table>
64 <thead>
65 <tr>
66 <th>Total Hosts</th>
67 <th>Total Vulnerabilities</th>
68 <th>Total Priority</th>
69 <th>Total Severity</th>

B.3. HTML template: output template.html.j2 59

70 <th>Average Vulnerabilities per Host</th>
71 <th>Average Priority per Host</th>
72 </tr>
73 </thead>
74 <tbody>
75 <tr>
76 <td>{{ items.results[faculty].vuln_stats.total_hosts }} </td>
77 <td>{{ items.results[faculty].vuln_stats.total_vulns }} </td>
78 <td>{{ items.results[faculty].vuln_stats.total_priority }} </td>
79 <td>{{ items.results[faculty].vuln_stats.total_severity }} </td>
80 <td>{{ items.results[faculty].vuln_stats.avg_vulns }} </td>
81 <td>{{ items.results[faculty].vuln_stats.avg_priority }} </td>
82 </tr>
83 </tbody>
84 </table>
85 <h3>Minor Updates</h3>
86 {% if items.results[faculty].minor_updates|length != 0 %}
87 <table>
88 <thead>
89 <tr>
90 <th>IP</th>
91 <th>Host Name</th>
92 <th>Vulnerability Description</th>
93 <th>Port</th>
94 <th>Maximum Priority</th>
95 <th>Occurences</th>
96 <th>Oldest Installed Version</th>
97 <th>Latest Fixed Version</th>
98 <th>Solutions</th>
99 <th>CVEs</th>

100 <th>References</th>
101 <th>Time Estimation</th>
102 </tr>
103 </thead>
104 <tbody>
105 {% for vuln in items.results[faculty].minor_updates %}
106 <tr {% if vuln.exploit_exists or vuln.max_priority>= 10.0 %}
107 style="background-color:#ff0000;" {% endif %} >
108 <td>{% for ip in vuln.host_ips %}{{ ip }} , {% endfor %} </td>
109 <td>{% for host_name in vuln.host_names %}{{ host_name }} ,
110 {% endfor %} </td>
111 <td>{{ vuln.vuln_description }} </td>
112 <td>{% for port in vuln.port %}{{ port }} , {% endfor %} </td>
113 <td>{{ vuln.max_priority }} </td>

B.3. HTML template: output template.html.j2 60

114 <td>{{ vuln.vuln_occurrences }} </td>
115 <td>{{ vuln.oldest_installed_version }} </td>
116 <td>{{ vuln.latest_fixed_version }} </td>
117 <td>{% for solution in vuln.solution_texts %}{{ solution }}

118 {% endfor %} </td>
119 <td>{% for cve in vuln.cves %}{{ cve }} , {% endfor %} </td>
120 <td>{% for reference in vuln.solution_urls %}
121 {{ reference }}
{% endfor %}
122 </td>
123 <td>{{ vuln.effort }} </td>
124 </tr>
125 </tbody>
126 {% endfor %}
127 </table>
128 {% else %}
129 <p>No Minor Updates found.</p>
130 {% endif %}
131 <h3>Major Updates</h3>
132 {% if items.results[faculty].missing_updates|length != 0 %}
133 <table>
134 <thead>
135 <tr>
136 <th>IP</th>
137 <th>Host Name</th>
138 <th>Vulnerability Description</th>
139 <th>Port</th>
140 <th>Maximum Priority</th>
141 <th>Occurences</th>
142 <th>Oldest Installed Version</th>
143 <th>Latest Fixed Version</th>
144 <th>Solutions</th>
145 <th>CVEs</th>
146 <th>References</th>
147 <th>Time Estimation</th>
148 </tr>
149 </thead>
150 <tbody>
151 {% for vuln in items.results[faculty].missing_updates %}
152 <tr {% if vuln.exploit_exists or vuln.max_priority>= 10.0 %}
153 style="background-color:#ff0000;" {% endif %} >
154 <td>{% for ip in vuln.host_ips %}{{ ip }} , {% endfor %} </td>
155 <td>{% for host_name in vuln.host_names %}{{ host_name }} ,
156 {% endfor %} </td>
157 <td>{{ vuln.vuln_description }} </td>

B.3. HTML template: output template.html.j2 61

158 <td>{% for port in vuln.port %}{{ port }} , {% endfor %} </td>
159 <td>{{ vuln.max_priority }} </td>
160 <td>{{ vuln.vuln_occurrences }} </td>
161 <td>{{ vuln.oldest_installed_version }} </td>
162 <td>{{ vuln.latest_fixed_version }} </td>
163 <td>{% for solution in vuln.solution_texts %}{{ solution }}

164 {% endfor %} </td>
165 <td>{% for cve in vuln.cves %}{{ cve }} , {% endfor %} </td>
166 <td>{% for reference in vuln.solution_urls %}
167 {{ reference }}
{% endfor %}
168 </td>
169 <td>{{ vuln.effort }} </td>
170 </tr>
171 </tbody>
172 {% endfor %}
173 </table>
174 {% else %}
175 <p>No Major Updates found.</p>
176 {% endif %}
177 <h3>High Priority Vulnerabilities (No Updates Available)</h3>
178 {% if items.results[faculty].high_priority_vulnerabilities |length != 0 %}
179 <table>
180 <thead>
181 <tr>
182 <th>IP</th>
183 <th>Host Name</th>
184 <th>Vulnerability Description</th>
185 <th>Port</th>
186 <th>Maximum Priority</th>
187 <th>Occurences</th>
188 <th>Oldest Installed Version</th>
189 <th>Latest Fixed Version</th>
190 <th>Solutions</th>
191 <th>CVEs</th>
192 <th>References</th>
193 <th>Time Estimation</th>
194 </tr>
195 </thead>
196 <tbody>
197 {% for vuln in items.results[faculty].high_priority_vulnerabilities %}
198 <tr {% if vuln.exploit_exists or vuln.max_priority>= 10.0 %}
199 style="background-color:#ff0000;" {% endif %} >
200 <td>{% for ip in vuln.host_ips %}{{ ip }} , {% endfor %} </td>
201 <td>{% for host_name in vuln.host_names %}{{ host_name }} ,

B.3. HTML template: output template.html.j2 62

202 {% endfor %} </td>
203 <td>{{ vuln.vuln_description }} </td>
204 <td>{% for port in vuln.port %}{{ port }} , {% endfor %} </td>
205 <td>{{ vuln.max_priority }} </td>
206 <td>{{ vuln.vuln_occurrences }} </td>
207 <td>{{ vuln.oldest_installed_version }} </td>
208 <td>{{ vuln.latest_fixed_version }} </td>
209 <td>{% for solution in vuln.solution_texts %}{{ solution }}

210 {% endfor %} </td>
211 <td>{% for cve in vuln.cves %}{{ cve }} , {% endfor %} </td>
212 <td>{% for reference in vuln.solution_urls %}
213 {{ reference }}
{% endfor %}
214 </td>
215 <td>{{ vuln.effort }} </td>
216 </tr>
217 </tbody>
218 {% endfor %}
219 </table>
220 {% else %}
221 <p>No High Priority Vulnerabilities found.</p>
222 {% endif %}
223 <h3>Frequently Occuring Vulnerabilities</h3>
224 {% if items.results[faculty].wide_spread_vulnerabilities |length != 0 %}
225 <table>
226 <thead>
227 <tr>
228 <th>IP</th>
229 <th>Host Name</th>
230 <th>Vulnerability Description</th>
231 <th>Port</th>
232 <th>Maximum Priority</th>
233 <th>Occurences</th>
234 <th>Oldest Installed Version</th>
235 <th>Latest Fixed Version</th>
236 <th>Solutions</th>
237 <th>CVEs</th>
238 <th>References</th>
239 <th>Time Estimation</th>
240 </tr>
241 </thead>
242 <tbody>
243 {% for vuln in items.results[faculty].wide_spread_vulnerabilities %}
244 <tr {% if vuln.exploit_exists or vuln.max_priority>= 10.0 %}
245 style="background-color:#ff0000;" {% endif %} >

B.3. HTML template: output template.html.j2 63

246 <td>{% for ip in vuln.host_ips %}{{ ip }} , {% endfor %} </td>
247 <td>{% for host_name in vuln.host_names %}{{ host_name }} ,
248 {% endfor %} </td>
249 <td>{{ vuln.vuln_description }} </td>
250 <td>{% for port in vuln.port %}{{ port }} , {% endfor %} </td>
251 <td>{{ vuln.max_priority }} </td>
252 <td>{{ vuln.vuln_occurrences }} </td>
253 <td>{{ vuln.oldest_installed_version }} </td>
254 <td>{{ vuln.latest_fixed_version }} </td>
255 <td>{% for solution in vuln.solution_texts %}{{ solution }}

256 {% endfor %} </td>
257 <td>{% for cve in vuln.cves %}{{ cve }} , {% endfor %} </td>
258 <td>{% for reference in vuln.solution_urls %}
259 {{ reference }}
{% endfor %}
260 </td>
261 <td>{{ vuln.effort }} </td>
262 </tr>
263 </tbody>
264 {% endfor %}
265 </table>
266 {% else %}
267 <p>No Frequently Occuring Vulnerabilities found.</p>
268 {% endif %}
269 <h3>High Effort Remediations</h3>
270 {% if items.results[faculty].high_effort_remediations |length != 0 %}
271 <table>
272 <thead>
273 <tr>
274 <th>IP</th>
275 <th>Host Name</th>
276 <th>Vulnerability Description</th>
277 <th>Port</th>
278 <th>Maximum Priority</th>
279 <th>Occurences</th>
280 <th>Oldest Installed Version</th>
281 <th>Latest Fixed Version</th>
282 <th>Solutions</th>
283 <th>CVEs</th>
284 <th>References</th>
285 <th>Time Estimation</th>
286 </tr>
287 </thead>
288 <tbody>
289 {% for vuln in items.results[faculty].high_effort_remediations %}

B.3. HTML template: output template.html.j2 64

290 <tr {% if vuln.exploit_exists or vuln.max_priority>= 10.0 %}
291 style="background-color:#ff0000;" {% endif %} >
292 <td>{% for ip in vuln.host_ips %}{{ ip }} , {% endfor %} </td>
293 <td>{% for host_name in vuln.host_names %}{{ host_name }} ,
294 {% endfor %} </td>
295 <td>{{ vuln.vuln_description }} </td>
296 <td>{% for port in vuln.port %}{{ port }} , {% endfor %} </td>
297 <td>{{ vuln.max_priority }} </td>
298 <td>{{ vuln.vuln_occurrences }} </td>
299 <td>{{ vuln.oldest_installed_version }} </td>
300 <td>{{ vuln.latest_fixed_version }} </td>
301 <td>{% for solution in vuln.solution_texts %}{{ solution }}

302 {% endfor %} </td>
303 <td>{% for cve in vuln.cves %}{{ cve }} , {% endfor %} </td>
304 <td>{% for reference in vuln.solution_urls %}
305 {{ reference }}
{% endfor %}
306 </td>
307 <td>{{ vuln.effort }} </td>
308 </tr>
309 </tbody>
310 {% endfor %}
311 </table>
312 {% else %}
313 <p>No High Effort Remediations found.</p>
314 {% endif %}
315

316 <h3>Remaining Vulnerabilities</h3>
317 {% if items.results[faculty].high_effort_remediations | length == 0
318 and items.results[faculty].wide_spread_vulnerabilities |length == 0
319 and items.results[faculty].minor_updates|length == 0
320 and items.results[faculty].missing_updates|length == 0 %}
321 <table>
322 <thead>
323 <tr>
324 <th>IP</th>
325 <th>Host Name</th>
326 <th>Vulnerability Description</th>
327 <th>Port</th>
328 <th>Maximum Priority</th>
329 <th>Oldest Installed Version</th>
330 <th>Latest Fixed Version</th>
331 <th>Solutions</th>
332 <th>CVEs</th>
333 <th>References</th>

B.3. HTML template: output template.html.j2 65

334 <th>Time Estimation</th>
335 </tr>
336 </thead>
337 <tbody>
338 {% for vuln in items.results[faculty].remaining_vulnerabilities %}
339 <tr {% if vuln.exploit_exists or vuln.max_priority>= 10.0 %}
340 style="background-color:#ff0000;" {% endif %} >
341 <td>{% for ip in vuln.host_ips %}{{ ip }} , {% endfor %} </td>
342 <td>{% for host_name in vuln.host_names %}{{ host_name }} ,
343 {% endfor %} </td>
344 <td>{{ vuln.vuln_description }} </td>
345 <td>{% for port in vuln.port %}{{ port }} , {% endfor %} </td>
346 <td>{{ vuln.max_priority }} </td>
347 <td>{{ vuln.oldest_installed_version }} </td>
348 <td>{{ vuln.latest_fixed_version }} </td>
349 <td>{% for solution in vuln.solution_texts %}{{ solution }}

350 {% endfor %} </td>
351 <td>{% for cve in vuln.cves %}{{ cve }} , {% endfor %} </td>
352 <td>{% for reference in vuln.solution_urls %}
353 {{ reference }}
{% endfor %}
354 </td>
355 <td>{{ vuln.effort }} </td>
356 </tr>
357 </tbody>
358 {% endfor %}
359

360 </table>
361 {% else %}
362 <p>There are {{ items.results[faculty].remaining_vulnerabilities | length }}
363 uncategorized vulnerabilities.
These will be available as soon as all
364 other vulnerabilities have been remediated.</p>
365 {% endif %}
366

367 {% endfor %}
368 <style>
369 table {
370 border: 1px solid black;
371 }
372

373 th,
374 td {
375 border-bottom: 1px solid black;
376 border-right: 1px dashed black;
377 horizontal-align: left;

B.4. HTML template: single faculty report.html.j2 66

378 }
379

380 table,
381 th,
382 tr,
383 td {
384 border-collapse: collapse;
385 vertical-align: top;
386 }
387 </style>
388

389 </body>
390

391

392 </html>

B.4. HTML template: single faculty report.html.j2

1 <!DOCTYPE html>
2 <html>
3

4 <head>
5 <title>Vulnerability Report</title>
6 </head>
7

8 <body>
9 <h1>Vulnerability Report for faculty: {{ faculty}} </h1>

10

11 <h2>Reading the Report</h2>
12 <p>
13 This report is automatically generated from the results of a vulnerability
14 scan report.

15 It is divided into six sections.

16 The first section contains general statistics about the faculties� security
17 status.

18 The second section contains a list of vulnerabilities that can be
19 remidiated by installing minor updates.

20 The third section contains a list of vulnerabilities that can be
21 remidiated by installing missing updates.

B.4. HTML template: single faculty report.html.j2 67

22 The fourth section contains a list of vulnerabilities that have a high
23 priority, either because they are
24 exploitable or because they have a high priority score.

25 The fifth section contains a list of vulnerabilities that are widely spread
26 across the network. Usually these
27 vulnerabilities are caused by a misconfiguration of the network or a widely
28 used service.

29 The sixth section contains a list of vulnerabilities that are neither
30 missing updates, high priority nor widely
31 spread, but are expected to require a lot of time to fix.

32

33 The vulnerabilities are sorted by priority. So the report should be read
34 from top to bottom.
35

36 Vulnerabilities that are marked with a red background color have a publicly
37 available exploit or a priority
38 score of 10 or higher.
39 A maximum priority of above 10 is usually caused by vulnerabilities like
40 Remote Code Execution, Default
41 Credentials or other vulnerabilities that, when exploited, can cause a lot
42 of damage to the network.
43 These vulnerabilities should be fixed as soon as possible.
44

45

46 The "Latest Fixed Version" column contains the latest version of the software
47 that fixes the vulnerability.
48

49

50 The time estimation is based on the remediation type of the vulnerability.
51 The time estimation is only a rough
52 estimate for the first fix. The time estimation for the following fixes is
53 usually much lower.
54

55 Vulnerabilities listed in one section are not listed in the following
56 sections. So if a vulnerability has a high
57 priority but an update is available, it will only be listed in the missing
58 updates section.
59 </p>
60 <hr />
61 <hr />
62

63

64 <h2>Results</h2>
65 <table>

B.4. HTML template: single faculty report.html.j2 68

66 <thead>
67 <tr>
68 <th>Total Hosts</th>
69 <th>Total Vulnerabilities</th>
70 <th>Total Priority</th>
71 <th>Total Severity</th>
72 <th>Average Vulnerabilities per Host</th>
73 <th>Average Priority per Host</th>
74 </tr>
75 </thead>
76 <tbody>
77 <tr>
78 <td>{{ results.vuln_stats.total_hosts }} </td>
79 <td>{{ results.vuln_stats.total_vulns }} </td>
80 <td>{{ results.vuln_stats.total_priority }} </td>
81 <td>{{ results.vuln_stats.total_severity }} </td>
82 <td>{{ results.vuln_stats.avg_vulns }} </td>
83 <td>{{ results.vuln_stats.avg_priority }} </td>
84 </tr>
85 </tbody>
86 </table>
87 <h2>Hosts</h2>
88 <p>Use the Searchbar to filter the vulnerabilities for IP Addresses.</p>
89 <input type="text" id="searchbar" placeholder="Search for ip...">
90 <button onclick="search()">Search</button>
91

92 <table>
93 <thead>
94 <tr>
95 <th>IP</th>
96 <th>Host Priority</th>
97 <th>Minor Updates</th>
98 <th>Major Updates</th>
99 <th>High Priority Vulnerabilities</th>

100 <th>Frequently Occuring Vulnerabilities</th>
101 <th>High Effort Remediations</th>
102 </tr>
103 </thead>
104 <tbody>
105 {% for ip in results.ips %}
106 <tr {% if ip[1].exploit_exists or ip[1].max_priority>= 10.0 %}
107 style="background-color:#ff0000;" {% endif %} >
108 <td>{{ ip[0] }} </td>
109 <td>{{ ip[1].max_priority }} </td>

B.4. HTML template: single faculty report.html.j2 69

110 <td>{{ ip[1].minor_updates }} </td>
111 <td>{{ ip[1].missing_updates }} </td>
112 <td>{{ ip[1].high_priority_vulnerabilities }} </td>
113 <td>{{ ip[1].wide_spread_vulnerabilities }} </td>
114 <td>{{ ip[1].high_effort_remediations }} </td>
115 </tr>
116 {% endfor %}
117 </table>
118

119 <h3>Minor Updates</h3>
120 {% if results.minor_updates|length != 0 %}
121 <table>
122 <thead>
123 <tr>
124 <th>IP</th>
125 <th>Host Name</th>
126 <th>Vulnerability Description</th>
127 <th>Port</th>
128 <th>Maximum Priority</th>
129 <th>Occurences</th>
130 <th>Oldest Installed Version</th>
131 <th>Latest Fixed Version</th>
132 <th>Solutions</th>
133 <th>CVEs</th>
134 <th>References</th>
135 <th>Time Estimation</th>
136 </tr>
137 </thead>
138 <tbody>
139 {% for vuln in results.minor_updates %}
140 <tr class="results" {% if vuln.exploit_exists or vuln.max_priority>= 10.0 %}
141 style="background-color:#ff0000;" {% endif %} >
142 <td id="ips">{% for ip in vuln.host_ips %}{{ ip }} , {% endfor %} </td>
143 <td>{% for host_name in vuln.host_names %}{{ host_name }} ,
144 {% endfor %}
145 </td>
146 <td>{{ vuln.vuln_description }} </td>
147 <td>{% for port in vuln.port %}{{ port }} , {% endfor %} </td>
148 <td>{{ vuln.max_priority }} </td>
149 <td>{{ vuln.vuln_occurrences }} </td>
150 <td>{{ vuln.oldest_installed_version }} </td>
151 <td>{{ vuln.latest_fixed_version }} </td>
152 <td>{% for solution in vuln.solution_texts %}{{ solution }}

153 {% endfor %}

B.4. HTML template: single faculty report.html.j2 70

154 </td>
155 <td>{% for cve in vuln.cves %}{{ cve }} , {% endfor %} </td>
156 <td>{% for reference in vuln.solution_urls %}
157 {{ reference }}

158 {% endfor %}
159 </td>
160 <td>{{ vuln.effort }} </td>
161 </tr>
162 </tbody>
163 {% endfor %}
164

165 </table>
166 {% else %}
167 <p>No Minor Updates found.</p>
168 {% endif %}
169

170 <h3>Major Updates</h3>
171 {% if results.missing_updates|length != 0 %}
172 <table>
173 <thead>
174 <tr>
175 <th>IP</th>
176 <th>Host Name</th>
177 <th>Vulnerability Description</th>
178 <th>Port</th>
179 <th>Maximum Priority</th>
180 <th>Occurences</th>
181 <th>Oldest Installed Version</th>
182 <th>Latest Fixed Version</th>
183 <th>Solutions</th>
184 <th>CVEs</th>
185 <th>References</th>
186 <th>Time Estimation</th>
187 </tr>
188 </thead>
189 <tbody>
190 {% for vuln in results.missing_updates %}
191 <tr class="results" {% if vuln.exploit_exists or vuln.max_priority>= 10.0 %}
192 style="background-color:#ff0000;" {% endif %} >
193 <td id="ips">{% for ip in vuln.host_ips %}{{ ip }} , {% endfor %} </td>
194 <td>{% for host_name in vuln.host_names %}{{ host_name }} ,
195 {% endfor %}
196 </td>
197 <td>{{ vuln.vuln_description }} </td>

B.4. HTML template: single faculty report.html.j2 71

198 <td>{% for port in vuln.port %}{{ port }} , {% endfor %} </td>
199 <td>{{ vuln.max_priority }} </td>
200 <td>{{ vuln.vuln_occurrences }} </td>
201 <td>{{ vuln.oldest_installed_version }} </td>
202 <td>{{ vuln.latest_fixed_version }} </td>
203 <td>{% for solution in vuln.solution_texts %}{{ solution }}

204 {% endfor %}
205 </td>
206 <td>{% for cve in vuln.cves %}{{ cve }} , {% endfor %} </td>
207 <td>{% for reference in vuln.solution_urls %}
208 {{ reference }}

209 {% endfor %}
210 </td>
211 <td>{{ vuln.effort }} </td>
212 </tr>
213 </tbody>
214 {% endfor %}
215

216 </table>
217 {% else %}
218 <p>No Major Updates found.</p>
219 {% endif %}
220

221 <h3>High Priority Vulnerabilities (No Updates Available)</h3>
222 {% if results.high_priority_vulnerabilities |length != 0 %}
223 <table>
224 <thead>
225 <tr>
226 <th>IP</th>
227 <th>Host Name</th>
228 <th>Vulnerability Description</th>
229 <th>Port</th>
230 <th>Maximum Priority</th>
231 <th>Occurences</th>
232 <th>Oldest Installed Version</th>
233 <th>Latest Fixed Version</th>
234 <th>Solutions</th>
235 <th>CVEs</th>
236 <th>References</th>
237 <th>Time Estimation</th>
238 </tr>
239 </thead>
240 <tbody>
241 {% for vuln in results.high_priority_vulnerabilities %}

B.4. HTML template: single faculty report.html.j2 72

242 <tr class="results" {% if vuln.exploit_exists or vuln.max_priority>= 10.0 %}
243 style="background-color:#ff0000;" {% endif %} >
244 <td id="ips">{% for ip in vuln.host_ips %}{{ ip }} , {% endfor %} </td>
245 <td>{% for host_name in vuln.host_names %}{{ host_name }} ,
246 {% endfor %} </td>
247 <td>{{ vuln.vuln_description }} </td>
248 <td>{% for port in vuln.port %}{{ port }} , {% endfor %} </td>
249 <td>{{ vuln.max_priority }} </td>
250 <td>{{ vuln.vuln_occurrences }} </td>
251 <td>{{ vuln.oldest_installed_version }} </td>
252 <td>{{ vuln.latest_fixed_version }} </td>
253 <td>{% for solution in vuln.solution_texts %}{{ solution }}

254 {% endfor %}
255 </td>
256 <td>{% for cve in vuln.cves %}{{ cve }} , {% endfor %} </td>
257 <td>{% for reference in vuln.solution_urls %}
258 {{ reference }}

259 {% endfor %}
260 </td>
261 <td>{{ vuln.effort }} </td>
262 </tr>
263 </tbody>
264 {% endfor %}
265

266 </table>
267 {% else %}
268 <p>No High Priority Vulnerabilities found.</p>
269 {% endif %}
270

271 <h3>Frequently Occuring Vulnerabilities</h3>
272 {% if results.wide_spread_vulnerabilities |length != 0 %}
273 <table>
274 <thead>
275 <tr>
276 <th>IP</th>
277 <th>Host Name</th>
278 <th>Vulnerability Description</th>
279 <th>Port</th>
280 <th>Maximum Priority</th>
281 <th>Occurences</th>
282 <th>Oldest Installed Version</th>
283 <th>Latest Fixed Version</th>
284 <th>Solutions</th>
285 <th>CVEs</th>

B.4. HTML template: single faculty report.html.j2 73

286 <th>References</th>
287 <th>Time Estimation</th>
288 </tr>
289 </thead>
290 <tbody>
291 {% for vuln in results.wide_spread_vulnerabilities %}
292 <tr class="results" {% if vuln.exploit_exists or vuln.max_priority>= 10.0 %}
293 style="background-color:#ff0000;" {% endif %} >
294 <td id="ips">{% for ip in vuln.host_ips %}{{ ip }} , {% endfor %} </td>
295 <td>{% for host_name in vuln.host_names %}{{ host_name }} ,
296 {% endfor %}
297 </td>
298 <td>{{ vuln.vuln_description }} </td>
299 <td>{% for port in vuln.port %}{{ port }} , {% endfor %} </td>
300 <td>{{ vuln.max_priority }} </td>
301 <td>{{ vuln.vuln_occurrences }} </td>
302 <td>{{ vuln.oldest_installed_version }} </td>
303 <td>{{ vuln.latest_fixed_version }} </td>
304 <td>{% for solution in vuln.solution_texts %}{{ solution }}

305 {% endfor %}
306 </td>
307 <td>{% for cve in vuln.cves %}{{ cve }} , {% endfor %} </td>
308 <td>{% for reference in vuln.solution_urls %}
309 {{ reference }}

310 {% endfor %}
311 </td>
312 <td>{{ vuln.effort }} </td>
313 </tr>
314 </tbody>
315 {% endfor %}
316

317 </table>
318 {% else %}
319 <p>No Frequently Occuring Vulnerabilities found.</p>
320 {% endif %}
321

322 <h3>High Effort Remediations</h3>
323 {% if results.high_effort_remediations |length != 0 %}
324 <table>
325 <thead>
326 <tr>
327 <th>IP</th>
328 <th>Host Name</th>
329 <th>Vulnerability Description</th>

B.4. HTML template: single faculty report.html.j2 74

330 <th>Port</th>
331 <th>Maximum Priority</th>
332 <th>Occurences</th>
333 <th>Oldest Installed Version</th>
334 <th>Latest Fixed Version</th>
335 <th>Solutions</th>
336 <th>CVEs</th>
337 <th>References</th>
338 <th>Time Estimation</th>
339 </tr>
340 </thead>
341 <tbody>
342 {% for vuln in results.high_effort_remediations %}
343 <tr class="results" {% if vuln.exploit_exists or vuln.max_priority>= 10.0 %}
344 style="background-color:#ff0000;" {% endif %} >
345 <td id="ips">{% for ip in vuln.host_ips %}{{ ip }} , {% endfor %} </td>
346 <td>{% for host_name in vuln.host_names %}{{ host_name }} ,
347 {% endfor %} </td>
348 <td>{{ vuln.vuln_description }} </td>
349 <td>{% for port in vuln.port %}{{ port }} , {% endfor %} </td>
350 <td>{{ vuln.max_priority }} </td>
351 <td>{{ vuln.vuln_occurrences }} </td>
352 <td>{{ vuln.oldest_installed_version }} </td>
353 <td>{{ vuln.latest_fixed_version }} </td>
354 <td>{% for solution in vuln.solution_texts %}{{ solution }}

355 {% endfor %}
356 </td>
357 <td>{% for cve in vuln.cves %}{{ cve }} , {% endfor %} </td>
358 <td>{% for reference in vuln.solution_urls %}
359 {{ reference }}
{% endfor %}
360 </td>
361 <td>{{ vuln.effort }} </td>
362 </tr>
363 </tbody>
364 {% endfor %}
365

366 </table>
367 {% else %}
368 <p>No High Effort Remediations found.</p>
369 {% endif %}
370

371 <h3>Remaining Vulnerabilities</h3>
372 {% if results.high_effort_remediations | length == 0
373 and results.wide_spread_vulnerabilities |length == 0

B.4. HTML template: single faculty report.html.j2 75

374 and results.minor_updates|length == 0
375 and results.missing_updates|length == 0 %}
376 <table>
377 <thead>
378 <tr>
379 <th>IP</th>
380 <th>Host Name</th>
381 <th>Vulnerability Description</th>
382 <th>Port</th>
383 <th>Maximum Priority</th>
384 <th>Oldest Installed Version</th>
385 <th>Latest Fixed Version</th>
386 <th>Solutions</th>
387 <th>CVEs</th>
388 <th>References</th>
389 <th>Time Estimation</th>
390 </tr>
391 </thead>
392 <tbody>
393 {% for vuln in results.remaining_vulnerabilities %}
394 <tr class="results" {% if vuln.exploit_exists or vuln.max_priority>= 10.0 %}
395 style="background-color:#ff0000;" {% endif %} >
396 <td id="ips">{% for ip in vuln.host_ips %}{{ ip }} , {% endfor %} </td>
397 <td>{% for host_name in vuln.host_names %}{{ host_name }} ,
398 {% endfor %}
399 </td>
400 <td>{{ vuln.vuln_description }} </td>
401 <td>{% for port in vuln.port %}{{ port }} , {% endfor %} </td>
402 <td>{{ vuln.max_priority }} </td>
403 <td>{{ vuln.oldest_installed_version }} </td>
404 <td>{{ vuln.latest_fixed_version }} </td>
405 <td>{% for solution in vuln.solution_texts %}{{ solution }}

406 {% endfor %}
407 </td>
408 <td>{% for cve in vuln.cves %}{{ cve }} , {% endfor %} </td>
409 <td>{% for reference in vuln.solution_urls %}
410 {{ reference }}

411 {% endfor %}
412 </td>
413 <td>{{ vuln.effort }} </td>
414 </tr>
415 </tbody>
416 {% endfor %}
417

B.4. HTML template: single faculty report.html.j2 76

418 </table>
419 {% else %}
420 <p>There are {{ results.remaining_vulnerabilities | length }} uncategorized
421 vulnerabilities.
These will be available as soon as all other
422 vulnerabilities have been remediated.</p>
423 {% endif %}
424

425 <style>
426 table {
427 border: 1px solid black;
428 }
429

430 th,
431 td {
432 border-bottom: 1px solid black;
433 border-right: 1px dashed black;
434 horizontal-align: left;
435 }
436

437 table,
438 th,
439 tr,
440 td {
441 border-collapse: collapse;
442 vertical-align: top;
443 }
444 </style>
445

446 </body>
447

448 <script>
449 function search() {
450 const input = document.getElementById(�searchbar�);
451 const filter = input.value.toUpperCase();
452 const results = document.getElementsByClassName("results");
453 for (let i = 0; i < results.length; i++) {
454 let ips = results[i].querySelector("#ips")
455 if (ips.innerHTML.toUpperCase().indexOf(filter) > -1 || filter == "") {
456 results[i].style.display = "";
457 } else {
458 results[i].style.display = "none";
459 }
460 }
461 }

B.4. HTML template: single faculty report.html.j2 77

462 </script>
463

464

465 </html>

B.5. Script: simplify.py 78

B.5. Script: simplify.py

1 from functools import reduce
2 import xml.etree.ElementTree as ET
3 from os import listdir
4 from os import mkdir
5 from os.path import isfile, join, isdir
6 import sqlite3
7 import subprocess
8 import ipaddress
9 import re

10 import sys
11 import jinja2
12 from send_mail import send_mail
13 from datetime import datetime
14

15

16 # Result class to store all results retrieved from the database
17 class Results:
18 faculties: list = []
19 vuln_stats: list = []
20 vuln_stats_by_faculty: list = []
21 highest_impact_remediations: list = []
22 major_updates: list = []
23 minor_updates: list = []
24 high_priority_vulnerabilities: list = []
25 wide_spread_vulnerabilities: list = []
26 high_effort_remediations: list = []
27 remaining_vulnerabilities: list = []
28 stats: list = []
29

30

31 # A list of high risk vulnerabilities, that need to be focused on
32 HIGH_RISK_VULNS = [
33 ("remote", 10.0),
34 ("code execution", 10.0),
35 ("sqli", 10.0),
36 ("local", 10.0),
37 ("xss", 10.0),
38 ("denial of service", 10.0),
39 ("buffer overflow", 10.0),

B.5. Script: simplify.py 79

40 ("end of life", 5.0),
41 ("file write", 5.0),
42 ("file deletion", 5.0),
43 ("file modification", 5.0),
44 ("dangerous methods", 5.0),
45 ("dangerous http method", 5.0),
46 ("default credentials", 10.0),
47 ("privilege escalation", 10.0),
48]
49 # High Priority Threshold defines which vulnerabilities are considered
50 # high-priority in the SQL queries
51 HIGH_PRIORITY_THRESHOLD = 7.0
52 # Wide Spread Threshold defines how many occurences a vulnerability has to have
53 # tobe considered wide-spread in the SQL queries
54 WIDE_SPREAD_THRESHOLD = 10.0
55 # Reoccurence Factor is used to adjust the cost of remediation for
56 # reoccuring vulnerabilities
57 REOCCURENCE_FACTOR = 0.2
58 # Complexities
59 VENDOR_FIX = 1.0
60 MITIGATION = 2.0
61 WORKAROUND = 4.0
62 NONE_AVAILABLE = 9.0
63 WILL_NOT_FIX = 10.0
64

65 TEMPLATEFILE = "output_template.html.j2"
66

67 # Create output directory with current date if it does not exist
68 OUTPUTDIR = f"output_files-{datetime.today().strftime(�%Y-%m-%d�)}"
69 if not isdir(OUTPUTDIR):
70 mkdir(OUTPUTDIR)
71 OUTPUTFILE = "output"
72

73 # Read map from subnets to faculties that were scanned
74 with open("faculties.txt", "r") as f:
75 subnets = f.readlines()
76 SUBNETS = [x.strip().split("|") for x in subnets]
77

78 # Read map from faculty to email address
79 with open("emails.txt", "r") as f:
80 emails = f.readlines()
81 EMAIL_ADDRESSES = dict([tuple(x.strip().split("|")) for x in emails])
82

83 # Establish dummy database connection

B.5. Script: simplify.py 80

84 conn = sqlite3.connect(":memory:")
85

86

87 # Establish database connection, creates database if it does not exist
88 def connect_to_database():
89 global conn
90 conn = sqlite3.connect("results.db")
91

92

93 # Initializes the database, clears all tables.
94 def init_database():
95 global conn
96 conn.execute("DROP TABLE IF EXISTS results")
97 conn.execute(
98 """CREATE TABLE results
99 (

100 id text,
101 name text,
102 ip text,
103 hostname text,
104 port text,
105 subnet text,
106 severity real,
107 solution_type text,
108 solution_text text,
109 qod number,
110 faculty text,
111 priority real,
112 vulnerable_service text,
113 vulnerable_version text,
114 fixed_version text,
115 complexity real,
116 exploit_exists number,
117 processed number
118)"""
119)
120 conn.execute("DROP TABLE IF EXISTS cves")
121 conn.execute(
122 """CREATE TABLE IF NOT EXISTS cves (
123 result_id text,
124 cve text
125)"""
126)
127 conn.execute("DROP TABLE IF EXISTS solution_urls")

B.5. Script: simplify.py 81

128 conn.execute(
129 """CREATE TABLE IF NOT EXISTS solution_urls (
130 result_id text,
131 url text
132)"""
133)
134 conn.execute("DROP TABLE IF EXISTS tags")
135 conn.execute(
136 """CREATE TABLE IF NOT EXISTS tags (
137 result_id text,
138 tag text
139)"""
140)
141 conn.commit()
142

143

144 # Extracts the vulnerable version number from the vulnerability description
145 # returns None if no version is found
146 def get_vulnerable_version(description):
147 vulnerable_version = None
148 try:
149 # Check if installed version is in description
150 if "installed version" in description.lower():
151 # extract installed version from description
152 vulnerable_version = re.search(
153 "installed version:[]+([ˆ]*)\n", description.lower()
154).group(1)
155 # clean up version number (i.e. remove trailing text or version ranges)
156 if "-" in vulnerable_version:
157 vulnerable_version = vulnerable_version.split("-")[0]
158 vulnerable_version = vulnerable_version.replace("/[ˆ0-9.,]+/", "")
159 return vulnerable_version
160 except Exception:
161 return vulnerable_version
162

163

164 # Extracts the fixed version number from the vulnerability description or solution text
165 # returns None if no version is found
166 def get_fixed_version(description, solution_text):
167 fixed_version = None
168 # Check if fixed version is in description
169 try:
170 if "fixed version" in description.lower():
171 # extract fixed version from description

B.5. Script: simplify.py 82

172 fixed_version = re.search(
173 "fixed version:[]+([ˆ\n]*)", description.lower()
174).group(1)
175 # check if "eol version" is in description and assign placeholder version
176 if "eol version" in description.lower():
177 fixed_version = "99.99.99"
178 except Exception:
179 pass
180 if fixed_version is None:
181 # check if "update to version" or "update to" is in solution text
182 try:
183 if "update to version" in solution_text.lower():
184 # extract version to update to from solution text
185 fixed_version = re.search(
186 "update to version[]+([ˆ\n]*),", solution_text.lower()
187).group(1)
188 elif "update to" in solution_text.lower():
189 # extract version to update to from solution text
190 fixed_version = re.search(
191 "update to[]+([ˆ\n]*),", solution_text.lower()
192).group(1)
193 except Exception:
194 pass
195 try:
196 # clean up version number (i.e. remove trailing text or version ranges)
197 if "-" in fixed_version:
198 fixed_version = fixed_version.split("-")[0]
199 if "/" in fixed_version:
200 fixed_version = fixed_version.split("/")[0]
201 fixed_version = fixed_version.replace("/[ˆ0-9.,]+/", "")
202 except Exception:
203 pass
204 return fixed_version
205

206

207 # Determine which subnet an IP belongs to
208 # returns the subnet or None if no subnet is found
209 def get_subnet(ip):
210 try:
211 for sub in SUBNETS:
212 if ipaddress.ip_address(ip) in ipaddress.ip_network(sub[0]):
213 return sub
214 except Exception:
215 return None

B.5. Script: simplify.py 83

216

217

218 # Get all CVEs from the vulnerability references
219 # returns a list of CVEs or an empty list if no CVEs are found
220 def get_cves(refs):
221 cves = []
222 if refs is not None:
223 for ref in refs.findall("ref"):
224 try:
225 if ref.attrib["type"] == "cve":
226 cves.append(ref.attrib["id"])
227 except Exception:
228 pass
229 return cves
230

231

232 # Get all solution URLs from the vulnerability references
233 # returns a list of URLs or an empty list if no URLs are found
234 def get_solution_urls(refs):
235 solution_urls = []
236 if refs is not None:
237 for ref in refs.findall("ref"):
238 try:
239 if ref.attrib["type"] == "url":
240 solution_urls.append(ref.attrib["id"])
241 except Exception:
242 pass
243 return solution_urls
244

245

246 # Determine the complexity of remediation for a solution type
247 def get_complexity(solution_type):
248 match solution_type:
249 case "VendorFix":
250 return VENDOR_FIX
251 case "Mitigation":
252 return MITIGATION
253 case "Workaround":
254 return WORKAROUND
255 case "NoneAvailable":
256 return NONE_AVAILABLE
257 case "WillNotFix":
258 return WILL_NOT_FIX
259 case _:

B.5. Script: simplify.py 84

260 return None
261

262

263 cves_with_exploits = {
264 �unknown�: False,
265 }
266

267

268 # Check searchsploit for exploits for a given CVE (very slow, run in parallel)
269 def get_existing_exploits_by_cve(cve):
270 # check if cve has already been checked
271 if cve in cves_with_exploits:
272 return cves_with_exploits[cve]
273 try:
274 # run searchsploit in a subprocess for cve
275 result = subprocess.run(
276 [�searchsploit�, �--cve�, cve], stdout=subprocess.PIPE)
277 # retrieve result from stdout and check if exploits were found
278 result = result.stdout.decode(�utf-8�)
279 # since searchsploit returns a table, check if "Exploits: No Results"
280 # and "Shellcodes: No Results" are in the result
281 # if both are in the result, no exploits were found
282 if "Exploits: No Results" in result and "Shellcodes: No Results" in result:
283 cves_with_exploits[cve] = False
284 return False
285 cves_with_exploits[cve] = True
286 return True
287 except Exception:
288 return False
289

290

291 # Load all XML files in directory �results� into the xml_data array
292 # returns the xml_data array
293 def load_xml_data():
294 # get list of xml files in directory �results�
295 result_files = [
296 f for f in listdir("results") if isfile(join("results", f)) and f.endswith(".xml")
297]
298 # if no xml files are found, exit
299 if len(result_files) == 0:
300 print("No XML files found in directory �results�")
301 exit(1)
302 xml_data = []
303

B.5. Script: simplify.py 85

304 # for each xml file, load the <results> element into the xml_data array
305 try:
306 for result_file in result_files:
307 f = ET.parse(join("results", result_file))
308 tmp_root = f.getroot()
309 results = tmp_root.find("report").find("results")
310 for result in results.findall("result"):
311 xml_data.append(result)
312 except Exception:
313 print("XML files could not be parsed")
314 print("Please make sure all XML files can be parsed by the xPath query " +
315 "�/report results/result�")
316 print("If the XML files are not in the expected format, " +
317 "please change the xPath query in the function �load_xml_data�")
318 exit(1)
319 return xml_data
320

321

322 def determine_service(name):
323 return name.split(" ")[0].replace(":", "")
324

325

326 def get_email(faculty):
327 try:
328 return EMAIL_ADDRESSES[faculty]
329 except Exception:
330 return None
331

332

333 def print_progress(i, total_results):
334 print(f"Progress: {i+1}/{total_results} ({round(((i+1)/total_results)*100, 2)}%)",
335 end="\r" if i < total_results else "\n")
336

337

338 def pre_process():
339 xml_data = load_xml_data()
340 total_results = len(xml_data)
341

342 for result_elem in xml_data:
343 # extract the relevant data from the XML
344 # ==== IF THERE ARE CHANGES TO THE XML STRUCTURE OR PROBLEMS WHEN PARSING ====
345 # ==== THIS PART MIGHT NEED TO BE CHANGED ====
346 try:
347 # get the result id

B.5. Script: simplify.py 86

348 result_id = result_elem.attrib["id"]
349 # get the vulnerability name
350 name = result_elem.find("name").text
351 # get the host ip, hostname and port
352 ip = result_elem.find("host").text.strip()
353 host_name = result_elem.find("host").find("hostname").text
354 port = result_elem.find("port").text
355 # get the <nvt> element
356 nvt = result_elem.find("nvt")
357 # get the cvss score
358 severity = float(result_elem.find("severity").text)
359 # get the proposed solution type and text
360 solution_type = nvt.find("solution").attrib["type"]
361 solution_text = nvt.find("solution").text
362 # get the vulnerability tags and references
363 tags = nvt.find("tags").text.replace(
364 "\n", "").replace("\t", "").split("|")
365 refs = nvt.find("refs")
366 # get the quality of detection
367 qod = float(result_elem.find("qod").find("value").text) / 100.0
368 # get the description
369 if result_elem.find("description") is not None:
370 description = result_elem.find("description").text
371 else:
372 description = ""
373 except Exception:
374 print("XML files could not be parsed")
375 print("Please make sure all XML files can be parsed by the xPath query " +
376 "�/report results/result�")
377 print("If the XML files are not in the expected format, please change the xPath query" +
378 " in the function �pre_process�")
379 exit(1)
380 # ==== END OF PART ====
381

382 print_progress(xml_data.index(result_elem), total_results)
383

384 subnet = get_subnet(ip)
385 faculty = subnet[1]
386 subnet = subnet[0]
387

388 vulnerable_service = determine_service(name)
389

390 cves = get_cves(refs)
391

B.5. Script: simplify.py 87

392 solution_urls = get_solution_urls(refs)
393

394 vulnerable_version = get_vulnerable_version(description)
395

396 fixed_version = get_fixed_version(description, solution_text)
397

398 # determine complexity
399 complexity = get_complexity(solution_type)
400

401 # determine if there are existing exploits
402 # multithreading is used to speed up the process since
403 # searchsploit can take a long time to run
404 do_exploits_exist = False
405 if len(cves) > 0:
406 do_exploits_exist = reduce((lambda x, y: x or y), map(
407 get_existing_exploits_by_cve, cves))
408

409 # calculate priority
410 priority = 0.0
411

412 priority += severity
413

414 # take high risk vulns into account
415 for high_risk_vuln, risk in HIGH_RISK_VULNS:
416 if high_risk_vuln in name.lower():
417 priority += risk
418

419 # adjust priority based on quality of detection
420 priority *= qod
421

422 priority = round(priority, 2)
423

424 # insert result into database
425 conn.execute(
426 "INSERT INTO results VALUES " +
427 "(?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)",
428 (
429 result_id,
430 name,
431 ip,
432 host_name,
433 port,
434 subnet,
435 severity,

B.5. Script: simplify.py 88

436 solution_type,
437 solution_text,
438 qod,
439 faculty,
440 priority,
441 vulnerable_service,
442 vulnerable_version,
443 fixed_version,
444 complexity,
445 do_exploits_exist,
446 0
447),
448)
449 for cve in cves:
450 conn.execute("INSERT INTO cves VALUES (?, ?)",
451 (result_id, cve))
452

453 for url in solution_urls:
454 conn.execute("INSERT INTO solution_urls VALUES (?, ?)",
455 (result_id, url))
456

457 for tag in tags:
458 conn.execute("INSERT INTO tags VALUES (?, ?)",
459 (result_id, tag))
460

461 conn.commit()
462

463

464 def analyze():
465

466 # reset processed flag
467 conn.execute(
468 """UPDATE results
469 SET processed = 0
470 """
471)
472 conn.commit()
473

474 # create view for list of faculties
475 conn.execute(
476 """CREATE VIEW IF NOT EXISTS faculties AS
477 SELECT DISTINCT faculty
478 FROM results
479 ORDER BY faculty ASC

B.5. Script: simplify.py 89

480 """
481)
482

483 # create view for vulnerability stats by faculty
484 conn.execute("DROP VIEW IF EXISTS vuln_stats_by_faculty")
485 conn.execute(
486 """CREATE VIEW IF NOT EXISTS vuln_stats_by_faculty AS
487 WITH tmp AS (
488 SELECT
489 r.faculty as faculty,
490 COUNT(DISTINCT r.ip) as total_hosts,
491 COUNT(DISTINCT r.id) as total_vulns,
492 ROUND(SUM(r.priority),2) as total_priority,
493 ROUND(SUM(r.severity),2) as total_severity
494 FROM results as r
495 GROUP BY faculty
496)
497 SELECT
498 tmp.faculty as faculty,
499 tmp.total_hosts as total_hosts,
500 tmp.total_vulns as total_vulns,
501 tmp.total_priority as total_priority,
502 tmp.total_severity as total_severity,
503 ROUND((CAST(tmp.total_vulns as REAL) / CAST(tmp.total_hosts as REAL)), 2)
504 as vulns_per_host,
505 ROUND((tmp.total_priority / CAST(tmp.total_hosts as REAL)), 2)
506 as priority_per_host
507 FROM tmp
508 GROUP BY faculty
509 ORDER BY faculty ASC
510 """
511)
512

513 # create view for minor updates,
514 # i.e. updates that only increment the last version number
515 conn.execute("DROP TABLE IF EXISTS minor_updates")
516 conn.execute(
517 """CREATE TABLE minor_updates AS
518 WITH tmp_cves AS (
519 SELECT r.id as result_id,
520 -- concatenate all cves into one string, uses newline as delimiter
521 rtrim(replace(group_concat(DISTINCT c.cve||�@!�), �@!,�, x�0a�),�@!�) as "cves"
522 FROM results as r LEFT JOIN cves as c ON r.id = c.result_id
523 GROUP BY r.vulnerable_service, r.ip

B.5. Script: simplify.py 90

524),
525 tmp_solution_urls AS (
526 SELECT r.id as result_id,
527 -- concatenate all solution urls into one string, uses newline as delimiter
528 rtrim(replace(group_concat(DISTINCT s.url||�@!�), �@!,�, x�0a�),�@!�) as solutions
529 FROM results as r LEFT JOIN solution_urls as s ON r.id = s.result_id
530 GROUP BY r.vulnerable_service, r.ip
531)
532 SELECT
533 r.faculty as faculty,
534 r.ip as ip,
535 r.hostname as host_name,
536 r.vulnerable_service as service,
537 r.name as name,
538 r.port as port,
539 ROUND(MAX(r.priority), 2) as max_priority,
540 ROUND(SUM(r.priority), 2) as total_priority,
541 ROUND(AVG(r.priority), 2) as avg_priority,
542 COUNT(r.id) as occurences,
543 -- concatenate solution texts into one string, uses newline as delimiter
544 rtrim(replace(group_concat(DISTINCT r.solution_text||�@!�), �@!,�, x�0a�),�@!�)
545 as solution_text,
546 MIN(r.vulnerable_version) as installed_version,
547 MAX(r.fixed_version) as fixed_version,
548 MAX(c.cves) as "cves",
549 MAX(s.solutions) as solutions,
550 MAX(r.exploit_exists) as exploit_exists,
551 MAX(r.complexity) as cost,
552 r.severity as severity,
553 -- calculate RMS of cvss per hour
554 sqrt(SUM(pow(r.severity, 2)/r.complexity)) as cvss_per_hour
555 FROM results as r LEFT JOIN tmp_cves as c ON r.id = c.result_id
556 LEFT JOIN tmp_solution_urls as s ON r.id = s.result_id
557 WHERE r.solution_type = "VendorFix"
558 AND LOWER(r.solution_text) LIKE "update %"
559 GROUP BY r.ip, r.vulnerable_service, r.port
560 HAVING substr(installed_version, 0, instr(installed_version, ".")) =
561 substr(fixed_version, 0, instr(fixed_version, "."))
562 ORDER BY faculty, exploit_exists DESC, max_priority DESC
563 """
564)
565 conn.commit()
566 # mark results as processed
567 conn.execute(

B.5. Script: simplify.py 91

568 """UPDATE results as r
569 SET processed = 1
570 WHERE EXISTS (
571 SELECT *
572 FROM minor_updates as m
573 WHERE r.ip = m.ip and r.vulnerable_service = m.service and r.port = m.port
574)
575 """
576)
577 conn.commit()
578

579 # view minor_updates query for documentation
580 conn.execute("DROP TABLE IF EXISTS major_updates")
581 conn.execute(
582 """CREATE TABLE major_updates AS
583 WITH tmp_cves AS (
584 SELECT r.id as result_id,
585 rtrim(replace(group_concat(DISTINCT c.cve||�@!�), �@!,�, x�0a�),�@!�) as "cves"
586 FROM results as r LEFT JOIN cves as c ON r.id = c.result_id
587 GROUP BY r.vulnerable_service, r.ip
588),
589 tmp_solution_urls AS (
590 SELECT r.id as result_id,
591 rtrim(replace(group_concat(DISTINCT s.url||�@!�), �@!,�, x�0a�),�@!�) as solutions
592 FROM results as r LEFT JOIN solution_urls as s ON r.id = s.result_id
593 GROUP BY r.vulnerable_service, r.ip
594)
595 SELECT
596 r.faculty as faculty,
597 r.ip as ip,
598 r.hostname as host_name,
599 r.vulnerable_service as service,
600 r.name as name,
601 r.port as port,
602 ROUND(MAX(r.priority), 2) as max_priority,
603 ROUND(SUM(r.priority), 2) as total_priority,
604 ROUND(AVG(r.priority), 2) as avg_priority,
605 COUNT(r.id) as occurences,
606 rtrim(replace(group_concat(DISTINCT r.solution_text||�@!�), �@!,�, x�0a�),�@!�)
607 as solution_text,
608 MIN(r.vulnerable_version) as installed_version,
609 MAX(r.fixed_version) as fixed_version,
610 MAX(c.cves) as "cves",
611 MAX(s.solutions) as solutions,

B.5. Script: simplify.py 92

612 MAX(r.exploit_exists) as exploit_exists,
613 MAX(r.complexity) as cost,
614 r.severity as severity,
615 sqrt(SUM(pow(r.severity, 2)/r.complexity)) as cvss_per_hour
616 FROM results as r LEFT JOIN tmp_cves as c ON r.id = c.result_id
617 LEFT JOIN tmp_solution_urls as s ON r.id = s.result_id
618 WHERE r.processed = 0
619 AND r.solution_type = "VendorFix"
620 AND (LOWER(r.solution_text) LIKE "update %"
621 OR LOWER(r.solution_text) LIKE "upgrade %")
622 GROUP BY r.ip, r.vulnerable_service, r.port
623 ORDER BY faculty, exploit_exists DESC, max_priority DESC;
624 """
625)
626 conn.commit()
627 # mark results as processed
628 conn.execute(
629 """UPDATE results as r
630 SET processed = 1
631 WHERE EXISTS (
632 SELECT *
633 FROM major_updates as m
634 WHERE r.ip = m.ip and r.vulnerable_service = m.service and r.port = m.port
635)
636 """
637)
638 conn.commit()
639 # view minor_updates query for documentation
640 conn.execute("DROP TABLE IF EXISTS high_priority_vulnerabilities")
641 conn.execute(
642 f"""CREATE TABLE high_priority_vulnerabilities AS
643 WITH tmp_cves AS (
644 SELECT r.id as result_id,
645 rtrim(replace(group_concat(DISTINCT c.cve||�@!�), �@!,�, x�0a�),�@!�) as "cves"
646 FROM results as r LEFT JOIN cves as c ON r.id = c.result_id
647 WHERE r.processed = 0
648 GROUP BY r.vulnerable_service, r.ip
649),
650 tmp_solution_urls AS (
651 SELECT r.id as result_id,
652 rtrim(replace(group_concat(DISTINCT s.url||�@!�), �@!,�, x�0a�),�@!�) as solutions
653 FROM results as r LEFT JOIN solution_urls as s ON r.id = s.result_id
654 WHERE r.processed = 0
655 GROUP BY r.vulnerable_service, r.ip

B.5. Script: simplify.py 93

656)
657 SELECT
658 r.faculty as faculty,
659 r.ip as ip,
660 r.hostname as host_name,
661 r.vulnerable_service as service,
662 rtrim(replace(group_concat(DISTINCT r.name||�@!�), �@!,�, x�0a�),�@!�) as names,
663 r.port as port,
664 ROUND(MAX(r.priority), 2) as max_priority,
665 ROUND(SUM(r.priority), 2) as total_priority,
666 ROUND(AVG(r.priority), 2) as avg_priority,
667 COUNT(r.id) as occurences,
668 rtrim(replace(group_concat(DISTINCT r.solution_text||�@!�), �@!,�, x�0a�),�@!�)
669 as solution_text,
670 MIN(r.vulnerable_version) as installed_version,
671 MAX(r.fixed_version) as fixed_version,
672 MAX(c.cves) as "cves",
673 MAX(s.solutions) as solutions,
674 MAX(r.exploit_exists) as exploit_exists,
675 MAX(r.complexity) as cost,
676 r.severity as severity,
677 sqrt(SUM(pow(r.severity, 2)/r.complexity)) as cvss_per_hour
678 FROM results as r LEFT JOIN tmp_cves as c ON r.id = c.result_id
679 LEFT JOIN tmp_solution_urls as s ON r.id = s.result_id
680 WHERE r.processed = 0
681 GROUP BY r.vulnerable_service, r.ip
682 HAVING (max_priority >= {HIGH_PRIORITY_THRESHOLD}
683 OR exploit_exists = 1) AND cost < 5.0
684 ORDER BY faculty, exploit_exists DESC, max_priority DESC
685 """
686)
687 conn.commit()
688 # mark results as processed
689 conn.execute(
690 """UPDATE results as r
691 SET processed = 1
692 WHERE EXISTS (
693 SELECT *
694 FROM high_priority_vulnerabilities as v
695 WHERE r.ip = v.ip AND r.vulnerable_service = v.service
696);
697 """
698)
699 conn.commit()

B.5. Script: simplify.py 94

700 # view minor_updates query for documentation
701 conn.execute("DROP TABLE IF EXISTS wide_spread_vulnerabilities")
702 conn.execute(
703 f"""CREATE TABLE wide_spread_vulnerabilities AS
704 WITH tmp_cves AS (
705 SELECT r.id as result_id,
706 rtrim(replace(group_concat(DISTINCT c.cve||�@!�), �@!,�, x�0a�),�@!�) as "cves"
707 FROM results as r LEFT JOIN cves as c ON r.id = c.result_id
708 WHERE r.processed = 0
709 GROUP BY r.name, r.faculty
710),
711 tmp_solution_urls AS (
712 SELECT r.id as result_id,
713 rtrim(replace(group_concat(DISTINCT s.url||�@!�), �@!,�, x�0a�),�@!�) as solutions
714 FROM results as r LEFT JOIN solution_urls as s ON r.id = s.result_id
715 WHERE r.processed = 0
716 GROUP BY r.name, r.faculty
717)
718 SELECT
719 r.faculty as faculty,
720 rtrim(replace(group_concat(DISTINCT r.ip||�@!�), �@!,�, x�0a�),�@!�)
721 as ip,
722 rtrim(replace(group_concat(DISTINCT r.hostname||�@!�), �@!,�, x�0a�),�@!�)
723 as host_name,
724 r.vulnerable_service as service,
725 r.name as name,
726 rtrim(replace(group_concat(DISTINCT r.port||�@!�), �@!,�, x�0a�),�@!�)
727 as port,
728 ROUND(MAX(r.priority), 2) as max_priority,
729 ROUND(SUM(r.priority), 2) as total_priority,
730 ROUND(AVG(r.priority), 2) as avg_priority,
731 COUNT(r.id) as occurences,
732 rtrim(replace(group_concat(DISTINCT r.solution_text||�@!�), �@!,�, x�0a�),�@!�)
733 as solution_text,
734 MIN(r.vulnerable_version) as installed_version,
735 MAX(r.fixed_version) as fixed_version,
736 MAX(c.cves) as "cves",
737 MAX(s.solutions) as solutions,
738 MAX(r.exploit_exists) as exploit_exists,
739 AVG(r.complexity) as cost,
740 r.severity as severity,
741 sqrt(SUM(pow(r.severity, 2)/r.complexity)) as cvss_per_hour
742 FROM results as r LEFT JOIN tmp_cves as c ON r.id = c.result_id
743 LEFT JOIN tmp_solution_urls as s ON r.id = s.result_id

B.5. Script: simplify.py 95

744 WHERE r.processed = 0
745 GROUP BY r.name, r.faculty
746 HAVING occurences > {WIDE_SPREAD_THRESHOLD}
747 ORDER BY faculty, exploit_exists DESC, occurences DESC, max_priority DESC, cost ASC
748 """
749)
750 conn.commit()
751 # mark results as processed
752 conn.execute(
753 """UPDATE results as r
754 SET processed = 1
755 WHERE EXISTS (
756 SELECT *
757 FROM wide_spread_vulnerabilities as v
758 WHERE r.faculty = v.faculty AND r.name = v.name
759);
760 """
761)
762 conn.commit()
763

764 # view minor_updates query for documentation
765 conn.execute("DROP TABLE IF EXISTS high_effort_remediations")
766 conn.execute(
767 f"""CREATE TABLE high_effort_remediations AS
768 WITH tmp_cves AS (
769 SELECT r.id as result_id,
770 rtrim(replace(group_concat(DISTINCT c.cve||�@!�), �@!,�, x�0a�),�@!�) as "cves"
771 FROM results as r LEFT JOIN cves as c ON r.id = c.result_id
772 WHERE r.processed = 0
773 GROUP BY r.name, r.faculty
774),
775 tmp_solution_urls AS (
776 SELECT r.id as result_id,
777 rtrim(replace(group_concat(DISTINCT s.url||�@!�), �@!,�, x�0a�),�@!�) as solutions
778 FROM results as r LEFT JOIN solution_urls as s ON r.id = s.result_id
779 WHERE r.processed = 0
780 GROUP BY r.name, r.faculty
781)
782 SELECT
783 r.faculty as faculty,
784 r.ip as ip,
785 r.hostname as host_name,
786 r.vulnerable_service as service,
787 r.name as name,

B.5. Script: simplify.py 96

788 r.port as port,
789 ROUND(MAX(r.priority), 2) as max_priority,
790 ROUND(SUM(r.priority), 2) as total_priority,
791 ROUND(AVG(r.priority), 2) as avg_priority,
792 COUNT(r.id) as occurences,
793 rtrim(replace(group_concat(DISTINCT r.solution_text||�@!�), �@!,�, x�0a�),�@!�)
794 as solution_text,
795 MIN(r.vulnerable_version) as installed_version,
796 MAX(r.fixed_version) as fixed_version,
797 MAX(c.cves) as "cves",
798 MAX(s.solutions) as solutions,
799 MAX(r.exploit_exists) as exploit_exists,
800 MAX(r.complexity) as cost,
801 r.severity as severity,
802 sqrt(SUM(pow(r.severity, 2)/r.complexity)) as cvss_per_hour
803 FROM results as r LEFT JOIN tmp_cves as c ON r.id = c.result_id
804 LEFT JOIN tmp_solution_urls as s ON r.id = s.result_id
805 WHERE r.processed = 0
806 GROUP BY r.name, r.faculty
807 HAVING cost >= 5.0
808 ORDER BY faculty, exploit_exists DESC, cost DESC, max_priority DESC
809 """
810)
811 conn.commit()
812

813 conn.execute(
814 """UPDATE results as r
815 SET processed = 1
816 WHERE EXISTS (
817 SELECT *
818 FROM high_effort_remediations as v
819 WHERE r.ip = v.ip AND r.faculty = v.faculty AND r.name = v.name
820);
821 """
822)
823 conn.commit()
824 # view minor_updates query for documentation
825 conn.execute("DROP TABLE IF EXISTS remaining_vulnerabilities")
826 conn.execute(
827 f"""CREATE TABLE remaining_vulnerabilities AS
828 WITH tmp_cves AS (
829 SELECT r.id as result_id,
830 rtrim(replace(group_concat(DISTINCT c.cve||�@!�), �@!,�, x�0a�),�@!�) as "cves"
831 FROM results as r LEFT JOIN cves as c ON r.id = c.result_id

B.5. Script: simplify.py 97

832 WHERE r.processed = 0
833),
834 tmp_solution_urls AS (
835 SELECT r.id as result_id,
836 rtrim(replace(group_concat(DISTINCT s.url||�@!�), �@!,�, x�0a�),�@!�) as solutions
837 FROM results as r LEFT JOIN solution_urls as s ON r.id = s.result_id
838 WHERE r.processed = 0
839)
840 SELECT
841 r.faculty as faculty,
842 r.ip as ip,
843 r.hostname as host_name,
844 r.vulnerable_service as service,
845 r.name as name,
846 r.port as port,
847 r.priority as max_priority,
848 r.priority as total_priority,
849 r.priority as avg_priority,
850 1 as occurences,
851 r.solution_text as solution_text,
852 r.vulnerable_version as installed_version,
853 r.fixed_version as fixed_version,
854 c.cves as "cves",
855 s.solutions as solutions,
856 r.exploit_exists as exploit_exists,
857 r.complexity as cost,
858 r.severity as severity,
859 (r.severity/r.complexity) as cvss_per_hour
860 FROM results as r LEFT JOIN tmp_cves as c ON r.id = c.result_id
861 LEFT JOIN tmp_solution_urls as s ON r.id = s.result_id
862 WHERE r.processed = 0
863 ORDER BY faculty, exploit_exists DESC, max_priority DESC;
864 """
865)
866 conn.commit()
867

868 # the following query is used to generate stats about the results
869 conn.execute(
870 f"""CREATE TABLE IF NOT EXISTS stats (
871 wide_spread_threshold,
872 high_priority_threshold,
873

874 total_severity_before,
875 avg_severity_before,

B.5. Script: simplify.py 98

876 total_priority_before,
877 avg_priority_before,
878 cost_before,
879 total_vulns_before,
880 high_severity_vulns_before,
881 medium_severity_vulns_before,
882 low_severity_vulns_before,
883 cvss_per_hour_before,
884 total_severity_after,
885 avg_severity_after,
886 total_priority_after,
887 avg_priority_after,
888 cost_after,
889 total_vulns_after,
890 high_severity_vulns_after,
891 medium_severity_vulns_after,
892 low_severity_vulns_after,
893 cost_of_remediation,
894 will_not_fix,
895 none_available,
896 workaround,
897 mitigation,
898 vendor_fix,
899 total_vulns_to_remediate,
900 cvss_per_hour,
901 effectiveness
902)
903 """
904)
905

906 conn.execute(
907 f""" INSERT INTO stats
908 WITH totals_before AS (
909 SELECT
910 ROUND(SUM(severity), 2) as total_severity,
911 ROUND(AVG(severity), 2) as avg_severity,
912 ROUND(SUM(priority), 2) as total_priority,
913 ROUND(AVG(priority), 2) as avg_priority,
914 ROUND(SUM(complexity), 2) as total_cost,
915 COUNT(*) as total_vulns,
916 -- count of high severity vulns
917 COUNT(IIF(severity >= 7.0, 1, NULL)) as high_severity_vulns,
918 -- count of medium severity vulns
919 COUNT(IIF(severity >= 4.0 AND severity < 7.0, 1, NULL))

B.5. Script: simplify.py 99

920 as medium_severity_vulns,
921 -- count of low severity vulns
922 COUNT(IIF(severity < 4.0, 1, NULL)) as low_severity_vulns,
923 -- RMSE of CVSS per hour
924 sqrt(SUM(pow(severity, 2)/complexity) / COUNT(*)) as cvss_per_hour
925 FROM results
926),
927 -- documenation for the following query can be found in the previous query
928 totals_after AS (
929 SELECT
930 ROUND(SUM(severity), 2) as total_severity,
931 ROUND(AVG(severity), 2) as avg_severity,
932 ROUND(SUM(priority), 2) as total_priority,
933 ROUND(AVG(priority), 2) as avg_priority,
934 ROUND(SUM(complexity), 2) as total_cost,
935 COUNT(*) as total_vulns,
936 COUNT(IIF(severity >= 7.0, 1, NULL)) as high_severity_vulns,
937 COUNT(IIF(severity >= 4.0 AND severity < 7.0, 1, NULL))
938 as medium_severity_vulns,
939 COUNT(IIF(severity < 4.0, 1, NULL)) as low_severity_vulns
940 FROM results
941 WHERE processed = 0
942),
943 -- calculate the cost of remediation, CVSS per hour, and total vulns to remediate
944 total_remediation AS (
945 WITH tmp as (
946 SELECT
947 MAX(cost) as total_cost,
948 SUM(cost = {WILL_NOT_FIX}) as will_not_fix,
949 SUM(cost = {NONE_AVAILABLE}) as none_available,
950 SUM(cost = {WORKAROUND}) as workaround,
951 SUM(cost = {MITIGATION}) as mitigation,
952 SUM(cost = {VENDOR_FIX}) as vendor_fix,
953 COUNT(*) as total_vulns,
954 SUM(cvss_per_hour) as cvss_per_hour
955 FROM minor_updates
956 UNION
957 SELECT
958 MAX(cost) as total_cost,
959 SUM(cost = {WILL_NOT_FIX}) as will_not_fix,
960 SUM(cost = {NONE_AVAILABLE}) as none_available,
961 SUM(cost = {WORKAROUND}) as workaround,
962 SUM(cost = {MITIGATION}) as mitigation,
963 SUM(cost = {VENDOR_FIX}) as vendor_fix,

B.5. Script: simplify.py 100

964 COUNT(*) as total_vulns,
965 SUM(cvss_per_hour) as cvss_per_hour
966 FROM major_updates
967 UNION
968 SELECT
969 (MAX(cost) + (AVG(cost) * (SUM(occurences)-1)) * {REOCCURENCE_FACTOR})
970 as total_cost,
971 SUM(cost = {WILL_NOT_FIX}) as will_not_fix,
972 SUM(cost = {NONE_AVAILABLE}) as none_available,
973 SUM(cost = {WORKAROUND}) as workaround,
974 SUM(cost = {MITIGATION}) as mitigation,
975 SUM(cost = {VENDOR_FIX}) as vendor_fix,
976 COUNT(*) as total_vulns,
977 SUM(cvss_per_hour) as cvss_per_hour
978 FROM high_priority_vulnerabilities
979 UNION
980 SELECT
981 (MAX(cost) + (AVG(cost) * (SUM(occurences)-1)) * {REOCCURENCE_FACTOR})
982 as total_cost,
983 SUM(cost = {WILL_NOT_FIX}) as will_not_fix,
984 SUM(cost = {NONE_AVAILABLE}) as none_available,
985 SUM(cost = {WORKAROUND}) as workaround,
986 SUM(cost = {MITIGATION}) as mitigation,
987 SUM(cost = {VENDOR_FIX}) as vendor_fix,
988 COUNT(*) as total_vulns,
989 SUM(cvss_per_hour) as cvss_per_hour
990 FROM wide_spread_vulnerabilities
991 UNION
992 SELECT
993 (MAX(cost) + (AVG(cost) * (SUM(occurences)-1)) * {REOCCURENCE_FACTOR})
994 as total_cost,
995 SUM(cost = {WILL_NOT_FIX}) as will_not_fix,
996 SUM(cost = {NONE_AVAILABLE}) as none_available,
997 SUM(cost = {WORKAROUND}) as workaround,
998 SUM(cost = {MITIGATION}) as mitigation,
999 SUM(cost = {VENDOR_FIX}) as vendor_fix,

1000 COUNT(*) as total_vulns,
1001 SUM(cvss_per_hour) as cvss_per_hour
1002 FROM high_effort_remediations
1003)
1004 SELECT SUM(total_cost) as total_cost,
1005 SUM(will_not_fix) as will_not_fix,
1006 SUM(none_available) as none_available,
1007 SUM(workaround) as workaround,

B.5. Script: simplify.py 101

1008 SUM(mitigation) as mitigation,
1009 SUM(vendor_fix) as vendor_fix,
1010 SUM(total_vulns) as total_vulns,
1011 SUM(cvss_per_hour) / SUM(total_vulns) as cvss_per_hour
1012 FROM tmp
1013)
1014 SELECT
1015 {WIDE_SPREAD_THRESHOLD} as wide_spread_threshold,
1016 {HIGH_PRIORITY_THRESHOLD} as high_priority_threshold,
1017

1018 totals_before.total_severity as total_severity_before,
1019 totals_before.avg_severity as avg_severity_before,
1020 totals_before.total_priority as total_priority_before,
1021 totals_before.avg_priority as avg_priority_before,
1022 totals_before.total_cost as cost_before,
1023 totals_before.total_vulns as total_vulns_before,
1024 totals_before.high_severity_vulns as high_severity_vulns_before,
1025 totals_before.medium_severity_vulns as medium_severity_vulns_before,
1026 totals_before.low_severity_vulns as low_severity_vulns_before,
1027 totals_before.cvss_per_hour as cvss_per_hour_before,
1028 totals_after.total_severity as total_severity_after,
1029 totals_after.avg_severity as avg_severity_after,
1030 totals_after.total_priority as total_priority_after,
1031 totals_after.avg_priority as avg_priority_after,
1032 totals_after.total_cost as cost_after,
1033 totals_after.total_vulns as total_vulns_after,
1034 totals_after.high_severity_vulns as high_severity_vulns_after,
1035 totals_after.medium_severity_vulns as medium_severity_vulns_after,
1036 totals_after.low_severity_vulns as low_severity_vulns_after,
1037 ROUND(SUM(total_remediation.total_cost),2) as cost_of_remediation,
1038 ROUND(SUM(total_remediation.will_not_fix),2) as will_not_fix,
1039 ROUND(SUM(total_remediation.none_available),2) as none_available,
1040 ROUND(SUM(total_remediation.workaround),2) as workaround,
1041 ROUND(SUM(total_remediation.mitigation),2) as mitigation,
1042 ROUND(SUM(total_remediation.vendor_fix),2) as vendor_fix,
1043 ROUND(SUM(total_remediation.total_vulns),2) as total_vulns_to_remediate,
1044 ROUND(total_remediation.cvss_per_hour, 2) as cvss_per_hour,
1045 -- calculate effectiveness, prioritizing high severity vulns
1046 (
1047 3.0 * CAST(totals_before.high_severity_vulns as REAL)
1048 / (totals_before.high_severity_vulns - totals_after.high_severity_vulns)
1049 + 2.0 * CAST(totals_before.medium_severity_vulns as REAL)
1050 / (totals_before.medium_severity_vulns - totals_after.medium_severity_vulns)
1051 + CAST(totals_before.low_severity_vulns as REAL)

B.5. Script: simplify.py 102

1052 / (totals_before.low_severity_vulns - totals_after.low_severity_vulns)
1053) as effectiveness
1054 FROM totals_before, totals_after, total_remediation
1055 """
1056)
1057

1058 conn.commit()
1059

1060

1061 def close_db():
1062 conn.close()
1063

1064

1065 # get results from database
1066 # return Results object
1067 def get_results() -> Results:
1068 results = Results()
1069

1070 for row in conn.execute("SELECT * FROM faculties"):
1071 results.faculties.append(row[0])
1072

1073 for row in conn.execute("SELECT * FROM vuln_stats_by_faculty"):
1074 results.vuln_stats_by_faculty.append(row)
1075

1076 for row in conn.execute("SELECT * FROM major_updates"):
1077 results.major_updates.append(row)
1078

1079 for row in conn.execute("SELECT * FROM minor_updates"):
1080 results.minor_updates.append(row)
1081

1082 for row in conn.execute("SELECT * FROM high_priority_vulnerabilities"):
1083 results.high_priority_vulnerabilities.append(row)
1084

1085 for row in conn.execute("SELECT * FROM wide_spread_vulnerabilities"):
1086 results.wide_spread_vulnerabilities.append(row)
1087

1088 for row in conn.execute("SELECT * FROM high_effort_remediations"):
1089 results.high_effort_remediations.append(row)
1090

1091 for row in conn.execute("SELECT * FROM remaining_vulnerabilities"):
1092 results.remaining_vulnerabilities.append(row)
1093

1094 for row in conn.execute("SELECT * FROM stats"):
1095 results.stats.append(row)

B.5. Script: simplify.py 103

1096

1097 return results
1098

1099

1100 # make a dictionary from a row of the database results
1101 # dictionary keys have to match the keys in the output templates
1102 def make_result_dict(row) -> dict:
1103 return {
1104 "host_ips": [line for line in row[1].split(�\n�) if line.strip()],
1105 "host_names": [�Unknown�] if row[2] is None else
1106 [line for line in row[2].split(�\n�) if line.strip()][:20],
1107 "host_service": row[3],
1108 "vuln_description": row[4],
1109 "port": [line for line in row[5].split(�\n�) if line.strip()],
1110 "max_priority": row[6],
1111 "total_priority": row[7],
1112 "avg_priority": row[8],
1113 "vuln_occurrences": row[9],
1114 "solution_texts": [�None�] if row[10] is None else
1115 [line for line in row[10].split(�\n�) if line.strip()],
1116 "oldest_installed_version": row[11],
1117 "latest_fixed_version": row[12] if row[12] != "99.99.99" and row[12] is not None
1118 else "EOL or Version Independent Problem, see Solutions for details",
1119 "cves": [�None�] if row[13] is None else row[13].splitlines()[:20],
1120 "solution_urls": [�None�] if row[14] is None else row[14].splitlines()[:20],
1121 "exploit_exists": row[15],
1122 "effort": row[16],
1123 }
1124

1125

1126 def export_results(results: Results):
1127 results_by_faculty = {}
1128 # make sure there is a key for each faculty
1129 faculties = results.faculties
1130 faculties = [�Unknown� if v is None else v for v in faculties]
1131 for faculty in faculties:
1132 results_by_faculty[faculty] = {}
1133

1134 # add vuln stats to each faculty
1135 for row in results.vuln_stats_by_faculty:
1136 faculty = �Unknown� if row[0] is None else row[0]
1137 results_by_faculty[faculty]["vuln_stats"] = {}
1138 results_by_faculty[faculty]["vuln_stats"]["total_hosts"] = row[1]
1139 results_by_faculty[faculty]["vuln_stats"]["total_vulns"] = row[2]

B.5. Script: simplify.py 104

1140 results_by_faculty[faculty]["vuln_stats"]["total_priority"] = row[3]
1141 results_by_faculty[faculty]["vuln_stats"]["total_severity"] = row[4]
1142 results_by_faculty[faculty]["vuln_stats"]["avg_vulns"] = row[5]
1143 results_by_faculty[faculty]["vuln_stats"]["avg_priority"] = row[6]
1144

1145 # add results to each faculty
1146 for row in results.major_updates:
1147 faculty = �Unknown� if row[0] is None else row[0]
1148 if "major_updates" not in results_by_faculty[faculty]:
1149 results_by_faculty[faculty]["major_updates"] = []
1150 results_by_faculty[faculty]["major_updates"].append(
1151 make_result_dict(row)
1152)
1153

1154 for row in results.minor_updates:
1155 faculty = �Unknown� if row[0] is None else row[0]
1156 if "minor_updates" not in results_by_faculty[faculty]:
1157 results_by_faculty[faculty]["minor_updates"] = []
1158 results_by_faculty[faculty]["minor_updates"].append(
1159 make_result_dict(row)
1160)
1161

1162 for row in results.high_priority_vulnerabilities:
1163 faculty = �Unknown� if row[0] is None else row[0]
1164 if "high_priority_vulnerabilities" not in results_by_faculty[faculty]:
1165 results_by_faculty[faculty]["high_priority_vulnerabilities"] = []
1166 results_by_faculty[faculty]["high_priority_vulnerabilities"].append(
1167 make_result_dict(row)
1168)
1169

1170 for row in results.wide_spread_vulnerabilities:
1171 faculty = �Unknown� if row[0] is None else row[0]
1172 if "wide_spread_vulnerabilities" not in results_by_faculty[faculty]:
1173 results_by_faculty[faculty]["wide_spread_vulnerabilities"] = []
1174 results_by_faculty[faculty]["wide_spread_vulnerabilities"].append(
1175 make_result_dict(row)
1176)
1177

1178 for row in results.high_effort_remediations:
1179 faculty = �Unknown� if row[0] is None else row[0]
1180 if "high_effort_remediations" not in results_by_faculty[faculty]:
1181 results_by_faculty[faculty]["high_effort_remediations"] = []
1182 results_by_faculty[faculty]["high_effort_remediations"].append(
1183 make_result_dict(row)

B.5. Script: simplify.py 105

1184)
1185

1186 for row in results.remaining_vulnerabilities:
1187 faculty = �Unknown� if row[0] is None else row[0]
1188 if "remaining_vulnerabilities" not in results_by_faculty[faculty]:
1189 results_by_faculty[faculty]["remaining_vulnerabilities"] = []
1190 results_by_faculty[faculty]["remaining_vulnerabilities"].append(
1191 make_result_dict(row)
1192)
1193

1194 # determine the number of each vulnerability type per ip address
1195 for faculty in results_by_faculty:
1196 ips = {}
1197 for vuln_type in results_by_faculty[faculty]:
1198 # skip vuln_stats
1199 if vuln_type == "vuln_stats":
1200 continue
1201 for vuln in results_by_faculty[faculty][vuln_type]:
1202 for ip in vuln["host_ips"]:
1203 if ip not in ips:
1204 ips[ip] = {
1205 "max_priority": vuln["max_priority"],
1206 "exploit_exists": vuln["exploit_exists"],
1207 }
1208 if vuln_type not in ips[ip]:
1209 ips[ip][vuln_type] = 0
1210 ips[ip][vuln_type] += 1
1211 if vuln["max_priority"] > ips[ip]["max_priority"]:
1212 ips[ip]["max_priority"] = vuln["max_priority"]
1213 # sort ips by max priority
1214 results_by_faculty[faculty]["ips"] = sorted(
1215 ips.items(), key=lambda x: x[1]["max_priority"], reverse=True)
1216

1217 template_input = {
1218 "results": results_by_faculty,
1219 "faculties": faculties,
1220 }
1221

1222 # load template for all faculties
1223 templateLoader = jinja2.FileSystemLoader(searchpath="./")
1224 templateEnv = jinja2.Environment(loader=templateLoader)
1225 template = templateEnv.get_template(TEMPLATEFILE)
1226 # render template
1227 outputText = template.render(items=template_input)

B.5. Script: simplify.py 106

1228 outfile = join(OUTPUTDIR, f"{OUTPUTFILE}.html")
1229 with open(outfile, "w") as f:
1230 f.write(outputText)
1231

1232 # send email
1233 email = get_email(faculty)
1234 if email is not None:
1235 send_mail(outfile, email, faculty)
1236

1237 # load template for each faculty
1238 for faculty in faculties:
1239 if faculty == �Unknown�:
1240 continue
1241 template = templateEnv.get_template(f"single_faculty_{TEMPLATEFILE}")
1242 outputText = template.render(
1243 faculty=faculty, results=results_by_faculty[faculty])
1244 outfile = join(
1245 OUTPUTDIR, f"""{OUTPUTFILE}-{faculty.replace("/", "_")}.html""")
1246 with open(outfile, "w") as f:
1247 f.write(outputText)
1248 # send email
1249 email = get_email(faculty)
1250 if email is not None:
1251 send_mail(outfile, email, faculty)
1252

1253

1254 if __name__ == "__main__":
1255

1256 args = sys.argv
1257

1258 if len(args) < 2:
1259 print("\nRunning full prioritization\n")
1260 print("\nConnecting to database...\n")
1261 connect_to_database()
1262 print("\nInitializing database...\n")
1263 init_database()
1264 print("\nPre Processing... (this may take a while)\n")
1265 pre_process()
1266 print("\nAnalyzing results...\n")
1267 analyze()
1268 results = get_results()
1269 print("\nExporting results...\n")
1270 export_results(results)
1271 close_db()

B.5. Script: simplify.py 107

1272 exit(0)
1273

1274 arg = args[1]
1275

1276 if arg == "help":
1277 print(
1278 "\nUsage: python3 prioritize.py [full|init|update|test|analyze]\n")
1279 exit(0)
1280

1281 if arg in ["full", "init ", "update", "test", "analyze", "threshold_efficiency"]:
1282 print("\nConnecting to database...\n")
1283 connect_to_database()
1284

1285 if arg in ["full", "init", "test"]:
1286 print("\nInitializing database...\n")
1287 init_database()
1288

1289 if arg in ["full", "update", "test"]:
1290 print("\nPre Processing... (this may take a while)\n")
1291 pre_process()
1292

1293 if arg in ["full", "analyze", "update", "test"]:
1294 print("\nAnalyzing results...\n")
1295 analyze()
1296

1297 if arg == "threshold_efficiency":
1298 for i in range(1, 19, 2):
1299 for k in range(10, 41, 5):
1300 HIGH_PRIORITY_THRESHOLD = i
1301 WIDE_SPREAD_THRESHOLD = k
1302 analyze()
1303

1304 if arg in ["threshold_efficiency",]:
1305 results = get_results()
1306 for result in results.stats:
1307 print(f"{result}")
1308

1309 if arg in ["full", "analyze", "update", "test"]:
1310 results = get_results()
1311 print("\nExporting results...\n")
1312 export_results(results)
1313

1314 if arg in ["full", "init", "update", "test", "analyze", "threshold_efficiency"]:
1315 close_db()

B.5. Script: simplify.py 108

1316

1317 exit(0)

B.6. Script: send mail.py 109

B.6. Script: send mail.py

1 import smtplib
2 import ssl
3

4 from email import encoders
5 from email.mime.base import MIMEBase
6 from email.mime.multipart import MIMEMultipart
7 from email.mime.text import MIMEText
8

9 from get_envs import get_envs
10

11 env = get_envs()
12

13

14 def send_mail(file, email_address, faculty):
15 message = MIMEMultipart()
16 message["From"] = env[�EMAIL_ADDR�]
17 message["To"] = email_address
18 message["Subject"] = f"Vulnerability Report für die Einrichtung: {faculty}"
19

20 # Add body to email
21 message.attach(
22 MIMEText(f"{open(�mail_body.txt�, �r�).read()}\r\n", "plain"))
23

24 filename = file # In same directory as script
25

26 # Read attachement
27 with open(filename, "rb") as attachment:
28 part = MIMEBase("application", "octet-stream")
29 part.set_payload(attachment.read())
30 encoders.encode_base64(part)
31

32 # Set filename for attachement
33 part.add_header(
34 "Content-Disposition",
35 f"attachment; filename= {filename}",
36)
37

38 # Add attachement to message
39 message.attach(part)

B.7. Script: get envs.py 110

40

41 # Convert message to string
42 text = message.as_string()
43

44 # Send mail over SMTP
45 context = ssl.create_default_context()
46 with smtplib.SMTP(env[�EMAIL_HOST�], env[�EMAIL_PORT�]) as server:
47 server.ehlo()
48 server.starttls(context=context)
49 server.ehlo()
50 server.login(env[�EMAIL_ADDR�], env[�PASSWORD�])
51 server.sendmail(env[�EMAIL_ADDR�], email_address, text)

B.7. Script: get envs.py

1 def get_envs():
2 result_dict = {}
3 with open(".env", �r�) as file:
4 for line in file:
5 line = line.strip()
6 if line:
7 key, value = line.split(�=�)
8 result_dict[key.strip()] = value.strip()
9 return result_dict

References

[Lin04] Pete Lindstrom. Network vs. Host-Based Vulnerability Management.
Malvern, PA, USA, 2004.

[Sca+08] Karen Scarfone et al. Technical Guide to Information Security Test-
ing and Assessment. National Institure of Standards and Technology,
2008.

[Hol+11] H. Holm et al. “A quantitative evaluation of vulnerability scanning”.
In: Information Management & Computer Security, Vol. 19 No. 4.
2011, pp. 231–247. doi: 10.1108/09685221111173058.

[Sch+11] Klaus Schwab et al. Personal Data: The Emergence of a New Asset
Class. Tech. rep. Cologny/Geneva, Switzerland: World Economic Fo-
rum, 2011.

[Kro13] Hans Georg Krojanski. Physische IT Sicherheit. Sicherheitstage WS
2012/13. 2013.

[MK15] Yuma Makino and Vitaly Klyuev. “Evaluation of web vulnerability
scanners”. In: 2015 IEEE 8th International Conference on Intelligent
Data Acquisition and Advanced Computing Systems: Technology and
Applications (IDAACS). Vol. 1. 2015, pp. 399–402. doi: 10.1109/
IDAACS.2015.7340766.

[MGS15] Yisroel Mirsky, Noam Gross, and Asaf Shabtai. “Up-High to Down-
Low: Applying Machine Learning to an Exploit Database”. In: Inno-
vative Security Solutions for Information Technology and Communi-
cations. Ed. by Ion Bica, David Naccache, and Emil Simion. Cham:
Springer International Publishing, 2015, pp. 184–200. isbn: 978-3-319-
27179-8.

111

https://doi.org/10.1108/09685221111173058
https://doi.org/10.1109/IDAACS.2015.7340766
https://doi.org/10.1109/IDAACS.2015.7340766

References 112

[Alm+17] Mohammed Almukaynizi et al. “Predicting Cyber Threats through
Hacker Social Networks in Darkweb and Deepweb Forums”. In: Pro-
ceedings of the 2017 International Conference of The Computational
Social Science Society of the Americas. CSS 2017. Santa Fe, NM, USA:
Association for Computing Machinery, 2017. isbn: 9781450352697.
doi: 10.1145/3145574.3145590. url: https://doi.org/10.1145/
3145574.3145590.

[Har+18] Christopher R. Harrell et al. “Vulnerability Assessment, Remediation,
and Automated Reporting: Case Studies of Higher Education Insti-
tutions”. In: 2018 IEEE International Conference on Intelligence and
Security Informatics (ISI). 2018, pp. 148–153. doi: 10.1109/ISI.
2018.8587380.

[Alp+19] Kenneth Alperin et al. “Risk Prioritization by Leveraging Latent Vul-
nerability Features in a Contested Environment”. In: AISec’19. Lon-
don, United Kingdom: Association for Computing Machinery, 2019,
pp. 49–57. isbn: 9781450368339. doi: 10.1145/3338501.3357365.
url: https://doi.org/10.1145/3338501.3357365.

[Bad20] Land Baden-Württemberg. “Hochschulfinanzierungsvereinbarung Baden-
Württemberg 2021–2025”. In: Vereinbarung des Landes Baden-Würt-
temberg mit den Hochschulen des Landes Baden-Württemberg vom 31.
März 202. Land Baden-Württemberg, 2020.

[CDN20] Agust́ın Chancusi, Paúl Diestra, and Damián Nicolalde. “Vulnerability
analysis of the exposed public IPs in a higher education institution”.
In: 2020 the 10th International Conference on Communication and
Network Security. 2020, pp. 83–90.

[Ger+20] Cornelia Gerdenitsch et al. “Work gamification: E�ects on enjoyment,
productivity and the role of leadership”. In: Electronic Commerce Re-
search and Applications 43 (2020), p. 100994. issn: 1567-4223. doi:
https://doi.org/10.1016/j.elerap.2020.100994. url: https://
www.sciencedirect.com/science/article/pii/S1567422320300715.

[OWA20] OWASP. Vulnerability Scanning Tools. 2020. url: https://owasp.
org/www- community/Vulnerability_Scanning_Tools (visited on
06/01/2023).

https://doi.org/10.1145/3145574.3145590
https://doi.org/10.1145/3145574.3145590
https://doi.org/10.1145/3145574.3145590
https://doi.org/10.1109/ISI.2018.8587380
https://doi.org/10.1109/ISI.2018.8587380
https://doi.org/10.1145/3338501.3357365
https://doi.org/10.1145/3338501.3357365
https://doi.org/https://doi.org/10.1016/j.elerap.2020.100994
https://www.sciencedirect.com/science/article/pii/S1567422320300715
https://www.sciencedirect.com/science/article/pii/S1567422320300715
https://owasp.org/www-community/Vulnerability_Scanning_Tools
https://owasp.org/www-community/Vulnerability_Scanning_Tools

References 113

[CIS21] CISA. Reducing the Significant Risk of Known Exploited Vulnerabili-
ties. Cybersecurity & Infrastructure Security Agency, 2021.

[Spr+21] Jonathan Spring et al. “Time to Change the CVSS?” In: IEEE Security
& Privacy 19.2 (2021), pp. 74–78. doi: 10.1109/MSEC.2020.3044475.

[Gre22a] Greenbone. Reports and Vulnerability Management. 2022. url: https:
//docs.greenbone.net/GCS-Manual/gcs/en/reports.html (visited
on 04/24/2023).

[Gre22b] Greenbone. Reports and Vulnerability Management. 2022. url: https:
//docs.greenbone.net/GSM-Manual/gos-21.04/en/scanning.
html (visited on 05/20/2023).

[Lat22] Lyudmil Latinov. MD5, SHA-1, SHA-256 and SHA-512 speed perfor-
mance. 2022. url: https://automationrhapsody.com/md5-sha-1-
sha-256-sha-512-speed-performance/ (visited on 06/29/2023).

[Rey+22] Jorge Reyes et al. “An Environment-Specific Prioritization Model for
Information-Security Vulnerabilities Based on Risk Factor Analysis”.
In: Electronics 11.9 (2022). issn: 2079-9292. doi: 10.3390/electronics11091334.
url: https://www.mdpi.com/2079-9292/11/9/1334.

[Sha+22] Ankit Shah et al. “Vulnerability Selection for Remediation: An Em-
pirical Analysis”. In: The Journal of Defense Modeling and Simula-
tion 19.1 (2022), pp. 13–22. doi: 10.1177/1548512919874129. url:
https://doi.org/10.1177/1548512919874129.

[Wag22] Jan-Oliver Wagner. Active and Passive Vulnerability Scans – One Step
Ahead of Cyber Criminals. 2022. url: https://www.greenbone.net/
en/blog/active-passive-scans/ (visited on 06/01/2023).

[Jac+23] Jay Jacobs et al. Enhancing Vulnerability Prioritization: Data-Driven
Exploit Predictions with Community-Driven Insights. 2023. arXiv: 2302.
14172 [cs.CR].

[Krs23] Stefan Krstevski. Warum Universitäten und Forschungsinstitute be-
liebte Ziele für Hacker sind. 2023. url: https://www.dataguard.de/
blog/beliebt-bei-hackern-wie-sich-unis-forschungsinstitute-
schuetzen-sollten (visited on 04/24/2023).

https://doi.org/10.1109/MSEC.2020.3044475
https://docs.greenbone.net/GCS-Manual/gcs/en/reports.html
https://docs.greenbone.net/GCS-Manual/gcs/en/reports.html
https://docs.greenbone.net/GSM-Manual/gos-21.04/en/scanning.html
https://docs.greenbone.net/GSM-Manual/gos-21.04/en/scanning.html
https://docs.greenbone.net/GSM-Manual/gos-21.04/en/scanning.html
https://automationrhapsody.com/md5-sha-1-sha-256-sha-512-speed-performance/
https://automationrhapsody.com/md5-sha-1-sha-256-sha-512-speed-performance/
https://doi.org/10.3390/electronics11091334
https://www.mdpi.com/2079-9292/11/9/1334
https://doi.org/10.1177/1548512919874129
https://doi.org/10.1177/1548512919874129
https://www.greenbone.net/en/blog/active-passive-scans/
https://www.greenbone.net/en/blog/active-passive-scans/
https://arxiv.org/abs/2302.14172
https://arxiv.org/abs/2302.14172
https://www.dataguard.de/blog/beliebt-bei-hackern-wie-sich-unis-forschungsinstitute-schuetzen-sollten
https://www.dataguard.de/blog/beliebt-bei-hackern-wie-sich-unis-forschungsinstitute-schuetzen-sollten
https://www.dataguard.de/blog/beliebt-bei-hackern-wie-sich-unis-forschungsinstitute-schuetzen-sollten

References 114

[Wal23] Chris Wallis. Vulnerability Scanning Frequency Best Practices. 2023.
url: https://www.intruder.io/blog/vulnerability-scanning-
frequency-best-practices (visited on 06/27/2023).

[Connd] SQLite Consortium. About SQLite. n.d. url: https://www.sqlite.
org/about.html (visited on 06/26/2023).

[Ecknd] Oliver Eck. DBSYS2 – 3. Analytische Datenbanken. n.d.

[Grend] Greenbone. OpenVAS - Open Vulnerability Assessment Scanner. n.d.
url: https://www.openvas.org (visited on 04/17/2023).

[Konnd] Bert Kondruss. Cyberangri�e auf Universitäten. n.d. url: https://
konbriefing.com/de-topics/cyber-angriffe-universitaeten.
html (visited on 04/24/2023).

[Lyond] Gordon Lyon. Nmap: Discover your network. n.d. url: https : / /
nmap.org (visited on 04/17/2023).

[Micnd] Microsoft. Microsoft Security Intelligence. n.d. url: https://www.
microsoft.com/en-us/wdsi/threats (visited on 04/24/2023).

[NISnd] NIST. NVD - Vulnerability Metrics. n.d. url: https://nvd.nist.
gov/vuln-metrics/cvss (visited on 06/26/2023).

[O�nd] O�Sec. About The Exploit Database. n.d. url: https://www.exploit-
db.com/about-exploit-db (visited on 06/27/2023).

[Prend] Tom Preston-Werner. Semantic Versioning 2.0.0. n.d. url: https:
//semver.org (visited on 06/18/2023).

https://www.intruder.io/blog/vulnerability-scanning-frequency-best-practices
https://www.intruder.io/blog/vulnerability-scanning-frequency-best-practices
https://www.sqlite.org/about.html
https://www.sqlite.org/about.html
https://www.openvas.org
https://konbriefing.com/de-topics/cyber-angriffe-universitaeten.html
https://konbriefing.com/de-topics/cyber-angriffe-universitaeten.html
https://konbriefing.com/de-topics/cyber-angriffe-universitaeten.html
https://nmap.org
https://nmap.org
https://www.microsoft.com/en-us/wdsi/threats
https://www.microsoft.com/en-us/wdsi/threats
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://www.exploit-db.com/about-exploit-db
https://www.exploit-db.com/about-exploit-db
https://semver.org
https://semver.org

	Introduction
	Related Works
	Structure
	Technical Terms and Tools used for Research

	Vulnerability Scanning
	Vulnerability Scanning: An Introduction
	Types of Vulnerability Scanning
	Importance to Institutions of Higher Education

	Complexity of Remediation
	Estimating Vulnerability Scan Report Length
	Actual Vulnerability Scan Report Length
	Comparison and Handling of Scan Results

	Simplification & Prioritization
	Defining Usefulness of Prioritization Methods
	Result Prioritization
	Priority Score
	Complexity

	Simplification of Results
	Vulnerability Scanning
	Data Categorization

	Expectancy Towards the Report

	Methodology
	Prerequisites
	Implementation of the Simplification Framework
	Vulnerability Pre-Processing
	Vulnerability Prioritization and Analysis
	Report Creation

	Results
	Usefulness
	Report Length

	Conclusion and Future Work
	Appendix
	Data
	Single Result
	subnets.txt
	faculties.txt
	emails.txt
	.env
	Sample Report

	Code
	Script: split_subnets.sh
	SQL Query: Major Updates
	HTML template: output_template.html.j2
	HTML template: single_faculty_report.html.j2
	Script: simplify.py
	Script: send_mail.py
	Script: get_envs.py

	References

