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Abstract
Black-box variational inference (BBVI) is a technique to approximate the posterior 
of Bayesian models by optimization. Similar to MCMC, the user only needs to 
specify the model; then, the inference procedure is done automatically. In contrast 
to MCMC, BBVI scales to many observations, is faster for some applications, and 
can take advantage of highly optimized deep learning frameworks since it can be 
formulated as a minimization task. In the case of complex posteriors, however, 
other state-of-the-art BBVI approaches often yield unsatisfactory posterior 
approximations. This paper presents Bernstein flow variational inference (BF-
VI), a robust and easy-to-use method flexible enough to approximate complex 
multivariate posteriors. BF-VI combines ideas from normalizing flows and Bernstein 
polynomial-based transformation models. In benchmark experiments, we compare 
BF-VI solutions with exact posteriors, MCMC solutions, and state-of-the-art BBVI 
methods, including normalizing flow-based BBVI. We show for low-dimensional 
models that BF-VI accurately approximates the true posterior; in higher-dimensional 
models, BF-VI compares favorably against other BBVI methods. Further, using 
BF-VI, we develop a Bayesian model for the semi-structured melanoma challenge 
data, combining a CNN model part for image data with an interpretable model 
part for tabular data, and demonstrate, for the first time, the use of BBVI in semi-
structured models.

Keywords Variational inference · Deep learning · Transformation models · Bayesian 
neural network

1 Introduction

Uncertainty quantification is essential, especially if model predictions are used 
to support high-stakes decision-making. Quantifying uncertainty in statistical or 
machine learning models is often achieved by Bayesian approaches, where pos-
terior distributions represent the uncertainty of the estimated model parameters. 
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Determining the exact posterior distributions is often impossible when the poste-
rior takes a complex shape and the model has many parameters. This is especially 
true for complex models such as Bayesian neural networks (NNs) or semi-struc-
tured models that combine an interpretable model part with deep NNs. Variational 
inference (VI) is a commonly used approach to approximate complex distributions 
through optimization (Jordan et al. 1999; Blei et al. 2017). In VI, the complex poste-
rior is approximated by a variational distribution by minimizing a divergence meas-
ure between the variational and the true posterior distribution. VI is currently a very 
active research field tackling different challenges, which can be categorized into the 
following groups: (1) constructing variational distributions that are flexible enough 
to match the true posterior distribution, (2) defining optimal variational objective 
for tuning the variational distribution, which boils down to finding the most suited 
divergence measure quantifying the difference between a variational distribution 
and posterior, and (3) developing robust and accurate stochastic optimization frame-
works for the variational objective (Dhaka et al. 2020; Blei et al. 2016; Welandawe 
et al. 2022). Here, we focus on challenge (1) and propose a method to construct a 
variational distribution that is flexible enough to accurately and robustly approxi-
mate complex multidimensional posteriors.

To avoid model-specific calculations, we design our method as a black-
box VI (BBVI) approach (Ranganath et  al. 2014). In BBVI, the approximative 
posterior is determined by stochastic gradient descent. The user simply defines 
the Bayesian model by specifying the likelihood and the prior, after which all 
subsequent calculations are carried out automatically. Due to its simplicity, BBVI 
is implemented in many packages for Bayesian modeling, like Stan (Carpenter et al. 
2017) and Pyro (Bingham et al. 2019) as an alternative to MCMC. Given BBVI’s 
scalability to large datasets and its widespread applicability, it has emerged as the 
preferred technique in the field of machine learning (Welandawe et al. 2022).

Our approach uses transformation models (TMs) to construct complex posteriors. 
Transformation models (TMs) have been introduced for fitting potentially complex 
outcome distributions for probabilistic regression models (Hothorn et  al. 2014). 
Since then, they have been mainly used to model different outcome types, such 
as ordinal (Kook et  al. 2022; Buri et  al. 2020), count (Siegfried and Hothorn 
2020), continuous (Lohse et  al. 2017), or time-to-event outcomes (Campanella 
et al. 2022) based on tabular predictors. Moreover, TMs have been used to model 
multidimensional distributions (Klein et al. 2019). Neural networks can be used to 
extend TMs to model outcomes for unstructured predictors (e.g., images or text) or a 
combination of tabular and unstructured predictors (Sick et al. 2021; Baumann et al. 
2021; Kook et al. 2022; Rügamer et al. 2021).

The basic idea of TMs is to learn a flexible and monotone transformation 
function that transforms between a simple latent distribution and a potentially 
complex conditional outcome distribution. In TMs, the transformation function is 
parameterized as an expansion of basis functions. In the case of continuous target 
distributions, most often, Bernstein polynomials (Bernšteın 1912) are used because 
they can easily be constrained to be strictly monotone, and their flexibility can be 
tuned via the order M. A large order M ensures an accurate approximation of the 
distribution, which is robust against a further increase of M (Hothorn et al. 2018; 
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Ramasinghe et al. 2021); this is also demonstrated in our experiments for the BBVI 
setting.

Independently of TMs, normalizing flows (NFs) have been developed in the deep 
learning community. NFs and TMs rely on the same idea, but NFs usually construct 
the transformation by chaining many simple functions, while TMs construct one 
rather complex transformation function. In NFs, each simple function, such as 
shifting and scaling, incrementally adds to the complexity of the final transformation. 
Among the prominent NF implementations are RealNVP (Dinh et  al. 2016) and 
Masked Autoregressive Flow (MAF) (Papamakarios et al. 2017). RealNVP stands 
out for its efficient, invertible transformations facilitated by a specialized neural 
network architecture. Its key advantage lies in the efficient computation of the 
Jacobian matrix’s determinant, essential for direct density estimation in the change 
of variable function (see 6). This efficiency is achieved by iteratively splitting the 
components of the data into two parts. In each step, the first part of the components 
is used to train a neural network computing the scale and shift parameters of the 
transformation. This transformation is then applied to the other components, while 
the first part remains unaltered. This procedure is repeated multiple times with 
different partitioning, leading to a triangular Jacobian, thus enabling efficient and 
invertible transformations. In contrast, MAF adopts a fundamentally different 
approach to construct transformations (Papamakarios et  al. 2017). It utilizes a 
sequential (autoregressive) framework, facilitated by neural networks. In MAF 
each output component relies exclusively on its preceding components, a concept 
often referred to as causality in this context. This design also leads to a triagonal 
Jacobian matrix and thus a fast computation of the change of variable equation. The 
MAF ensures that the nth output of NN is solely dependent on the first n − 1 inputs, 
yielding an autoregressive model. However, some NF approaches use a single 
flexible transformation, such as sum-of-squares polynomials (Jaini et  al. 2019) or 
splines (Durkan et al. 2019). Recently, also Bernstein-based polynomials have been 
used for modeling unconditional multivariate density distributions (Ramasinghe 
et al. 2021).

NFs were initially introduced for variational inference to approximate potentially 
complex distributions of latent variables in models such as variational autoencoders 
(Rezende and Mohamed 2015; Van Den Berg et al. 2018). In the past, often members 
from simple distribution families have been used to approximate the posterior 
in BBVI. In the "Bayes by Backprop" method, Blundell et  al. used independent 
Gaussians to approximate the posterior of the weights in a Bayesian Neural 
Network (BNN). They determined the parameters of these Gaussians using BBVI 
(Blundell et al. 2015). This approach was made more flexible by using a multivariate 
Gaussians (Louizos and Welling 2017) as variational distribution. While it is clear 
that TMs or NFs have the potential to construct flexible variational distributions, the 
first attempts to use NF-based BBVI were proposed only recently (Agrawal et  al. 
2020). These NF-based BBVI approaches compare favorably against existing BBVI 
methods but require a complex training scheme and sometimes exhibit pathological 
behavior (Dhaka et al. 2021).

Here, we introduce Bernstein flow variational inference (BF-VI), which, for the first 
time, uses TMs in BBVI. We use TMs based on Bernstein polynomials to construct a 
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variational distribution that closely approximates a potentially complex posterior in 
Bayesian models. The proposed method is computationally efficient and applicable to 
typical statistical models. The proposed method yields superior results in our experi-
ments compared to existing NF approaches (Dhaka et al. 2021). Using BF-VI we fur-
ther demonstrate, for the first time, how VI can be used to fit Bayesian semi-structured 
models where interpretable statistical model parts (based on tabular data) and deep 
NN model parts (based on images) are jointly fitted. We define our method in Sect. 2.1 
for one-dimensional examples and generalize it to Bayesian models with multivariate 
posteriors in Sect. 2.2. In Sect. 3, we benchmark our BF-VI approach against exact 
Bayesian models, MCMC-Simulations, Gaussian-VI, and NF-based BBVI, showing 
accurate posterior approximations in low dimensions and superior approximations in 
higher dimensions when compared to NF-based BBVI and summarize in Sect. 4.

2  Bernstein flow variational inference

In the following, we describe the Bernstein Flow-VI (BF-VI) approach, which we 
propose for accurately and robustly approximating potentially complex posteriors 
in Bayesian models. The main idea is to enable the VI procedure to approximate 
the joined posterior of the p model parameters by a flexible variational distribution. 
This is done by modeling the transformation function from a predefined simple 
latent distribution to a potentially complex variational distribution. The number of 
parameters p in the Bayesian model determines the dimension of both the latent and 
the variational distribution.

We first explain BF-VI for Bayesian models with a single parameter and hence 
a one-dimensional posterior and then generalize to models with multivariate 
posteriors. The code is publicly available on GitHub.1

2.1  One‑dimensional Bernstein flows

BF-VI approximates the bijective transformation function g ∶ Z → � between a 
latent variable Z ∈ ℝ with predefined distribution FZ ∶ ℝ → [0, 1] with log-concave 
and continuous density fZ , and the model parameter � ∈ ℝ with a potentially com-
plex distribution F� ∶ ℝ → [0, 1] so that FZ(z) = F�(g(z)) . Figure 1 visualizes this 
transformation on the scale of the densities, where fZ(z) = f�(g(z)) ∣

�g(z)

�z
∣ according 

to the change-of-variable formula.
Hothorn et al. (2018) give theoretical guarantees for the existence and uniqueness 

of g = F−1
�
◦FZ . However, g cannot be computed directly if F� is not known (in our 

application F� is the unknown distribution of the posterior). The core of BF-VI is to 
approximate g, shown in Fig. 1, by fBP Bernstein polynomials (BP)2 as

1 https:// github. com/ tenso rchie fs/ bfvi_ paper.
2 Some authors make a distinction between Bernstein polynomials in which �

i
 is fixed by the values 

of the function to be approximated and call expressions like expressions like in (1), where �
i
 is a fitting 

parameter, polynomials of Bernstein type.

https://github.com/tensorchiefs/bfvi_paper
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with Be i(z) = Be (i+1,M−i+1)(z) being the density of a Beta distribution with 
parameters i + 1 and M − i + 1 . To preserve the bijectivity of g, we use in BF-VI 
w.l.o.g. a strict monotone increasing BP to approximate g. With the approximation 
of the transformation function g by fBP , it holds that fZ(z) can be approximated by 
f�(fBP(z)) ∣

�fBP(z)

�z
∣.

Using a BP for approximating g gives the following theoretical guarantees 
(Farouki 2012) (1) With increasing order M of the BP, the approximation fBP to g 
gets arbitrarily close (the BP have been introduced for this very purpose in the con-
structive proof of the Weierstrass theorem by Bernšteın (1912)); (2) the required 

(1)fBP(z) =

M∑

i=0

Be i(z)
�i

M + 1

Fig. 1  Overview of the transformation model. A Shows the bijective transformation function g ∶ Z → � 
(or its approximation fBP ) mapping between, B a predefined latent density fZ , and C a potentially com-
plex posterior (or its variational distribution)
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strict monotonicity of the approximation fBP can be easily achieved by constraining 
the coefficients �i of the BP to be increasing; (3) BPs are robust versus perturbations 
of the coefficients �i ; (4) the approximation error decreases with 1/M (Voronovs-
kaya’s theorem). See Bernšteın (1912); Farouki (2012) for more detailed discussions 
of the beneficial properties of BPs in general and Hothorn et al. (2018); Ramasinghe 
et al. (2021) for transformation models.

While the output of fBP(z) is unrestricted, a BP requires a input z within [0, 1]. 
We experimented with several approaches to ensure the restriction z ∈ [0, 1] result-
ing in slightly different behavior during the training (see Appendix  B.2.2). Based 
on these experiments, we decided to obtain z ∈ [0, 1] by sampling values from 
a standard normal distribution, z�� ∼ N(0, 1) , then apply the affine transforma-
tion l(z��) = � ⋅ z�� + � , followed by a sigmoid �(z�) = 1∕(1 + e−z

�

) . Altogether, we 
approximate the transformation g by f ∶ Z → � via f = fBP◦�◦l , which we call 
Bernstein flow.

To allow the application of unconstrained stochastic gradient descent optimi-
zation, which is typically used in the deep learning domain, we enforce the strict 
monotonicity of the flow f as follows: We optimize unrestricted parameters of f, i.e., 
��
0
,…��

M
 , �′, �′ , and apply the following transformations to determine the param-

eters of the bijective flow: �0 = ��
0
 , and �i = �i−1 + softplus (��

i
) for i = 1,… ,M for 

getting a strictly increasing BP and � = softplus (��) , � = �� for getting an increas-
ing affine transformation.

In Appendix  A, we show that the resulting variational distribution is a tight 
approximation to the posterior in the sense that the KL divergence between q�(�) 
and p(� ∣ D) decreases with the order of the BP via 1/M.

2.2  Multivariate generalization

In the case of a Bayesian model with p parameters, �1, �2,… , �p , the Bernstein flow 
bijectively maps a p-dimensional Z′ to a p-dimensional � . We realize this flow by 
choosing p independent standard normal Gaussians as simple latent distribution for 
the p-dimensional Z′ and apply on each component an affine transformation followed 
by a sigmoid function to achieve a [0,1] restricted Z . The possible complex depend-
encies in � are modeled in the multivariate generalization fBP of the one-dimensional 
Bernstein polynomial (see Eq. 2 for the definition of the jth component of fBP).

To achieve an efficient computation, we use a triangular map for constructing coef-
ficients �j

i
 j = 2,… p , i = 0,⋯ ,M from Z . This ensures that the jth BP determining 

�j only depends on the first j-1 components of Z (see Eq. 2). It is known that bijec-
tive triangular maps with sufficient flexibility can map a simple p-dimensional dis-
tribution into arbitrary complex p-dimensional target distributions (Bogachev et al. 

(2)�j = fBPj(z1∶j) =
1

M + 1

M∑

i=0

�
j

i
(z1,… , zj−1)Be i(zj)
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2005). We use a masked autoregressive flow (MAF) (Papamakarios et al. 2017) to 
map Z to the BP coefficients �j

i
 j = 2,… p , i = 0,⋯ ,M from Z . The MAF architec-

ture ensures that
that �j

i
 depend only on those components of the latent variables zj′ with j′ ≤ j (as 

required in Eq. 2). Note that the first coefficients in all BPs �1 do not depend on z and 
are therefore not modeled via the MAF. Therefore, the Jacobian ∇fBP w.r.t. z is a tri-
angular matrix, and hence det∇fBP is given by the product of the diagonal elements 
of the Jacobian allowing for efficient computation of the resulting p-dimensional 
variational distribution q�(�) via the multivariate version of the change of variable 
formula (see Eq. 6). The flexibility of such a p-dimensional bijective Bernstein flow 
is only limited by the order M of the Bernstein polynomial and the complexity of 
the MAF. In our experiments, we use an MAF with two hidden layers, each with 10 
neurons. The weights w of the MAF are part of the variational parameters for fBP . In 
total, we have � = (�1,w,�, �) variational parameters.

2.3  Variational inference procedure

In VI the variational parameters � are tuned such that the resulting variational dis-
tribution q�(�) is as close to the posterior p(� ∣ D) as possible. Here, we do this 
by minimizing the KL divergence between the variational distribution and the 
(unknown) posterior:

The KL divergence is commonly used in VI, and a recent study showed that it 
is easier to train than other divergences and applicable to higher-dimensional 
distributions (Dhaka et al. 2021).

Instead of minimizing (3) usually only the evidence lower bound (ELBO) is max-
imized (Blundell et al. 2015) which consists of the expected value of the log-likeli-
hood, ��∼q�

(log(p(D ∣ �))) , minus the KL divergence between the variational distri-
bution q�(�) and the prior p(�) . Note that the ELBO does not explicitly contain the 
unknown posterior. In practice, we minimize the negative ELBO using stochastic 
gradient descent facilitated by automatic differentiation. For consistency with Dhaka 
et al. (2021), we use TensorFlow’s RMSprop in all our experiments, configured with 
the default settings. We follow the BBVI approach and approximate the expected 
log-likelihood by averaging over S samples �s ∼ q�(�) via

(3)

KL(q�(�)||p(� ∣ D)) =∫ q�(�) log

(
q�(�)

p(� ∣ D)

)
d�

= log(p(D)) −
(
��∼q�

(log(p(D ∣ �))) − KL(q�(�)||p(�))
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ELBO (�)

(4)��∼q�
(log(p(Di ∣ �))) ≈

1

S

∑

s,i

log
(
p(Di ∣ �s)

)
.
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Hereby, we also assume the usual independence of the i = 1,…N training data 
points Di . To get these samples �s , we use S samples z′

s
 from the latent distribution, 

apply the transformation f = fBP◦�◦l , and then compute the corresponding param-
eter samples via �s = f(zs) . We use the same samples �s ∼ q�(�) to approximate the 
Kullback–Leibler divergence between the variational distribution q�(�) and the prior 
p(�) via:

where the probability density q�(�s) can be calculated, from the samples �s using the 
change of variable function as:

2.4  Evaluation

Evaluating the quality of the fitted variational distributions requires a comparison 
to the true posterior. In the case of low-dimensional problems, the two distributions 
can be compared visually. In the case of higher-dimensional problems, this is not 
possible anymore. While the evidence lower bound (ELBO) is a valuable metric for 
optimizing the parameters in VI, it is less helpful in comparing different approxi-
mations because it depends on the specific parametrization of the model (Yao et al. 
2018). Therefore, Yao et al. (2018) introduced k̂ as a more suited approach for com-
parison, which since then has been used in other studies like (Dhaka et al. 2021) to 
which we compare. The computation of k̂ is based on the importance ratios which 
are defined as

If the variational distribution q�(�) would be a perfect approximation of the poste-
rior p(� ∣ D) ∝ p(D ∣ �)p(�) , then important ratios rs would be constant. However, 
because of the asymmetry of the KL divergence used in the optimization objec-
tive (see Eq. 3), the fitted q�(�) tends to have lighter tails than p(� ∣ D) , with the 
effect that the distribution of rs is heavily right-tailed. To quantify the severity of the 
underestimated tails, a generalized Pareto distribution is fitted to the right tail of the 
rs . The estimated shape parameter k̂ of the Pareto distribution can be used as a diag-
nostic tool. A large k̂ indicates a pronounced tail in the rs distribution and, hence, a 
bad posterior approximation. According to Yao et al. (2018) values of k̂ < 0.5 indi-
cate that the variational approximation q� is good. Values of 0.5 < k̂ < 0.7 indicate 
the variational approximation q� is not perfect but still useful.

(5)KL(q�(�)||p(�)) ≈
1

S

∑

s

log

(
q�(�s)

p(�s)

)

(6)q�(�s) = p(z�
s
)⋅ ∣ det∇

z�
fBP(�(l(z

�
s
))) ∣−1

(7)rs =
p(�s,D)

q�(�s)
=

p(D ∣ �s)p(�s)

q�(�s)
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3  Experiments

We performed several experiments to benchmark our BF-VI approach versus exact 
Bayesian solutions, Gaussian-VI, and recent NF-VI approaches. All experiments 
were conducted using five repetitions, with the observed stability of evidence lower 
bound (ELBO) optimization generally appearing independent of the randomly 
chosen starting values. Table  1 shows an overview of the fitted models. The 
complete model definitions in Stan, along with the code for all experiments, can be 
found on GitHub.

3.1  Models with a single parameter

First, we demonstrate with two single-parameter experiments that BF-VI can 
accurately approximate a skewed or bimodal posterior, which is impossible with 
Gaussian-VI. To obtain complex posterior shapes, we work with small datasets.

Bernoulli experiment

We first look at an unconditional Bayesian model for a random variable Y following 
a Bernoulli distribution Y ∼ Ber (�) which we fit based on data D consisting only 
of two samples ( y1 = 1 , y2 = 1 ). In this simple Bernoulli model, it is possible to 
determine the solution for the posterior analytically when using a beta distribution 
as prior. We choose p(�) = Be (1.1,1.1)(�) which leads to the conjugated posterior 
p(� ∣ D) = Be (�+

∑
yi,�+n−

∑
yi)
(�) (see analytical posterior in Fig. 2).

We now use BF-VI to approximate the posterior. To ensure that the modeled 
variational distribution for � is restricted to the support of � ∈ [0, 1] , we pipe the 
result of the flow through an additional sigmoid transformation. Figure  2 shows 
the achieved variational distributions after minimizing the negative ELBO and 
demonstrates the robustness of BF-VI: When increasing the order M of the BP, the 
resulting variational distribution gets closer to the posterior up to a certain value 
of M and then does not deteriorate when further increasing M. The left part of 
Fig. 2 indicates a convergence order of M, which can also be proven for the one-
dimensional case (see Appendix  A). As expected, the Gaussian-VI does not have 
enough flexibility to approximate the analytical posterior nicely (see Fig. 2).

Cauchy experiment

Here, we follow an example from Yao et al. (2022) and fit an unconditional Cauchy 
model Y ∼ Cauchy(�, �) to six samples which we have drawn from a mixture of two 
Cauchy distributions Y ∼ Cauchy(�1 = −2.5, � = 0.5) + Cauchy(�2 = 2.5, � = 0.5) . 
Due to the misspecification of the model, the true posterior of the parameter � has 
a bimodal shape which we have determined via MCMC (see Fig. 3). We use BF-VI 
and Gaussian-VI to approximate the posterior of the Cauchy parameter � by a vari-
ational distribution. As in the Bernoulli experiment, also here, BF-VI has enough 
flexibility to accurately approximate the complex shape of the posterior when M is 



 O. Dürr et al.

1 3

Ta
bl

e 
1 

 O
ve

rv
ie

w
 o

f t
he

 fi
tte

d 
B

ay
es

ia
n 

m
od

el
s i

n 
th

e 
be

nc
hm

ar
k 

ex
pe

rim
en

ts
 a

nd
 th

e 
m

et
ho

ds
 u

se
d 

to
 g

et
 th

e 
po

ste
rio

rs

M
C

M
C

 o
r a

na
ly

tic
al

 s
ol

ut
io

ns
 a

re
 u

se
d 

as
 g

ro
un

d 
tru

th
, a

ga
in

st 
w

hi
ch

 th
e 

qu
al

ity
 o

f d
iff

er
en

t V
I a

pp
ro

xi
m

at
io

ns
 is

 c
om

pa
re

d 
(b

ol
d-

fa
ce

d 
m

et
ho

ds
 o

ut
pe

rfo
rm

 a
ll 

ot
he

rs
). 

Th
e 

di
ffe

re
nt

 V
I a

pp
ro

xi
m

at
io

ns
 a

re
 e

ith
er

 c
om

pa
re

d 
by

 th
e 

ac
hi

ev
ed

 k̂
 (s

ee
 S

ec
t. 

2.
4)

 o
r v

is
ua

lly
 b

y 
in

sp
ec

tin
g 

th
ei

r d
ev

ia
tio

n 
fro

m
 th

e 
gr

ou
nd

 tr
ut

h

Ex
pe

rim
en

t
M

od
el

M
et

ho
d 

(g
ro

un
d 

tru
th

; V
I a

pp
ro

xi
m

at
io

ns
—

be
st 

is
 b

ol
d)

B
er

no
ul

li
Y
∼

B
er
(�
)

an
al

yt
ic

al
ly

; B
F-

V
I, 

M
F-

G
au

ss
ia

n-
V

I
C

au
ch

y
Y
∼
C
au
ch
y
(�
,�
)

M
C

M
C

; B
F-

V
I, 

M
F-

G
au

ss
ia

n-
V

I
To

y 
lin

ea
r r

eg
re

ss
io

n
(Y

∣
x
1
,x

2
)
∼
N
(�

�
=
�
0
+
�
1
x
1
+
�
2
x
2
,�

)
M

C
M

C
; B

F-
V

I, 
M

F-
G

au
ss

ia
n-

V
I

D
ia

m
on

d
(Y

∣
x
)
∼
N
(𝜇

�
=
𝜇
0
+
x
⊤
�
,𝜎

)
M

C
M

C
; B

F-
V

I, 
M

F-
G

au
ss

ia
n-

V
I, 

N
V

P-
N

F-
V

I, 
PL

-N
F-

V
I

N
N

 n
on

lin
ea

r r
eg

re
ss

io
n

(Y
∣
x
)
∼
N
(�
(x
),
�
)

M
C

M
C

; B
F-

V
I, 

M
F-

G
au

ss
ia

n-
V

I
8s

ch
oo

ls
C

P 
pa

ra
m

et
riz

at
io

n
(Y

∣
�
n
,�

n
)
∼
N
(�

n
,�

n
) , 

w
ith

 (�
n
∣
�
,�
)
∼
N
(�
,�
)

M
C

M
C

; B
F-

V
I, 

M
F-

G
au

ss
ia

n-
V

I, 
N

V
P-

N
F-

V
I, 

PL
-N

F-
V

I
 �

∼
N
(0
,5
)  , 
�
∼

 h
al

f-
C

au
ch

y(
0,

 5
)

N
C

P 
pa

ra
m

et
riz

at
io

n
(Y

∣
𝜇
,𝜏
,𝜃

n
,𝜎

n
)
∼
N
(𝜇

+
𝜏
⋅
𝜃
n
,𝜎

n
) , 

w
ith

 𝜃
n
∼
N
(0
,1
)

M
C

M
C

; B
F-

V
I, 

M
F-

G
au

ss
ia

n-
V

I, 
N

V
P-

N
F-

V
I, 

PL
-N

F-
V

I
 �

∼
N
(0
,5
)  , 
�
∼

 h
al

f-
C

au
ch

y(
0,

 5
)

M
el

an
om

a
M

1 
(b

as
ed

 o
n 

im
ag

e 
B)

(Y
∣
B
)
∼

B
er
( �

B
=
�
( �

(B
)))

–;
 (E

ns
em

bl
in

g)

M
2 

(b
as

ed
 o

n 
ta

bu
la

r f
ea

tu
re

 x
)

(Y
∣
x
)
∼

B
er
( �

x
=
�
( �

0
+
�
1
⋅
x
))

M
C

M
C

; B
F-

V
I

M
3 

(s
em

i-s
tru

ct
ur

ed
 u

si
ng

 x
, B

 )
(Y

∣
B
,x
)
∼

B
er
( �

(B
,x
)
=
�
( �

0
(B
)
+
�
1
⋅
x
))

–;
 B

F-
V

I f
or

 �
1 , 

no
n-

B
ay

es
ia

n 
C

N
N

 fo
r �

0
(B
)



1 3

Bernstein flows for flexible posteriors in variational Bayes  

chosen large enough. Further increasing M does not deteriorate the approximation. 
Gauss-VI fails as expected.

3.2  Models with multiple parameters

The following experiments use BF-VI in multi-parameter Bayesian models and 
benchmark the achieved solutions versus MCMC or published state-of-the-art VI 
approximations (see Table 1). In the following experiments, we did not tune the 
flexibility of our BF-VI approach but allowed it to be relatively high ( M = 50 ) 
since BF-VI does not suffer from being too flexible. Further, in all experiments 
in this section, we trained for 105 epochs with 5 repetitions and set the number 
of samples for MC estimation to S = 10 to be comparable with Dhaka et  al. 
(2021). From the repetitions and the posterior samples, we estimated k̂ and the 
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Fig. 2  Bernoulli experiment. Left panel: comparison of the analytical posterior for the parameter � in the 
Bernoulli model Y ∼ Ber (�) with variational distributions achieved via Gaussian-VI and BF-VI with BP 
order M = 1, 10, 50 . Right panel: the dependence of the divergence KL(q�(w)||p(w ∣ D)) on M for 20 runs
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90 % confidence intervals using the Rubin’s rule for the BF-VI and Gaussian-VI 
methods, with S = 50�000 samples. Though runtime is not a consideration in this 
study, to provide context, a 2023 MacBook Pro’s CPU processes approximately 
100 epochs per second.

Toy linear regression experiment

To investigate whether dependencies between model parameters are correctly 
captured, we use a simulated toy dataset with two predictors and six data points 
to which we fit a Bayesian linear regression modeling the conditional outcome 
distribution (Y ∣ x1, x2) ∼ N(�� = �0 + �1x1 + �2x2, �).

Figure 4 gives a visual impression of the joint true posterior of the four model 
parameters ( �0, �1, �2, � ) determined via MCMC samples (red) and its variational 
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Fig. 4  Toy linear regression example visualization of the posterior. The model has four parameters: two 
regression coefficients �1 and �2 , the intercept �0 , and the standard derivation � . Samples from the true 
posterior resulting from MCMC (red) are overlaid with samples from the BF-VI approximation (blue)
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approximation (blue) achieved via BF-VI. The strong correlation between the 
regression coefficients ( �1 , �2 ) is nicely captured by the BF-VI approximation. Fur-
ther, the skewness of posterior marginals involving sigma is similar. However, we 
can see that BF-VI slightly underestimates the long tails of the posterior, confirm-
ing the known shortcoming of using the asymmetric KL divergence in the objective 
function (Blei et al. 2017). BF-VI ( ̂k = 0.68(0.51, 0.86) ) is superior to MF-Gaussian-
VI ( ̂k = 0.90(0.77, 1.01) ), which cannot (by construction) capture the dependencies 
(MF) or the non-Gaussian shapes (see Fig. S4).

Diamond: linear regression experiment

The Diamond linear regression benchmark example (Y ∣ x) ∼ N(𝜇x = 𝜇0 + x⊤�, 𝜎) 
has 26 model parameters and 5000 data points (see [37] for reference MCMC 
samples and Stan code for a complete model definition). Since we have much more 
data than parameters, the posterior is expected to be a narrow Gaussian around 
the maximum-likelihood solution, which is indeed seen in the MCMC solution 
(see Fig. S5). In this setting, BF-VI or NF-VI cannot profit from their ability to fit 
complex distributions. Still, Dhaka et al. (2021) used this dataset for benchmarking 
different VI methods, e.g., planar NF (PL-NF-VI), non-volume-preserving NF 
(NVP-NF-VI), and MF-Gaussian-VI. They achieved the best approximation via 
the simple Gaussian-VI ( ̂k = 1.2 ). The posterior approximation via PL-NF-VI and 
NVP-NF-VI has both been unsatisfactory ( ̂k = ∞ ). We use the same amount of 
sampling ( S = 10 ) and achieve with BF-VI a better approximation of the posterior 
k̂ = 5.34(−2.52, 13.20) but is still worse than the Gaussian-VI. A large spread in 
k̂ indicates an unstable training procedure. This dataset is also quite challenging 
for MCMC simulations; we did not get satisfactory MCMC samples and took the 
reference posterior samples from the posteriorDB.3 See Fig. S5 for a comparison of 
BF-VI and MCMC.

8schools: hierarchical model experiment
The 8schools dataset is a benchmark dataset for fitting a Bayesian hierarchical 

model and is known to be challenging for VI approaches (Yao et al. 2018; Huggins 
et al. 2020). It has 8 data points, corresponding to eight schools that have conducted 

Table 2  Comparison posterior approximation with results from the literature for the Diamond and 
8schools dataset in CP and NCP parametrization

Shown is k̂ (the lower, the better) for different approximations: mean-Field Gaussian (MF-G) and 
Student-t (MF-T); NVP (NVP-VI) and Planar (P-VI) flow from Dhaka et al. (2021), and BF-VI

MF-G MF-T NVP-VI P-VI BF-VI

Diamond 1.2 1.3 ∞ ∞ 5.34(−2.52,13.20)
8Schools (CP) 0.9 0.9 1.3 1.1 0.53(0.11, 0.95)
8Schools (NCP) 0.7 0.6 1.2 0.7 0.36(0.17, 0.55)

3 https:// github. com/ stan- dev/ poste riordb.

https://github.com/stan-dev/posteriordb
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independent coaching programs to enhance the SAT (Scholastic Assessment Test) 
scores of their students. There are two commonly used parameterizations of the 
model: centered parameterization (CP) and non-centered parameterization (NCP). 
NCP uses a transformed parameter to facilitate the MCMC sampling. See Table 1 
for more details of these parametrizations and [37] for complete model definitions in 
Stan. In both parametrizations, the model has 10 parameters. In Dhaka et al. (2021), 
this benchmark dataset was fitted with two NF-based methods and MF-Gaussian-
VI. For the CP version (Dhaka et al. 2021) k̂CP = 1.3, 1.1, 0.9 was reported for PL-
NF-VI, NVP-NF-VI, MF-Gaussian-VI, respectively, which are all outperformed by 
our BF-VI method with k̂CP = 0.53(0.11, 0.95) . For the NCP version (Dhaka et al. 
2021) k̂NCP = 1.2, 0.7, 0.7 was reported (same order), and again BF-VI yields a supe-
rior k̂NCP = 0.36(0.17, 0.55) . A visual inspection of the true MCMC posterior and 
its variational approximation again shows the underestimated distribution tails (see 
Fig.  S6). For 8Schools and Diamond, a comparison with state-of-the-art models 
from the literature is summarized in Table 2.

NN-based nonlinear regression experiment

For this experiment, we use a small Bayesian NN for nonlinear regression fit-
ted on 9 data points. The model for the conditional outcome distribution is 
(Y ∣ x) ∼ N(�(x), � = 0.2) . The small size of the used BNN, with only one hidden 
layer comprising 3 neurons and one neuron in the output layer giving �(x) , allows us 
to determine the posterior via MCMC.

We then use BF-VI and MF-Gaussian-VI to fit this BNN. Because the weights in 
a BNN with hidden layers are not directly interpretable, they are not of direct inter-
est, and therefore, the fit of a BNN is commonly assessed on the level of the pos-
terior predictive distribution (see Fig. 5). In this example, the more flexible BF-VI 
shows a slight improvement in approximating the true posterior predictive distribu-
tion when compared to the less complex approach with MF-Gaussian-VI, especially 
inside the regions where there are data (around x = 0 in Fig. 5).

3.3  Melanoma: semi‑structured NN experiment

In this experiment, we use BF-VI for semi-structured transformation models (Kook 
et al. 2022) (see Fig. 6), where complex data like images can be modeled by deep 

Fig. 5  Posterior predic-
tive distribution of the 
nonlinear regression model 
(Y ∣ x) ∼ N(�(x), � = 0.2) where 
the conditional mean is modeled 
by a BNN using MCMC, MF-
Gaussian-VI, or BF-FI
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NNs and tabular data by interpretable model components. Please note that here, both 
the conditional distribution of the outcome (y ∣ B, x) and the unconditional posterior 
of the parameters are modeled by transformation models. Because of the deep NN 
model components involved, MCMC is not feasible anymore to determine the poste-
rior. As a dataset, we use the SIIM-ISIC Melanoma Classification Challenge4 data. 
The data come from 33,126 patients (6626 as test set, 21,200 train, and 5300 valida-
tion set) with a confirmed diagnosis of their skin lesions, which is in ≈ 98 % benign 
( y = 0 ) and in ≈ 2 % malignant ( y = 1 ). The provided data D = (B, x) are semi-struc-
tured since it comprises (unstructured) image data B from the patient’s lesion along 
with (structured) tabular data x, i.e., the patient’s age.

We fit the conditional outcome distribution (Y ∣ D) ∼ Ber
(
�D) by modeling the 

probability for a lesion to be malignant �D = p(y = 1 ∣ D) = �(h) applying the sig-
moid function �(⋅) to a fitted transformation function h ∶ Y → Z . We study three 
models for h depending on x alone, B alone, and in combination B and x:

M1 (DL-Model) h = �(B) : As a baseline, we use a deep convolutional neural 
network (CNN) based on the melanoma image data (see Fig.  6c) with a total of 
419,489 weights to take advantage of the predictive power of DL on complex image 
data. For this DL model, we use deep ensembling (Lakshminarayanan et al. 2017) 
by fitting three CNN models with different random initializations and averaging the 

Fig. 6  The architecture of the used NN models or model parts. a Dense NN with one hidden layer to 
model nonlinear dependencies from the input (used in the NN-based nonlinear regression example). b 
Dense NN without hidden layer to model linear dependencies from tabular input data (used in M1 and 
M3 of the melanoma experiment). c CNN to model nonlinear dependencies from the image input (used 
in M1 and M3)

4 https:// chall enge2 020. isic- archi ve. com

https://challenge2020.isic-archive.com
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predicted probabilities. The achieved test predictive performance and its comparison 
to other models are discussed in the last paragraph of this section.

M2 (Logistic Regression) h = �0 + �1 ⋅ x : When using only tabular features x, 
interpretable models can be built. We consider a Bayesian logistic regression with 
age as the only explanatory variable x and use a BNN without a hidden layer to set 
up the model (see Fig. 6b with only one input feature x). In logistic regression, a 
latent variable is modeled by a linear predictor h = �0 + �1 ⋅ x , which determines 
the probability for a lesion to be malignant via �x = �

(
�0 + �1 ⋅ x

)
 allowing to inter 

et e�1 as the odds ratio, i.e., the factor by which the odds for lesions to be malignant 
changes when increasing the predictor x by one unit. In Fig. 7, we compare the exact 
MCMC posterior of �1 with the BF-VI approximation, demonstrating that BF-VI 
accurately approximates the posterior.

M3 (semi-structured) h = �(B) + �1 ⋅ x : This model integrates image and tabu-
lar data and combines the predictive power of M1 with the interpretability of M2. 
We use a (non-Bayesian) CNN that determines �(B) and BF-VI for the NN without 
a hidden layer that determines �1 (see Fig. 6b and c). Both NNs are jointly trained 
by optimizing the ELBO. The resulting posterior for �1 differs from the simple logis-
tic regression (see Fig. 7), indicating a diminished effect of age after including the 
image. Again, e�1 can be interpreted as the factor by which the odds for a lesion to 
be malignant change when increasing the predictor age by one unit and holding the 
image constant.

While the main interest of our study is on the posteriors, we also determine the 
predictive performance on the test set. To quantify and compare the test prediction 
performances, we look at the achieved log scores (M1: −0.076, M2: −0.085, M3: 
−0.076) and the AUCs with 95% CI (M1: 0.83(0.79,  0.86), M2: 0.66(0.61,  0.71), 
M3: 0.82(0.79, 0.85)). For both measures, higher is better. Interestingly, the image-
based models (M1, M3) have higher predictive power than M2, which only uses 
tabular data. The semi-structured model M3, including tabular and image informa-
tion, has a similar predictive power compared to M1, which only uses images. The 
benefit of the semi-structured model here is that it provides interpretable parameters 
for the tabular data along with uncertainty quantification without losing predictive 
performance.

Fig. 7  Posteriors for the age-
effect parameter �1 in the mela-
noma models M2 and M3
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4  Summary and outlook

The proposed BF-VI is flexible enough to approximate any posterior in principle 
without being restricted to variational distributions with known parametric 
distribution families like Gaussians. In benchmark experiments, BF-VI accurately 
fits non-trivial posteriors in low-dimensional problems in a BBVI setting. For 
higher-dimensional models, BF-VI outperforms published results from other NF-VI 
methods (Dhaka et al. 2021) on the studied benchmark datasets. Still, we observe 
that the posterior cannot be fitted perfectly in high dimensions by BF-VI, especially 
since the tails of the approximation are too short. We attribute this limitation 
to known difficulties in the optimization process and the asymmetry of the KL 
divergence. These challenges of VI were not in the focus of our study, and we leave 
it to further research.

To the best of our knowledge, we are the first to demonstrate how BBVI can be 
used in semi-structured models. We used BF-VI on the public melanoma challenge 
dataset, integrating image data and tabular data by combining a deep CNN and an 
interpretable model part. We see a valuable application of BF-VI in models with 
interpretable parameters, i.e., statistical or semi-structured models where we can 
model complex posterior distributions of the interpretable parameters. Especially 
in semi-structured models with deep NN components that cannot be fitted with 
MCMC, BF-VI allows determining the variational distribution for the interpretable 
model parts. Moreover, efficient SGD optimizers can be used in BF-VI to fit all 
model parts jointly. We plan to extend our research on BF-VI for semi-structured 
models in the future and investigate the quality of the posterior approximations.
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