
Diploma Thesis

Segmentation Algorithms for
2D-Laserscans in an indoor

environment

Gabriel Nock

Universidad de Zaragoza
Dept. de Informática e Ingenieŕıa de Sistemas

Grupo de Robótica y Tiempo Real

July, 2003

Abstract

This work treats with the segmentation of 2D environment Laser data, cap-
tured by an Autonomous Mobile Indoor Robot. It is part of the data pro-
cessing, which is necessary to navigate a mobile robot error free in its envi-
ronment. The whole process can generally be described by data capturing,
data processing and navigation. In this project the data processing deals
with data, captured by a Laser-Sensor, which provides two dimensional data
by a series of distance measurements i.e. point-measurements of the envi-
ronment. These point series have to be filtered and processed into a more
convenient representation to provide a virtual environment map, which can
be used of the robot for an error free navigation. This project provides dif-
ferent solutions of the same problem: the conversion from distance points
to model segments which should represent the real world environment as
close as possible. The advantages and disadvantages of each of the different
Segmentation-Algorithms will be shown as well as a comparison taking into
account the Computational Time and the Robustness of the results.

Acknowledgement

I want to thank to all the people that helped me to accomplish this Diploma
Thesis at the Centro Politécnico Superior - Universidad de Zaragoza.
Special thanks I want to give to my spanish tutor Prof. Jose Neira who made
it possible for me to carry out my Diploma Project in Spain and who advised
the entire project.
Thanks to my german tutor Prof. Dr. Oliver Bittel, University of applied sci-
ences of Konstanz Fachhochschule Konstanz for his supervision of the project
in Germany.
As well I want to thank all the members of the Grupo de Robótica y Tiempo
Real for their help and advices on my project, especially to Diego Ortin for
his support on mathematical problems.
Finally I want to thank Carlos Muñoz for the innumerable topic-and non-
topic related discussions we had in the Laboratory and the Cafeteria and his
inexhaustible effort and patience to improve my spanish language.

TABLE OF CONTENTS i

Table of Contents

1 Introduction 1

2 Technical Environment 5
2.1 Hardware . 5
2.2 Software . 6

3 General Definitions and Fundamentals 9
3.1 Geometrical Objects . 9

3.1.1 Mathematical Representation of Geometrical Objects . 9
3.1.2 Geometrical Entities used in the Implementation . . . 13

3.2 Geometrical Relations between Objects 15
3.2.1 Euclidean Distance . 16

3.3 Data Probability Distribution 17
3.3.1 Squared Mahalanobis Distance 18
3.3.2 The Normal Density of Sensor Data 18
3.3.3 Linear and Non-linear Transformations 21
3.3.4 The Extended Information Filter 23
3.3.5 The Extended Kalman Filter 25

3.4 Defining Algorithm Parameters 29

4 Preprocessing 32
4.1 Filtering Invalid Scanpoints 32
4.2 Filtering Outliers . 34

5 Segmentation Algorithms 36
5.1 Choice of the algorithms . 36
5.2 The Split & Merge - Algorithm 37
5.3 The RANSAC - Algorithm . 44
5.4 The Hough-Transformation 49

5.4.1 Variation in Maximum Extraction 52
5.5 The EM-Algorithm . 57

6 Postprocessing 72
6.1 Segmentation . 72
6.2 Line Generation . 74

6.2.1 Total Regression . 75
6.2.2 Extended Information Filter 75

TABLE OF CONTENTS ii

6.3 Avoiding Overlappings . 77
6.4 Endpoint Acquirement . 79
6.5 Length Check . 80

7 Analysis and Algorithm-Variations 82
7.1 Usage of uncertainty characteristics 82
7.2 Split & Merge . 84
7.3 RANSAC . 89

7.3.1 Extended RANSAC with Split 94
7.4 Hough-Transformation . 97

7.4.1 Hough-Transformation by Revoting 98
7.4.2 Hough-Transformation by Neighbourship-Relation . . . 101

7.5 EM-Algorithm . 109

8 Algorithm Comparison 124
8.1 Direct Comparison . 124
8.2 Characteristics of Split & Merge 133
8.3 Characteristics of RANSAC 134
8.4 Characteristics of Hough . 134
8.5 Characteristics of EM . 135
8.6 Conclusion . 136

9 Summary and Perspective 138
9.1 Summary . 138
9.2 Perspective . 141

A Developped Software 143
A.1 Prototypes developed by using MATLAB 143

A.1.1 MATLAB Software - Split & Merge 143
A.1.2 MATLAB Software - RANSAC 144
A.1.3 MATLAB Software - Hough 144
A.1.4 MATLAB Software - EM 145

A.2 Algorithm Implementation under C++ 145
A.2.1 Common Classes . 145
A.2.2 Algorithm Classes . 147

A.3 Graphic Library-Allegro . 150

LIST OF FIGURES iii

List of Figures

1 Mobile Robot Triton . 6
2 SICK Laser scanner Type LMS 200 6
3 Scheme of Robot ”Triton” and SICK Laser sensor 7
4 Cartesian and Polar representation of a coordinate in the 2-

dimensional space . 10
5 Cartesian and Polar Line Representation 12
6 Captured Data of one Laserscan 14
7 Scatter diagram of a distribution p(x) ∼ (µ, Σ) 20
8 Mahalanobis Distance between a Point and a Line varying the

euclidean distance . 28
9 Application of predefined parameters on virtual scan data . . 31
10 Scan data before and after the filtering of ignored measurements 33
11 Filtering of Outliers . 35
12 Split – Calculating all distances and inserting vertex 38
13 Merging of two segments . 41
14 Scan data and generated Polyline after Split&Merge 44
15 One Successful RANSAC Iteration 47
16 Hough Transformation with resulting Lines and Parameter . . 51
17 Original data points . 52
18 Filled Accumulator . 52
19 Two model lines competing for the same segment 66
20 Initial systematic model , first optimization and results after

first convergence by Expectation Maximization 71
21 Differences between a line estimated by Total Regression (blue)

and the EIF (red) . 76
22 Overlapping or embedded positioned Segments 77
23 Endpoint Optimization and Endpoint Acquirement 80
24 Original Scan data and the resulting Segments 81
25 Application Mahalanobis Distance 83
26 Flow Diagram of the Split&Merge Algorithm 84
27 Split & Merge with a distance threshold of 0.08m 85
28 Split & Merge with a distance threshold of 0.5m 86
29 Calculational Time Chart of different Split & Merge passes . . 87
30 Elapsed time over varying thresholds 88
31 Flow Diagram of RANSAC Algorithm 89
32 Different results on same data with varying ω’s 91

LIST OF FIGURES iv

33 Average computaional time obtained with varying ω 92
34 Varying results on same data obtained by RANSAC 93
35 Gaps after erasing points from data set by RANSAC 94
36 Split groups before proceeding RANSAC 95
37 Comparison of the results of RANSAC without (above) or with

split (below) . 96
38 Calculational time for the different algorithm parts 97
39 Flow diagram of Hough by Revoting Algorithm 99
40 A HbR sequence of seeking and erasing points of one scan . . 100
41 Result computed by Hough by Revoting 101
42 Application of the Inter-Segment Distance Parameter 101
43 Separation caused due to erasure of points by HbR 102
44 Flow Diagram of the Hough by Neihgbourhsip Algorithm . . . 103
45 Filtered accus by a threshold of 7, 10 and 13 votes 104
46 All candidate-lines of one HbN pass and the resulting segments 105
47 Different results on same data obtained by different versions

of Hough . 106
48 Time-comparison of algorithm parts of HbR and HbN 107
49 Average time with varying θ-step by Revoting Algorithmus . . 108
50 Results of equal data with varying θ-steps 109
51 Results of equal data with varying θ-steps 110
52 Flow Diagram of EM-Algorithm 111
53 EM with different σ’s on a virtual test scenario 112
54 EM applying a big systematic initial model 113
55 EM applying a small systematic initial model 114
56 Potential results after 1st convergence with varying initial models116
57 Generated random line models with varying numbers 117
58 Results on equal scan data with varying Maximum Iterations . 118
59 Ē[Θ∗] and number of maxima of E[Θ∗] over 200 Iterations . . 120
60 Results of EM after 200 Iterations 121
61 Final results of different EM versions after 20 Iterations [1] . . 122
62 Final results of different EM versions after 20 Iterations [2] . . 123
63 Results of all algorithms on equal scan data [1] 125
64 Results of all algorithms on equal scan data [2] 127
65 Results of all algorithms on equal scan data [3] 128
66 Results of all algorithms on equal scan data [4] 129
67 Measured average Times of all Algorithms 130
68 Chart of the measured average times 130

LIST OF FIGURES v

69 Test on Robustness of RANSAC, Hough and EM 132
70 Graphical Screen Output generated by Allegro 153

1 INTRODUCTION 1

1 Introduction

Today robots are applied in many different areas of industry, science etc.
with distinguished intentions of usage. They ease the work (e.g. Industry
Robots), carry out dangerous or unpleasing tasks (e.g. Military Robots) or
make for humans impossible things possible (e.g. Outer space missions). In
many cases an autonomic behaviour is desired or required which leads to a
more or less complex mechanics-computer system, which is able to react in
a correct and reliable way to outside influences. The hardware of a mobile
robot consists, beside the mechanical chassis, of actors, which enable it to
move, and the sensors, which enable it to capture environment data. Typical
robot sensors are optical cameras, tactile-, ultrasonic- or laser sensors.

The general tasks of robot software can be defined by data capturing, data
processing and controlling (navigation). In a major part of the cases a virtual
environment map is used to navigate a robot error free in his environment.
The closer the virtual map is to the real world the bigger is the possibility to
react without errors. Captured data always is afflicted with errors resulting
from the sensors so the goal of the data processing is to filter out and minimize
the provided errors to achieve a result as optimal as possible.

The data capturing rely on the kind of sensor and used techniques. This
normally calls for data pre-processing to receive convenient data for the fol-
lowing data processing. In our case we will work on data obtained by a
two-dimensional laser sensor mounted on a mobile indoor robot. The given
hardware will be explained closer in Chapter 2. The available data, which
consist of a list of ordered distance measurements relative to the laser sensor,
has to be filtered, optimised and brought into a representation, which pro-
vides a convenient way to create the virtual environment map. In our case
the required representation are Segments (e.g. wall segment). Due to this
representation the above explained data process is called Segmentation. The
resulting segments are used to create the virtual map.

In this project different Segmentation Algorithms were implemented and
compared. The emphasis lies on the definition of the different algorithms
and the presentation of the advantages and the disadvantages of each of
them given by their characteristics.

The important characteristics which have to be given by the algorithms
are Velocity and Robustness.

1 INTRODUCTION 2

Velocity The Velocity of an algorithm is given by the necessary computa-
tional time to obtain the desired results on the given data. Although
the existing computer techniques provide fast working processors and
hardware systems the calculational time still has limits. This results
on one side on the economical and spacial possibilities of the robots,
which often restrict the calculational performance of the system and
on the other side of the increasing amount of data, which is necessary,
to provide more information of the environment to achieve optimized
results.

To compare the different algorithms regarding the calculational time
time-measurements were made on the same computer system and the
complexity of the algorithms will be shown (Chapter 8 and 5).

Robustness The term Robustness can be used to describe the quality of
the results compared to the real world model. A robust algorithm
minimizes data errors and isn’t vulnerable to so called ”Outliers1”,
which can falsify the desired results considerably.

The consideration if a generated virtual model in fact is good or not
depends on the requirements of the tasks as well as on the subjective
evaluation of the observer. There are two cases of wrong estimations
apart from location deviation: The refusal of an, in reality existing, seg-
ment (”False Negative”) and the acceptance of a non-existing segment
(”False Positive”). Obviously it depends on the task to accomplish
which of the two cases should be avoided. An estimation of a false
negative can cause an accident in navigation i.e. an existing obstacle
is not detected and the vehicle could hit it, whereas an estimation of a
false positive could cause e.g. an unnecessary and unintentional change
in navigation.

The goal of a Robust Segmentation Algorithm is to exclude from the
segment estimation all points which don’t belong to planar surfaces
and to find all, in the real world existing, surfaces or segments.

In our case obviously we tried to minimize the errors but with the
tendency to the false negatives. So we tended to decide to refuse a
segment if we aren’t sure i.e. we chose the parameters in a way to

1Points that aren’t belonging to a planar surface

1 INTRODUCTION 3

ensure that the possibility of the existence of an estimated segment
can be considered to be high.

In Chapter 2 I will start to describe the available hardware, i.e. the mobile
robot and the used laser sensor, as well as the used software to develop and
implement the algorithms.

In Chapter 3 I will describe general definitions and terms, which will be
used through this thesis. Besides mathematical and geometrical definitions
and defined terms I will give an oversight of the parameters, which were used
as criteria. These parameters are general and will be used with all algorithms.

The procedure of data preparation and Pre-Processing will be described
in Chapter 4.

The different segmentation algorithms will be described in Chapter 5 with
their definitions and procedures. The general procedure in all cases has the
same design: pre-processing, line- or segment extraction, post processing. In
this section the Line- or Segment Extraction will be described based on the
different chosen algorithms.

After the extraction of potential lines, given by their line parameters, or
given by sets of points, the Post-Processing (Chapter 6) is applied. Here the
given line parameters or point groups are used to build the resulting segments.
The resulting segments will be checked on characteristics and if they comply
the requirements they will be added to the resulting set of segments.

For each algorithm different variations in parameters of procedures are
applicable. The different possibilities of parameter choice and procedures
and the resulting outcome will be described in Chapter 7.

In Chapter 8 the results and measurements will be listed and compared.
For a proper comparison we need a test scenario, which represents the real
world as close as possible to provide a relevant simulation. In our case two
different test series are available. Each one consists of a collection of ordered
scans, which were recorded by the robot and laser on which the algorithms
have to be applied on. They were captured in the University building of
Zaragoza i.e. computer laboratories and corridors. They represent an ade-
quate part of the real world of an indoor environment i.e. there exist normal
room equipment e.g. tables, chairs etc. as well as relevant moving obstacles
i.e. persons. All together there are nearly 700 single scans with all together
nearly 250.000 scan points.

In this thesis we will illustrate the obtained results of the segmentation algo-

1 INTRODUCTION 4

rithms in graphics provided by MATLAB. In general they show the sensor-
obtained data and either intermediate resulting lines and segments or the
finally resulting segments. The scale and the axes are equal for the major
parts of the graphics. The units of the axes are hold in meters and the
laser in general is illustrated as triangle with the point showing into the scan
direction.

2 TECHNICAL ENVIRONMENT 5

2 Technical Environment

In the following chapter I want to give a detailed overview over the used
hardware (robot, laser) and the development software, which was used to
implement the algorithms.

2.1 Hardware

The Robotic- and Realtime Group at the University of Zaragoza has at its
disposal, among others, the mobile robot named ”Triton” (Figure 1), which
is based on a wheelchair chassis. Its actors are two electric motors able to
actuate independently for the two given rear wheels. It has chargeable bat-
teries so it can operate completely autonomically. A computer system is
mounted on it with the operating system Windows2000 c© and the installed
development environment Microsoft Visual C++ c© makes it possible to pro-
gram directly ”on” the wheelchair.

It has besides various optical cameras a mounted SICK Laser sensor
Type LMS 200 (Figure 2). This type of laser scanner provides the following
technical data:

Maximal Distance Range The Maximal Distance Range of the SICK
Laser depends on the used distance unities. It provides unities of [m]
or [mm]. The Laser transmits the measured value in a data message
with a fixed length. In this data message the measured distance is
represented by a 13 Bit-value. In [mm]-mode thus the values are lying
between 1 and 213 = 8192mm. In [m]-mode the maximal range is
≈ 80m.

Scan Angle Range The maximum angle of the SICK Laser Sensor is
restricted to 180◦.

Angular Resolution The SICK Laser provides different angular resolu-
tions. This Switch mode allows angular steps of 1◦, 0.5◦ and 0.25◦.

Systematic Error The systematic Error is specified2 with ±15mm.

Statistical Error The statistical Error (1 σ) is specified with 5mm.

2Specified by the SICK Comp. data sheet

2 TECHNICAL ENVIRONMENT 6

Data Interface The SICK Laser provides the data interfaces RS422 &
RS232 with the switchable Transfer Rates of 9.6/19.2/38.4/500 kBaud.

Figure 1: Mobile Robot Triton
Figure 2: SICK Laser scanner
Type LMS 200

The Laser sensor is mounted in front of the wheelchair ”Triton”. Its
altitude is ≈ 0.8m and it’s located ≈ 0.8m in front of the rotation axis which
is lying centred between the rear wheels. The laser is almost the foremost
point of Triton so the measured distances can be considered to be situated
relative to the ”front line” of the Robot. Figure 3 shows the general scheme
of the robot and the Laser.

2.2 Software

To develop the software and simulate the algorithms two different software
packages were used.

For the prototyping and the first simulations the software package MATLAB c©

was used. This software provides a mathematical environment with exten-
sive mathematical functions. MATLAB is a tool for technical computing and
offers a scripting language as well as the possibility to define functions and
data structures. It’s specialized in matrix and vector calculations and offers

2 TECHNICAL ENVIRONMENT 7

Range =

max. 8192 mm

Measurement

No. X

Measurement

No. X+1

Robot with Laser

Angular Resolution
(in our case 0.5 degrees)

Measurement No. 11

Measurement No. N (in our case N=361)

Figure 3: Scheme of Robot ”Triton” and SICK Laser sensor

extensive possibilities for fast data visualisation. Different program modules
give a plenty of possibilities for debugging and profiling. MATLAB doesn’t
compile program code or scripts but works as an interpreter what occasion-
ally makes it unsuitable to obtain adequate conclusions on computational
time of algorithms and programs for the later use on the real-time robot
system. Thus it was used for prototyping, simulation, analysis and testing.

To obtain adequate results on computational time and memory require-
ments, which are comparable to the later real time robot system, the algo-
rithms were implemented as well in C/C++. To compare the different algo-
rithms the time measurements were obtained on the C/C++ - algorithms.
To visualize the results under C/C++ a free graphical library, called Allegro3,
was used.

3The graphical Library ”Allegro” will be explained more detailed in the appendix

2 TECHNICAL ENVIRONMENT 8

Now we know the environment in which this project was realized. In fol-
lowing chapter we will present the fundamentals of the context of the project
respective the math and the basic requirements of the algorithms.

3 GENERAL DEFINITIONS AND FUNDAMENTALS 9

3 General Definitions and Fundamentals

This chapter should give an insight of the math and the geometrical basics
which were applied in this project. First I will describe the objects given
by trivial geometry and further how they were used in the implementation
of the algorithms. This should help to understand the algorithms and avoid
misunderstandings with the usage of special terms in this thesis.

3.1 Geometrical Objects

In the following section I want to give an overview over the geometrical
objects the projects treats with. First I will describe the different objects in
the mathematical-geometrical way and I will show the different possibilities
they can be respresented. In the implementation of the algorithms it was
useful in certain cases to transform the object representation due to the
optimization of the algorithms or the simplification of the paradigm which
will be shown in the following sections.

3.1.1 Mathematical Representation of Geometrical Objects

The 2-dimensional space In this projects two different representations
were used to define and represent geometrical objects. On one side the Carte-
sian Representation (or Cartesian Space) and the Polar Representation (or
Polar Space) on the other. By the use of transformations we are able to
transform geometrical objects from one space into the other.

Cartesian Space
In the two dimensional cartesian space a coordinate is represented by two
length parameter Pcart =

(
X
Y

)
. One represents the distance in direction of

the X-Axis and the other in direction of the Y-Axis. The reference point
is the origin O =

(
0
0

)
of the coordinate system, which in our case is repre-

sented by the Laser Sensor. The units of the parameters are [m] or [mm].

Polar Space
In the two dimensional polar space the two parameters of a coordinate are a
length parameter ρ (Rho) and a angular parameter θ (Theta). Ppol =

(
ρ
θ

)
The angular parameter θ represents the angle from the X-Axis counter clock-
wise to the coordinate and the parameter ρ represents the distance from the

3 GENERAL DEFINITIONS AND FUNDAMENTALS 10

origin to the coordinate. The unit of ρ are [m] or [mm] and the unit of θ are
Degrees or Gradients. Figure 4 shows the different representations.

0

0 X-axis

Y
-a

x
is

x

y

0 X-axis

Y
-a

x
is

ɟ

ɗ

P = (X / Y) P = (ɟ / ɗ)

0

Figure 4: Cartesian and Polar representation of a coordinate in the 2-
dimensional space

The Transformation of a coordinate from the polar into the cartesian repre-
sentation, F : �pol → �cart, results as follows:

Cpol =

(
ρ
θ

)
≡ Ccart =

(
ρ cos(θ)
ρ sin(θ)

)
=

(
x
y

)
(1)

The Transformation of a coordinate from the cartesian into the polar repre-
sentation, F : �cart → �pol, results as follows:

Ccart =

(
x
y

)
≡ Cpol =

(
ρ
θ

)
=

√

x2 + y2

arcsin
(

y
ρ

)

=

√

x2 + y2

arccos
(

x
ρ

)

 (2)

Representation of a Point
In this thesis the above used termCoordinate corresponds to the geometrical

3 GENERAL DEFINITIONS AND FUNDAMENTALS 11

object Point which will be represented equally,

Pcart =

(
x
y

)
or Ppol =

(
ρ
θ

)

depending on the used representation �.

Representation of a Straight Line
The geometrical object(straight)Line also can be represented in cartesian or
polar form and is defined by 2 parameters.

In Cartesian Representation the parameters are the line slope m and
the y-axis offset c. A point is ”lying” on a line4 if it fulfills following line-
function:

y = mx + c (3)

The line parameters can be obtained by transforming two given line points

Pn =

(
xn

yn

)
, Pm =

(
xm

ym

)
with ∆x = xn − xm , ∆y = yn − ym.

L =

(
m
c

)
=

(
∆y
∆x

yn − (xn
∆y
∆x

)
)

=

(
∆y
∆x

ym − (xm
∆y
∆x

)
)

with ∆x �= 0 (4)

Obviously, due to the fraction, the parameters are undefined for ∆x = 0.
Therefore this restriction gives preference to another representation without
such a restiction.

In Polar Representation the parameters are the Norm or Length ρ of the
Normal Vector5 from the origin to the line and the counter clockwise angle
θ between the normal vector and the X-Axis .

ρ = x cos(θ) + y sin(θ) (5)

4Sometimes also referred as ”member” of a line
5Normal Vector : A vector which stands orthogonal to a line or plane

3 GENERAL DEFINITIONS AND FUNDAMENTALS 12

Given two points the line parameter can be obtained as follows:

Pn =

(
xn

yn

)
, Pm =

(
xm

ym

)
with ∆x = xn − xm , ∆y = yn − ym

L =

(
ρ
θ

)
=

(
xn cos

(
arctan

(
∆y
∆x

))
+ yn sin

(
arctan

(
∆y
∆x

))
arctan

(
∆y
∆x

)
)

=

(
xm cos

(
arctan

(
∆y
∆x

))
+ ym sin

(
arctan

(
∆y
∆x

))
arctan

(
∆y
∆x

)
)

(6)

with θ ∈]−π
2
; +π

2

]
and ρ ∈ IR

Thus a negative ρ specifies a normal-vector in the 2nd or 3rd quadrant.
A θ = π

2
specifies a normal-vector on the Y-Axis where a positive ρ specifies

it in the positive and a negative in the negative direction.
The polar representation avoids problems with vertical lines where ∆x =

0.

Figure 5 illustrates the differences between cartesian and polar line repre-
sentation.

0

0 X-axis

Y
-a

x
is

c

ɟ

ɗ

ȹx

ȹyPn

Pm

0

0 X-axis

Y
-a

x
is

Figure 5: Cartesian and Polar Line Representation

3 GENERAL DEFINITIONS AND FUNDAMENTALS 13

3.1.2 Geometrical Entities used in the Implementation

The previously given geometrical objects build the fundamentals of the al-
gorithms. In this section I want to describe the objects which were used in
the implementation and how they were applied on the algorithms.

Measurement Data
The initial point of the implementation are the data captured and transmit-
ted by the laser.

Like explained before the SICK laser measures its environment by discrete
distance measurements. It divides its maximum angular range into constant
steps and proceeds on each step a distance measurement by a laser beam.
His maximum range is specified with exactly 180◦. In our case the factor
of division was 0.5◦ so the laser starts with its first measurement exactly
90◦ to the right of his straight alignment and provides a measurement each
0.5◦ progressing to the left. Hence it provides 361 serial distance values. If
we define the coordinate system with the origin exactly on the laser and
his straight direction as the positive X-Axis we save the values as a polar
coordinate with the measured distance as value ρ and the angle to the lasers
alignment as

θ = −90◦ + (n · 0.5◦) = −π

2
+ (n · π

360
) with n = {0, 1, . . . , 360}

This serial data capturing gives us the possibility to index the coordinates by
their order of appearance which is essential for certain parts of the further
data processing.

Thus one scan is available as an array of 361 indexed polar coordinates
captured relatively to the laser location.

Figure 6 displays a captured scan with 361 scan points captured by the
laser and represented in a two dimensional cartesian coordinate systems with
the laser sensor as dimension origin (x = y = 0).

Point Representation
A point is represented in the trivial way explained in the previous chapter
either in his polar or cartesian coordinates with its respective index.

Point Groups
Point groups play an important role in segmentation, since a segment of the
world model normally should be represented by a number of according points.

3 GENERAL DEFINITIONS AND FUNDAMENTALS 14

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

x
y

Figure 6: Captured Data of one Laserscan

Obviously points don’t change their coordinates whereas their indices have
to be changed in certain cases.

This occurs e.g. after pre filtering of a scan when points, which aren’t
to be considered correct measurements, are eliminated from the previous
data. On one hand this leads to different numbers of the points on which the
following segmentation algorithm has to be applied and on the other hand
the points have to be re-indexed in the correct order.

After filtering the points keep their indices for the further proceeding.
The previous group will be divided into groups regarding the characteristics
of the algorithm. After grouping the initial data the resulting groups are
considered to define a line and will be used to estimate the line parameters.

In general one point can’t belong to more than one line. In cases (if the
algorithm allows it) one point can be considered as an end-point of a segment
and thus can be used for two segments representing for each segment an end-

3 GENERAL DEFINITIONS AND FUNDAMENTALS 15

point. This normally is a desired feature due to the fact that segments in
the real world normally have a closed connection i.e. corners and so a virtual
model with closed segments can be considered to be closer to the real world
model. But this characteristics as well can lead to significant errors since a
considered ”corner-point” only in the fewest cases was captured in real world
in fact exactly in the corner. So the tuning of the algorithm parameters has
to minimize such errors.

Line Representation
A line or straight line is represented like explained in the previous sections
by two parameters either in polar or cartesian representation. A line is
considered to be infinite which is essential e.g. for the calculation of the per-
pendicular distance to a point. A line can be specified as well by two points
which in cases is used to calculate a perpendicular distance or to extract a
covariance of a parameter matrix. In our case a line is always the basis for
the later to build segment.

In the literature, related to the topic in this thesis, in cases a line also is
referred as ”edge”.

Segment Representation
A segment is part of an infinite line and has to be extracted from one line.
It is specified by its two endpoints which trivially are part of the former line,
so a segment is represented by 4 parameters:

S =

xP1

yP1

xP2

yP2

with its endpoints: P1 =

(
xP1

yP1

)
, P2 =

(
xP2

yP2

)

3.2 Geometrical Relations between Objects

Distance Measurements A very important feature in line extraction is
the distance between a point and a line. This characteristic normally decides
if a point is accepted to be assimilated into the group of points which is
defining the line. There are different possibilities to define this distance e.g.

3 GENERAL DEFINITIONS AND FUNDAMENTALS 16

the distance only measured in the specific direction of the given dimensions
of the coordinate system (X-or Y-axis) or the perpendicular distance as well
as the distances that takes into account the given uncertainty of the geomet-
rical entities which includes a probabilistic consideration of the results. The
normal geometrical distances are the so called Euclidean Distances.

3.2.1 Euclidean Distance

The euclidean distances in the 2-dimensional space are calculated in the triv-
ial geometrical way.

Distance Point-to-Point
Given 2 points Pm and Pn the distance d results as follows:

d =
√

(xn − xm)2 + (yn − ym)2 (7)

with Pm =

(
xm

ym

)
, Pn =

(
xn

yn

)
Distance Point-to-Line
As above explained there are several ways to define a distance between a
point and a line in the 2-dimensional space. In this project we normally refer
to the Perpendicular Distance which describes the smallest distance between
the two entities. For the different representations the definitions are as fol-
lows.

Cartesian representation
Assuming a line being specified by two points Pk and Pl and the distance is
to measure to a given point P0 it results:

d =
|(xl − xk)(yk − y0) − (yl − yk)(xk − x0)|√

(xl − xk)2 + (yl − yk)2
(8)

with Pk =

(
xk

yk

)
, Pl =

(
xl

yl

)
and P0 =

(
x0

y0

)
Polar representation

Given a line in polar representation (Figure 5) L =

(
ρL

θL

)
the distance is

calculated by:
d = yP sin(θL) + xP cos(θL) − ρL (9)

3 GENERAL DEFINITIONS AND FUNDAMENTALS 17

with P =

(
xP

yP

)
or

d = ρP sin(θP) sin(θL) + ρP cos(θP) cos(θL) − ρL (10)

with P =

(
ρP

θP

)

Vector representation
A further form to calculate the Point-to-Line Distance is to use a special
vector representation of a line. Distance d then is calculated as follows:

d = αL · Pc − βL (11)

with

Pc =

(
x
y

)

αL represents the Unity Norm Vector6 to the line and βL the norm of the
Normal Vector to the line. ”·” specifies the Inner product also known as Dot
Product or Scalar Product of two vectors and Pc represents a measurement
point in its cartesian representation.

Given a line in polar representation L =

(
ρL

θL

)
the parameters are given

by:

αL =

(
cos(θL)
sin(θL)

)
and βL = ρL (12)

3.3 Data Probability Distribution

Given sensor data always has to be considered to be affected by errors. In
this chapter I want to describe the fundamentals of the handling with error
afflicted sensor data as well as to show on an example how this paradigm
was used in the implementation of the algorithms. [DuHa73] and [Cast98]
provided the fundamentals.

6Unity Norm Vector: The normal vector from the origin to the line with the Norm
n = 1

3 GENERAL DEFINITIONS AND FUNDAMENTALS 18

3.3.1 Squared Mahalanobis Distance

The Squared Mahalanobis Distance constitutes a unitless value which takes
into account the statistical error distributions of two geometrical entities. It
can be considered to describe a distance between geometrical objects by the
means of the covariances and is generally specified in related literature like
[DuHa73] by:

D2 = [x − µ]T Σ−1[x − µ] (13)

where µ describes a d-component Mean Vector and x describes a d-component
column vector. (x− µ)T specifies the transpose of (x− µ) and Σ is a d-by-d
component Covariance Matrix with its inverse Σ−1.

In our mono-dimensional case for the distance the above given formula
reduces to

D2 =
(x − µ)2

σ2
(14)

where x specifies the measured euclidean distance and µ the deviation from
the mean. σ describes the uncertainty of the used function which in our case
is the used distance function.

With the calculated value D2 a Hypothesis Test can be applied. It is
considered to be true whenever:

D2 ≤ χ2
r,α (15)

where the threshold χ2
r,α is obtained from the χ2-distribution with r = rank(x)

and α the probability of rejecting a correct model.

3.3.2 The Normal Density of Sensor Data

The problem with sensor data is that their measurements can’t be considered
to be absolutely correctly representing the real world since various errors are
influencing the measurements. Due to the fact that the sources of errors are
multiple and each of these errors has an arbitrary probability distribution the
Central Limit Theorem7 says that the cumulative distribution approaches a
Normal Distribution with the mean µ and a variance σ2.

p(x) =
1√

2πσ2
e−

1
2

(x−µ)2

σ2 (16)

7Also referred as ”Moivre-Laplace Limit Theorem”

3 GENERAL DEFINITIONS AND FUNDAMENTALS 19

This distribution is specified entirely by the two parameters mean µ and the
variance σ2 so for simplicity the abbreviation for this distribution is denoted
with

x ∼ N(µ, σ2) (17)

(Read: x is distributed normally with the mean µ and the variance σ2.)

And

E[x] = µ =

∫ +∞

−∞
xp(x)dx (18)

E[(x − µ)2] = σ2 =

∫ +∞

−∞
(x − µ)2p(x)dx (19)

In the multidimensional (d-dimensional) case the general multivariate normal
density is specified by:

p(x) =
1√

(2π)n|Σ|e
[(x−µ)T Σ−1(x−µ)] (20)

Here x is a d-component column vector and µ the d-component Mean Vector.
(x − µ)T specifies the transpose of (x − µ) and Σ is a d-by-d component
Covariance Matrix with its inverse Σ−1 and the determinant |Σ|.

The abbreviation for this distribution is likely to the univariate case:

x ∼ N(µ, Σ) (21)

and
µ = E[x] (22)

Σ = E[(x − µ)(x − µ)T] (23)

To be more specific: Let xi be the ith component of the column vector x, µi

the ith component of the mean vector µ and σij the i-jth component of the
covariance matrix Σ then µi and σij are as follows:

µi = E[xi]

σij = E[(xi − µi)(xi − µi)
T]

In case of statistical independence of xi and xj the covariance matrix

Σ =

(
σi σji

σij σj

)

3 GENERAL DEFINITIONS AND FUNDAMENTALS 20

reduces to the diagonal matrix with the values σij, σji = 0 and p(x) reduces
to the product of the mono-dimensional normal densities of each component
xi.

So the knowledge of the covariance matrix allows us to calculate the
spread of the data in every direction of the d-dimensional space. Data tends
to scatter into a cluster whose center is defined by the mean µ. The shape
of the cluster depends on the Covariance matrix which in our 2-dimensional
case shapes an ellipse. The Eigenvectors of the covariance matrix determine
the direction of the axes and the Eigenvalues determine the length of the
ellipse

Figure 7 illustrates the distribution of 2-dimensional data around the
given mean µ and the elements of the covariance Σ.

x1

x2

µ1

µ2

Figure 7: Scatter diagram of a distribution p(x) ∼ (µ, Σ)

The points of constant density form an ellipse around the mean where the
term ((x − µ)T Σ−1(x − µ))2 is constant. This brings us back to the above
described Squared Mahalanobis Distance (Chapter 3.3.1). So the ellipses
represent a constant value of the density of the given distribution as well as

3 GENERAL DEFINITIONS AND FUNDAMENTALS 21

a constant value of the squared mahalanobis distance. Thus if we know the
squared mahalanobis distance based on the given density we now can apply
a hypothesis Test based on the χ2-distribution and determine with a certain
probability if our element contains to the cluster which is based on the given
distributions.

3.3.3 Linear and Non-linear Transformations

In many cases we have to transform given data into another representation.
The most trivial case is the transformation of data in polar representation
into cartesian or vice versa. This transformation already was explained in
section 3.1.1. The normal density function parameters µ and σ2 therefore
have to be transformed as well.

Linear Transformations
A linear transformation F (u) = x normally is represented in matrix notation:

F (u) = x (24)

= αu + β with given u ∼ (µu, Σu) (25)

α represents a n × m-Matrix and β and n-dimensional column vector.
So the new density function x ∼ (µx, Σx) has to be found.

From Equations 22 and 23 we can calculate the new parameters

µx = E[x] and Σx = E[(x − µx)(x − µx)
T]

3 GENERAL DEFINITIONS AND FUNDAMENTALS 22

µx = E[x]

= E[F (u)]

= E[αu + β]

= αE[u] + β

= αµu + β (26)

Σx = E[(x − µx)(x − µx)
T]

= E[(αu + β − αµu − β)(αu + β − αµu − β)T]

= E[(αu − αµu)(αu − αµu)
T]

= E[(α(u − µu))(α(u − µu))
T]

= E[α(u − µu)(u − µu)
T αT]

= α E[(u − µu)(u − µu)
T] αT

= α Σu αT (27)

Non-linear Transformations
In the non linear case of a transformation we can’t use the same transfor-
mation over the whole function. Thus we want to linearize the function only
at one location a so called Sampling Point which in our case should be the
mean vector µu. Therefore we use the approximation of a Taylor Series which
consists of adding the derivations of the function at a sample point. For sim-
plification it’s common only to use the first derivation. So the transformation
of a non-linear function can be written formally as follows:

F (u) = x

 F (µu) + F (µu)
′(u − µu) (28)

F (µu)
′ specifies the partial derivation of F (µu) which is called Gradient or

Jacobian Matrix. Formally it is written as

F (µu)
′ =

∂F

∂u
(µu)

= ∇F (µu) (29)

and consists of a m× n - Matrix with the dimensions depending on the
number of variables of the function F (u).

3 GENERAL DEFINITIONS AND FUNDAMENTALS 23

Thus α corresponds to the gradient ∇F (µu) so

α = ∇F (µu)

F (µu) = ∇F (µu)µu + β ⇒
b = F (µu) −∇F (µu)µu (30)

applied on the mean and the covariance we get the new parameters µx and
Σx as follows:

µx = E[x]

= αµu + β

= [∇F (µu)µu] + F (µu) − [∇F (µu)µu]

= F (µu) (31)

and

Σx = α Σ−1
u αT

= [∇F (µu)] Σ−1
u [∇F (µu)]

T (32)

3.3.4 The Extended Information Filter

Another problem we have is the estimation of a state vector by a given set of
noisy measurements. This occurs e.g. if we want to estimate a line by a given
set of measured points. We not only want to have the two line parameters ρ
and θ but as well an estimation of the covariance. This can be achieved by
The Extended Information Filter ([Cast98], [Neira93]).

The requirement therefore is the availability of a relationship between our
line (which will be called in the following the State Vector) and the set of
measurements. In our case this would be given by a distance function between
a point and the line. The therefore given equation 9 takes into account the
two parameters of the point and the two parameters of the line. The result
is a mono-dimensional value respective the perpendicular distance.

Another requirement is an initial state of the parameters due to the fact,
that this kind of filtering is an actualisation algorithm which needs an initial
state to actualise.

3 GENERAL DEFINITIONS AND FUNDAMENTALS 24

So first I want to give the fundamentals of the algorithm: Let x be a
state vector whose value is to be estimated, and let there be n independent
measurements yk with k ∈ {i, . . . , n} each with a normal error distribution:

ŷk = yk + uk ; uk ∼ N(0, Sk) (33)

so Sk specifies the covariance of a measurement.
Between the state vector and the measurements exists a non-linear func-

tion of the form: fk(x, yk) = 0. The linear approximation explained in the
previous chapter is given as well as:

fk(x, yk)
 hk + Hk(x − x̂) + Gk(y − ŷk) (34)

with

hk = fk(x̂, ŷk) ; Hk =
∂fk

∂x

∣∣∣∣
(x̂,ŷk)

; Gk =
∂fk

∂yk

∣∣∣∣
(x̂,ŷk)

(35)

Here hk specifies the function with the given parameters x and the measure-
ment yk which has to be integrated. Hk and Gk are parts of the jacobian
matrix with respect to the parameters of the state vector (Hk) and with
respect to the measurement (Gk).

A new state vector and a new covariance for the state vector can be
calculated by the given formulas:

x̂n = PnMn and Pn = Q−1
n (36)

where

Qn =
n∑

k=1

Fk ; Mn = −
n∑

k=1

Nk (37)

by calculating for each given measurement k

Fk = HT
k (GkSkG

T
k)−1Hk ; Nk = HT

k (GkSkG
T
k)−1hk (38)

This algorithm is a so called Batch Algorithm which integrates a set of n
measurements at one time to a state vector. Thus the complexity of the Ex-
tended Information Filter is directly related to the number of measurements
to integrate n.

To integrate a new measurement m the procedure is quite simple: Cal-
culating Fm and Nm add Fm to the inverse covariance Pn and re-invert it, as
well as to add to Mn −Nm and recalculate x̂m.

3 GENERAL DEFINITIONS AND FUNDAMENTALS 25

3.3.5 The Extended Kalman Filter

Another algorithm to actualize state vectors is the The Extended Kalman
Filter ([Cast98] [WeBi02]). In contrary to the Extended Information Filter
the Kalman Filter works completely recursive i.e. that for each integrated
measurement a new state vector is calculated as base for the proximate in-
tegration.

Given an state vector xm−1 and its Covariance Pm−1 a recursive actuali-
sation xm and Pm can be obtained as follows:

Be

Hk,m =
∂fk

∂xm

∣∣∣∣
(xm,ŷk)

; Gk,m =
∂fk

∂yk

∣∣∣∣
(xm,ŷk)

(39)

with the geometrical relation function hk,m = fk,m(xm, ŷk) with the embraced
actual state vector xm, the measurements to integrate ŷk and its covariance
Sk. An actualisation factor the so called actual Kalman Gain Kk,m results
from:

Kk,m = Pm−1H
T
k,m(Hk,mPm−1H

T
k,m + Gk,mSkG

T
k,m)−1 (40)

and the actualization of the state vector and its covariance is obtained by:

xm = xm−1 + Kk,m(hk,m) (41)

Pm = (I − Kk,mHk,m)P−1
m−1 (42)

where I specifies the Identity Matrix with the according dimensions.
The requirement for the integration of the first measurement is the exis-

tence of an initial state vector x0 and covariance P0 whose quality is essential
for the quality of the results. The farther the initial solution from the correct
state vector the worse the following estimation and therefore the final result.
For each integration of a new measurement and actualisation of the state
vector and its covariance a constant computational effort is necessary.

Application of the Mahalanobis Distance Now we have the tools to
transform elements into a distinguished representation, extract Covariances
and applying e.g. the Mahalanobis distance. Let’s contemplate the distance
between a measurements and a line given by two points and pose the question
if the point could pertain to the line taking into account their uncertainties.

Our given function to use is the distance function from a point to a line
whereas the point is given in polar coordinates.

fk(L, Pk) = ρPk
· sin(θPk

) · sin(θL) + ρPk
· cos(θPk

) · cos(θL) − ρL

3 GENERAL DEFINITIONS AND FUNDAMENTALS 26

with L =

(
ρL

θL

)
and Pk =

(
ρPk

θPk

)
The line parameters have to be calculated in the normal analytical way using
the two line points.

The non-linear function has to be approximated by:

fk(L, Pk) ≈ f(L̂, P̂k) + ∇f(L̂, P̂k)(L − L̂)

where f(L, Pk) is the desired value and f(L̂, P̂k) is the value given by the
measurements.

The transposed Jacobian of the function f is specified as follows8:

∇fT
k =

∂f
∂ρPk

∂f
∂θPk

∂f
∂ρL

∂f
∂θL

 =

sin(θPk
) · sin(θL) + cos(θPk

) · cos(θL)

ρPk
· cos(θPk

) · sin(θL) + ρPk
· − sin(θPk

) · cos(θL)

−1

ρPk
· sin(θPk

) · cos(θL) + ρPk
· cos(θPk

) · − sin(θL)

(43)
For the point we assume statistical independence between the distance and
the angular error. In our case a line is specified by two points so in effect
the error of the line parameters are not independent so the covariance for the
line parameters is not diagonal.

The covariance matrices for a point or the line result as follows:

CovPk
=

(
σρPk

0

0 σθPk

)
CovL =

(
σρL

σρLθL

σθLρL
σθL

)
(44)

Assuming as well statistical independency between a point and line (obvi-
ously this is only the case if the point still isn’t ”integrated” into the line)
we get:

Covfk
=

(
CovPk

0
0 CovL

)
=

(

σρPk
0

0 σθPk

)
0

0

(
σρL

σρLθL

σθLρL
σθL

)

(45)

8The Transpose was used to produce a 4× 1 matrix due to the document width which
would be exceeded by a 1 × 4 matrix

3 GENERAL DEFINITIONS AND FUNDAMENTALS 27

This covariance matrix now can be used to calculate the covariance of the
function at the sample point by using:

σ2
f = ∇fkCov−1

fk
∇fT

k

This signifies a matrix calculation of:

[1 × 4] · [4 × 4] · [4 × 1]

Due to the fact that the matrix is a diagonal block matrix (and therefore
most of the values are 0) we are able to split it back into its blocks and using
only the relevant parts of the Jacobian (given in equation 35):

σ2
f = HT CovLH + GT CovP G (46)

This reduces the calculation of former [4× 4] matrices into calculations with
easier to handle [2 × 2] matrices.

In this equation everything is known except the covariance of the line
CovL. It is obtained by applying the Extended Information Filter on the ini-
tal state vector i.e. the line parameters and integrating the two line points.
This will produce a covariance for the line but will not change the line pa-
rameters itself due to the fact, that the actualisation of the vector x̂, given
in equation 36, will be zero. It is easy to see that the distance function from
two points to the line defined by them will be 0, so N and respectively M
(equation 38 and 37) will be zero. But the covariance given by P is not-zero
and thus specifies the covariance of the line defined by two points.

Now all the parameters are given to calculate the Mahalanobis distance
from the point to the line. The equation

D2 =
(d − µ)2

σ2
f

with a µ = 0 provides a value which can be considered to be the ”distance
from point to line measured in σ’s”. With the given value we want to apply
a hypothesis test e.g. with the condition of a probability of at least p = 95%
certainty that if the point belongs to the line we will accept it or respectively
that with a maximum probability of pf = 5% the point will be rejected
although it belongs to the line9. The threshold is given by the χ2-distribution

9This is the case of ”False Negatives”

3 GENERAL DEFINITIONS AND FUNDAMENTALS 28

with the significance level of 1 − p = pf = 0.05 and a rank r = rank(f) = 1.
From a χ2-distribution table in normal statistical literature the value is given
with χ2

0.05,1 = 3.84. So if

D2 ≤ 3.84

the point will be accepted regarding the hypothesis test.
Figure 8 illustrates the squared mahalanobis distance between a Point

and a Line. The used covariance of a point was set10:

CovP =

(
0.0052 0

0 deg2rad(0.0125◦)2

)

With the given standard deviation of 5mm in direction of ρ and 0.0125◦ for

−0.03 −0.02 −0.01 0 0.01 0.02 0.03

0

2

4

6

8

10

12

Figure 8: Mahalanobis Distance between a Point and a Line varying the
euclidean distance

θ the margin for acceptance lies little below 20mm.

10Values are given by the SICK Laser sensor

3 GENERAL DEFINITIONS AND FUNDAMENTALS 29

3.4 Defining Algorithm Parameters

The goal of this project is to extract features, respectively segments, of sensor
captured data which should represent the real world as close as possible. The
algorithms themselves have completely different modes of operations though
the goal always is the same: extracting segments which are defined by groups
of points. Like mentioned before the consideration if a segment is ”good or
not” also depends on the subjective evaluation of the observer. But to give
a possibility to estimate the quality of the results regarding the tasks and
the requirements it is necessary to define parameters which have to be taken
into account during the procedure of segmentation. These parameters define
the requirements which the results have to accomplish. They are chosen to
”tune” and to optimize the algorithms and in generally were used for all the
algorithms in the same way. They should help to characterise the algorithms
and the produced results.

A parameter which is normally applied on a point is:

Point-to-Line distance Like explained in chapter 3.2 a very important
and often used characterisation is the distance from a Point to a Line.
This distance normally is calculated for a threshold test where the
answer should be found, if a point is sufficiently close to a line. This
threshold should be parameterised and will be called throughout this
thesis Point-to-Line -parameter or criteria.

The parameters which are applied on already defined segments are the fol-
lowing:

Distance between segments Different segments which are parts of one
specified line aren’t compelled to be connected or defining one large
segment, if the distance between two adjacent endpoints is too large.
Thus there is considered to exist a gap between two segments. The
used parameter for this threshold will be called Inter-Segment distance.
This occurs e.g. with a door thus representing an Inter-Segment Gap
between two segments of the same wall.

Minimum number of Points A segment only should be considered to ex-
ist if it is specified by enough measurements. This defined parameter
will be called Minimum Number of Points.

3 GENERAL DEFINITIONS AND FUNDAMENTALS 30

Minimum length of Segment A segment only should be considered to
exist if its length is larger than a defined parameter called Minimum
Length of Segment.

Minimum Density of a Segment A combination of the parameters Min-
imum Number of Points and Minimum Length of Segments leads to a
characterisation Density of a Segment. This is specified by the mean
distance of adjacent points of a segment which depends on the length
and the number of points specifying a segment.

Maximum number of ”invalid” points between two measurements
It can occur that a distance gap in a segment is smaller than the pre-
defined threshold though the gap itself constitutes a significant inter-
ruption due to the fact of a large number of measured points in this
gap. This occurs in cases of segments with different angle regarding to
the laser where the projection of one segments onto the other is very
small but should be considered to present a gap. The used parameter
will be called Number of Invalid Points.

This parameter can only be used due to the fact that the scanned data
is available in an ordered way and so information about adjacency is
provided.

Figure 9 illustrates cases where the above parameters are applied and affect
the results.

In this chapter we introduced the mathematical basics which were applied for
the implementation and realization of the algorithms as well as the criteria
which have to be fulfilled by the final results. Now we are able to introduce
and describe the algorithms whereby we want to start with the introduction
of the pre processing procedure.

3 GENERAL DEFINITIONS AND FUNDAMENTALS 31

“Minimum Number of Points”

“Minimum Segment Length”

“Inter Segment Distance”

“Invalid Points - Gap”

Figure 9: Application of predefined parameters on virtual scan data

4 PREPROCESSING 32

4 Preprocessing

In the following chapter I want to explain the data processing before the ap-
plication of the segmentation algorithms. The whole process of segmentation
generally is the same for each of the algorithms:

• Preprocessing

• Segmentation

• Postprocessing

Firstly the data has to be filtered of invalid measurements and thus produces
a group of measurement data which has to be used for the segmentation.
This preparation of data is proceeded in the Preprocessing-Step which can be
slightly varying for the different algorithms according to their characteristics.

On the resulting one group of measurements the segmentation algorithms
have to be applied with the goal of producing several point groups where each
group defines a potential segment according to the real world.

In the final Postprocessing-Step these potential point groups have to be
checked on compliance regarding the predefined criteria which should specify
a segment.

As already mentioned above, the Preprocessing is supposed to prepare the
raw measurement data for the algorithms. It should be applied with the goal
to obtain correct data and finally produce an optimisation on the whole seg-
mentation procedure. The Filtering of Invalid Scan points has to be applied
on all algorithms whereas the Filtering of Outliers only concerns algorithms
which are sensible to them.

4.1 Filtering Invalid Scanpoints

Like explained in chapter 2 the used Laser sensor is used in an indoor mode
with a maximum range of a 213-Bit [mm]-value. If the laser beam isn’t re-
flected within this range by an obstacle it provides a filled data message.
In our case this signifies a value of 8192mm. Thus we have to define a
Maximum Range value which should give us certainty about the validity
of the distance value. Taking into account the hardware error and a suf-
ficiently large margin the parameter for the maximum range was defined

4 PREPROCESSING 33

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

x
y

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

x
y

Figure 10: Scan data before and after the filtering of ignored measurements

with rangemax = 8100mm. We don’t know if the obtained maximum value
is due to the exceeding of the range or results from a measurement which
was measured exactly with this distance. To be certain only to proceed on
points, which can be considered to be correct measurements, we ignore the
maximum values and proceed only on data within the maximum laser range.

This step of filtering out the measurements which exceed the maximum
range is applied for all the algorithms in advance and trivially has a com-
plexity which is linear to the number of measurements O(n) with n =
number of laser-provided points (our case n = 361).

Figure 10 shows an example of raw data and the filtered valid data. The
robot was located in a corridor which is longer than 8100mm and had insight
into a laboratory whose opposite wall as well is farther than the maximum
range whereas the obstacles in the laboratory were situated within the max.
range. The invalid measurements are indicated.

4 PREPROCESSING 34

4.2 Filtering Outliers

Some algorithms react very sensible on so called ”Outliers”. These mea-
surements are captured accidentally and aren’t belonging to a real world
segment. This occurs e.g. as a result to bad reflection characteristics or non
relevant discontinuances of segments (e.g. small but deep crevices in walls).
An outlier can be specified by the characteristic of a big distance to his two
adjacent neighbours. Thus a measurement, whose distance to his previous
and to his proximate captured measurement exceeds a predefined thresh-
old, is considered to be an outlier and will be erased from the initial point
group. Obviously an erased outlier won’t be regarded in the outlier-check of
his proximate neighbour since an outlier is considered to be not existing and
therefore shouldn’t be included anymore.

For algorithms which are sensible on outliers the outlier-filtering will
be proceeded in advance. The filter has a complexity directly depend-
ing on the number of valids and therefore has the complexity O(n) with
n = number of valid points11.

Due to the geometrical fact that measurements farther away from the laser
will automatically have larger distances the threshold is specified distance
relative. To derive an appropriate threshold we took into account the laser
hardware error as well as an examination of the given test data compared to
the real world. Good results were obtained with a threshold of 50 − 80mm

m
.

Figure 11 shows a virtual example of the Filtering of Outliers. The red
measurements will be erased whereas the green will remain in the measure-
ment data set.

In this chapter we described the procedure of preprocessing the raw input
data as preparation for the pure segmentation algorithms. The input data
now is available in a general and common way which provides an equal pre-
condition for all of the algorithms. This should make a later comparison of
the results more convenient. In the following chapter I will give an intro-
duction to the procedures and the paradigms of the different segmentation
algorithms.

11Hereinafter ”valid” signifies all points within the maximum laser-range

4 PREPROCESSING 35

Order of Checking

Figure 11: Filtering of Outliers

5 SEGMENTATION ALGORITHMS 36

5 Segmentation Algorithms

In this chapter I will give an introduction to the implemented algorithms.
First I will give the theoretical fundamentals: How do they work? and What
procedures sequences are applied? to extract the required point groups from
the initial data. The emphasis should lie on the paradigm of the algorithms
and the differences in the modes of operation.

5.1 Choice of the algorithms

In this project we tried to implement different algorithms which are based on
substantially different aspects of feature extraction but with the requirement
of potentially equal results: A segment-model as close as possible to the real
world. We want to show that different procedures can lead to the same results
and will point out their characteristics, advantages and their disadvantages.

One one side we wanted to analyse algorithms which are commonly ap-
plied on this a kind of problem and therefore are thoroughly tested and
confirmed on their mode of operation e.g. the Split&Merge algorithm or the
Hough-Transformation. On the other side we wanted to apply algorithms
which had less importance until now in this field of application but whose
importance is increasing over the last couple of years.

The different modes of operation can be classified by a multiplicity of
criteria. In the following I only want to point out some possibilities for a
potential classification:

5 SEGMENTATION ALGORITHMS 37

Sequence of involving the measurement into the resulting model:

Ordered: Split & Merge

Unordered: RANSAC , Hough, EM

Usage of Characteristics:

Pure Geometrical: Split & Merge , Hough

Geometrical & Statistical: RANSAC , EM

Information about Segment relevance:

Weighted: Hough , EM

Unweighted: Split & Merge , RANSAC

Iteration proceeding on set of data:

Complete Data : Split & Merge , Hough[1] , EM

Reduced Data: RANSAC, Hough[2]

So a classification of the algorithms depends on the point of view of the
observer or the specified goal of the tasks. Thus we just want to show the
potencies of the algorithms and compare them on the different requirements
of the tasks.

A precondition for the choice of the algorithms was a reasonable complex-
ity in comprehension and implementation so the possibilities on optimization
and variation are easier to understand and demonstrated.

5.2 The Split & Merge - Algorithm

The Split & Merge Algorithm uses exclusively the geometrical relation be-
tween the points and lines, which would be potentially specified by existing
points. It is based on the basic principles of the Top-Down Polyline Splitting
Algorithm, also called Recursive Subdivision, and the Bottom-Up Merging
Algorithm. The fundamentals are given by [JaScKa95]. It combines the two
different algorithms iteratively to receive an optimal result.

In the following I will explain the two algorithms, their combination and
how they are used to produce the required point groups.

5 SEGMENTATION ALGORITHMS 38

Polyline Splitting
The Polyline Splitting searches the preliminary endpoints of all segments
recursively. Its name arises from the fact that the result is a Polyline where
the vertices specify the endpoints of the preliminary segments. The group of
points, situated between the vertices, define with its two vertices the later
segment.

The algorithm splits the initial line by searching the particular point
in between with the largest perpendicular line distance. This point is set
as a new vertex, respectively a new segment endpoint, and builds two new
segments with the former given endpoints. For the thereby new generated
segments the algorithm searches again the vertices. The algorithm stops the
recursion in case that the distance to the farthest found point lies below a
predefined threshold.

The initial line is specified by the first and the last captuerd scan point.
These therefore build the first and respectively the last vertex of our resulting
polyline.

Figure 12 illustrates the splitting procedure.

d

Figure 12: Split – Calculating all distances and inserting vertex

The algorithm of the split-step was implemented as follows:

==
global Points
global Vertices
--
Function: recursive split
Input: Indices of first and last point of current line segment
--
function: split(first_index, last_index)

for (i=first_index .. last_index)
max_dist, max_index = findMaximum(first_index,last_index)

5 SEGMENTATION ALGORITHMS 39

if (max_dist > DIST_THRESHOLD)
addVertice(max_index)
split(first_index, max_index)
split(max_index, last_index)

end_if
end_for

end_function
==
Function: finds maximum distance and index
Input: Indices of first and last point of current line segment
Output: maximum distance found, index of point with max. distance
--
function: [max_dist , max_index] = findMaximum(first_index, last_index)

line = generateLine(first_index, last_index)
max_dist = 0
max_index = first_index
for (i=first_index+1 .. last_index-1)

dist = pointLineDistance(Point(i), line)
if (dist > max_dist)

max_dist = dist
max_index = i

end_if
end_for
return [max_dist , max_index]

end_function
==

As already explained, the split-algorithm works recursively i.e. the func-
tion calls itself. The initial function call is split(P(first),P(last)).
In each loop the function findMaximum() is called. This function gener-
ates the line parameters in generateLine() for the line given by the two
handed over points first_index,last_index. In a for-loop the perpendic-
ular distance from each point Point(i) to the line is calculated (function
pointLineDistance()). And continuously the maximum value max_dist

and the index max_index is actualized. Finally these two values are returned.
In the super-function split() the distance maximum value is used to decide
if the line will be split recursively or not. If the distance value exceeds the
predefined threshold DIST_THRESHOLD the index of the measurement with
the largest distance is added to the global data structure Vertices by the
function addVertice() and the function is called twice, once from the pre-
vious first point to the maximum and once from the maximum to the last
point. The break condition for the recursion is constituted by the question
of the distance.

5 SEGMENTATION ALGORITHMS 40

This algorithm constitutes a typical Divide-and-Conquer-Algorithm and
therefore has the complexity O(n log n) in the mean case and O(n2) in worst
case where n specifies the number of points.

Merging
The general Bottom-Up Merging starts with the first two point and calculates
the resulting line. It checks iteratively if the proximate adjacent point lies
within a threshold of a relation to the line. This relation can be specified by
a euclidean distance from the point to the line, which has to be defined in
advance or it can be specified by the covariance of the line, which has to be
calculated from the point group which is defining the line. If this threshold
is exceeded the previous point group is extracted from the measurement set
and the point which exceeded the desired requirement is taken to start a new
point group.

In our case we just adapted the aspect of merging adjacent elements but
applied it on the segments given by the split algorithm and not directly on the
points. We use this procedure to ”repair” bad estimated vertices by merging
segments where the resulting, united segment fits better to the respective
points than the two separated segments.

For the estimation, if one merged segment fits better than the two pre-
vious ones, we use the Maximum Normalized Error of each of the two sep-
arated segments and of the merged segment. If the Maximum Normalized
Error (hereinafter called MNE) of at least one of the segments is bigger than
the MNE of the merged one, the segments will be united, which is trivially
obtained by erasing the respective vertex of the vertices given by the split.

The MNE is obtained by:

MNE =
e

D
(47)

where D specifies the segment length and e the maximum perpendicu-
lar distances d[i] obtained from all points to the respective line with e =
{argmax d[i]}.

Figure 13 illustrates the case of merging a bad estimated vertex.
To avoid to privilege segments due to their location in the polyline we

don’t use a direction for the segment checking. Instead of testing from ”left
to right” or vice versa we calculate all triples of MNE’s, i.e. for each adjacent
segments we calculate their MNE and the MNE of the potentially merged
counterpart. If exist more than one segment-pair which meets the conditions

5 SEGMENTATION ALGORITHMS 41

bad estimation calculating MNE’s correct re-estimation

Figure 13: Merging of two segments

to be merged we merge the segments with the biggest difference compared
to the merged one. After a merge obviously the MNE-differences of the
adjacent segments have to be recalculated. This procedure gets repeated
until no segments have to be merged anymore.

The algorithm of the merging-step was implemented as follows:

==
global Points
global s_MNE
global d_MNE
global vertices
--
Function: iterative merge of segments
Input: vertices of polyline
--
function: merge(vertices)

for(i=1..num_of_vertices - 1)
s_MNE[i] = getSingleMNE(i)

end_for
for(i=1..num_of_vertices - 2)

d_MNE[i] = getDoubleMNE(i)
end_for
merged = 0;
while(merged == 0)

d_max_index=getMaxMNEDiff(s_MNE[i] , d_MNE[i])
if (d_max_index > 0)

eraseMaxVertice(d_max_index)
merged = 1;

5 SEGMENTATION ALGORITHMS 42

recalcMNE(d_max_index)
else

merged = 0;
end_if

end_while
end_function
==
Function: calculates MNE for given Segments
Input: number of first vertex of segment
Output: respective s_MNE
--
function: s_MNE = getSingleMNE(j)

line = generateLine(j, j+1)
for(i=j..j+1)

dist[i] = pointLineDistance(Point(i), line)
end_for
max_dist=getMaxDist(dist[i]);
l = getSegmentLength(j,j+1)
s_MNE = max_dist / l
return s_MNE

end_function
==
Function: return index with maxium MNE difference
Input: all pre-calculated MNE’s
Output: if exist: index with maximum difference if not exist: 0
--
function: max_vertice=getMaxMNEDiff(s_MNE[i], d_MNE[i])

for(i=1..num_of_d_MNE)
if(s_MNE[i] >= s_MNE[i+1]

diff[i] = s_MNE[i] - d_MNE[i]
else

diff[i] = s_MNE[i+1] - d_MNE[i]
end_if

end_for
if (max(diff[i]) > 0)

return i
else

return 0
end_if

end_function
==

The function merge() calculates for all single segments the maximum
normalized error getSingleMNE as well as for all potenitally merged ones
getDoubleMNE(). Therefore the line, specified by the two vertices, is gen-

5 SEGMENTATION ALGORITHMS 43

erated generateLine() and the distance from each point Point(i) to line
line is calculated and hold in the array dist[i]. After computing all dis-
tance values the maximum value is acquired by the function getMaxDist()

and by calculating the length of the segment by getSegmentLength() the
MNE can be calculated and returned to the super function.

In a while loop the segments with the maximum MNE are obtained by the
called function getMaxMNEDiff() which uses the data structures s_MNE[i]

and d_MNE[i]. Therefore it calculates for each potentially merged segment
the differences to its two ”sub-segments” and holds them in the structure
diff[i]. The difference is calculated by s_MNE[i] - d_MNE[i] i.e. if the
difference is positive there exist a sub-segment whose MNE is larger then
the MNE of its super-segment, indicated by a index > 0, so the segments
should be merged. If no sub-segment has a MNE larger than the MNE of
its super-segment the function returns 0. So this return value is used for the
decision of merging or not. If the decision is YES the segments are merged
trivially by erasing the respective vertex d_max_index from the vertex data
structure. Due to the change on the vertex structure the new MNE’s have
to be computed on the respective segments and its adjacent neighbour. This
proceeds the function recalcMNE().

The break condition for the while loop is the alteration of the vertex
structure. If no change was applied the function breaks and exits.

None of the functions contains nested loops and the given loops depend
on the number of points because they proceed on the segments whereas one
point only belongs to one segment12. So the complexity of this algorithms is
linear to the number of points n with O(n).

Split & Merge
The above described procedures are applied iteratively. In case of a merge
a further split is applied on the affected segments with the intention to op-
timize the previous results. The whole Split & Merge algorithm is executed
iteratively until no modification of the polyline are obtained anymore.

Figure 14 shows the polyline which was obtained after the whole Split &
Merge Algorithm.

12Except the two vertices

5 SEGMENTATION ALGORITHMS 44

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

x
y

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

x
y

Figure 14: Scan data and generated Polyline after Split&Merge

5.3 The RANSAC - Algorithm

The Random Sample Consensus Algorithm, affiliated from [FiBo81], embarks
another strategy as the previous described algorithm. It chooses randomly
measurements to specify a line and searches the measurements, which are
lying within a predefined threshold to this line. The important feature of
RANSAC is the incorporation of certain probabilistic characteristics of a
scan to determine the run-time length of the algorithm. By knowing the
probabilistic characteristics of a scan we have a possibility to apply a kind of
hypothesis test and therefore have a probabilistic certainty about the quality
of the result.

Its basic principle is not based on a strategy of taking as many measure-
ments as possible and eliminating the ”negative compatible” entities but it
starts with the smallest possible state vector, in this case a line specified by
two points, and increases this state vector by searching and integrating the
”positive compatible” observations or measurements.

5 SEGMENTATION ALGORITHMS 45

In general it consists of two major steps:

• Estimation of the number of random tries to search a line, taking into
account the predefined probabilities

• The iterative searching of potential segment point groups

Mode of Operation
RANSAC selects randomly two measurements from the given measurement
set {P}. The two chosen points are considered to specify a potential line
so we search the measurement subset {Pc} which can be considered to be
situated close enough to our potential line with {Pc} ⊆ {P}. Let’s name this
decision threshold dist eps. This threshold should be equal for each randomly
chosen line thus an estimation of a covariance given by a transformation of
the covariances of the two random points isn’t desired since this would lead
for each line to a distinguished covariance. Due to the fact that variations of
the error tolerances can be considered relatively small compared to gross er-
rors a fixed threshold for each line and each measurement can be considered
to be sufficiently appropriate so dist eps can be set arbitrarily to one reason-
able and task depending value. The subset {Pc} generated by checking on
dist eps now is considered to build a potential segment point group if its num-
ber of elements N = |{Pc}| is greater than a predefined number-threshold
min num points. This threshold obviously should be set at least to the pa-
rameter Minimum Number of Points (see Chapter. 3.4) which determines the
minimum number of measurements which have to define a segment. If N is
large enough {Pc} is extracted from the previous set {P} and the procedure
is repeated on the reduced set {Pn} = {P − Pc}. If N is too small {Pc} is
discarded and the procedure is repeated on the previous set {P}.

The algorithm has two exit conditions: Either the number of elements in
a reduced set is smaller than min num points so |{Pn}| < min num points,
or the number of unsuccessful tries exceeds a predefined parameter k.

Estimating Maximum Number of Tries
To decide the k =Maximum Number of Tries we have to introduce several
new parameters [FiBo81].

In our case we need 2 points to define a line. Let ω define the probability
that any chosen point belongs to a existing segment in the real world model.
So the probability that both chosen points belong to a line is ω2. Thus the

5 SEGMENTATION ALGORITHMS 46

expected value of tries k is specified by E(k) = 1
ω2 . On the negative side we

have a probability of (1−ω2) that we won’t find a correct line with one single
try. The probability of not finding a line in k attempts is consequently

pfail = (1 − ω2)k

If we want to ensure with a probability of z that at least one of our
randomly chosen point-set defines a existing line the probability of not finding
a line is

pfail = (1 − z)

Therefore we got:
(1 − ω2)k = (1 − z)

with the number of attempts

k =
log(1 − z)

log(1 − ω2)
(48)

For example if we know that at least the half of all points of the initial set
belong to existing real world segments ω = 0.5 and our requirement is a
probability of z = 95% to find at least one existing line we get the following
number of tries:

k =
log(1 − z)

log(1 − ω2)
=

log(0.05)

log(3
4
)

≈ 10.4

So we can assume with a probability of at least 95% that we will find an
existing line if we make at least 11 attempts with the given probabilities of
the points.

Table 1 provides some values of k depending on ω and z.

Fig. 15 illustrates the procedure of one successful RANSAC Iteration apply-
ing randomly chosen points, generating of line parameters, threshold check,
extraction and erasing from original measurement set.

The algorithm of RANSAC was implemented as follows:

==
global Points
global point_groups
--
Function: extracts point groups by RANSAC Algorithm

5 SEGMENTATION ALGORITHMS 47

z
ω

0.50 0.60 0.70 0.80 0.85 0.90 0.95

0.20 16.97 22.44 29.49 39.42 46.47 56.40 73.38
0.30 7.34 9.71 12.76 17.06 20.11 24.41 31.76
0.40 3.97 5.25 6.90 9.23 10.88 13.20 17.18
0.50 2.40 3.18 4.18 5.59 6.59 8.00 10.41
0.60 1.55 2.05 2.69 3.60 4.25 5.15 6.71
0.70 1.02 1.36 1.78 2.39 2.81 3.41 4.44

Table 1: Values for k dependent on ω and z

Random Points

Generated Line

Threshold Compatible Subset Pc Reduced Original Set Pn

Figure 15: One Successful RANSAC Iteration

Input: probability values
--
function RANSAC(omega, z)

P_n = Points
k = calcMaxTries(omega,z)
cnt = 0;
while cnt <= k

line = generateRandomLine(P_n)
P_c = getClosePoints(line,P_n,DIST_EPS)
cnt = cnt + 1
if (getNum(P_c) > MIN_NUM_POINTS)

P_n = P_n - P_c
addToPointGroups(P_c)
cnt = 0
if(getNum(P_n) < MIN_NUM_POINTS)

5 SEGMENTATION ALGORITHMS 48

break
end_if

end_if
end_while

end_function
==

With the subfunction:

==
Function: returns subset with compatible points
Input: line, superset, threshold
Output: subset of compatible points
--
function P_c = getClosePoints(line,P_n,DIST_EPS)

P_c = 0
for(i=1..getNum(P_n))

if (pointLineDist(line,P_n[i]) < DIST_EPS)
addClosePoint(P_c,P_n[i])

end_if
end_for

end_function
==

The RANSAC algorithm begins by calculating the maximum number of tries
in calcMaxTries() specified by the two probabilistic parameters omega and
z. The return value is used for the while loop as break condition. Inside the
loop a line is generated by two randomly chosen points from the superset P_n
by the function generateRandomLine() and the line parameters are returned
in the data structure line. This line is used to obtain the point subset P_c
which includes the ”compatible” points to the line under constraint of the
threshold DIST_EPS. In the subfunction getClosePoints() for each point
P_n(i) the perpendicular distance is calculated (pointLineDist()) and if
the distance lies below the threshold the current point is added to P_c. In
the proceeding while loop now it has to be checked if the size of the com-
patible points, obtained by getNum(P_c), is large enough to be accepted as
potential segment specification. In this case the subset has to be erased from
the previous superset of measurements. This is specified by the command
P_n = P_n-P_c. This successful pass of RANSAC leads to a reset of the
counter of unsuccessful tries cnt.

RANSAC only has to be proceeded further if the resulting superset of
measurements is large enough to build a valid sized sub set at all. So the cur-
rent size of P_n is calculated and compared to the threshold MIN_NUM_POINTS

5 SEGMENTATION ALGORITHMS 49

which defines the required minimum number of points to define a line. This
threshold as well as the threshold DIST_EPS is defined globally as a algorithm
criteria.

The algorithm is in its complexity only depending on the runtime fixed
factor k therefore the complexity is constant O(1).

5.4 The Hough-Transformation

The Hough-Transformation (by [JaScKa95]) is a so called ”Voting Algo-
rithm”. In this kind of algorithms an initial multiple model is offered and
the single measurements vote for the, from their point of view, most proba-
ble single model or they vote in a weighted manner where the most probable
single model gets the highest voting value. The resulting ”Voting histogram”
leads to the resulting filtering of the initial model depending on the histogram
values.

In the Hough-Transformation the initial model is generated by a param-
eter transformation from the given representation space into another virtual
one, the so called Hough Space which serves succeedingly as initial model.

The Hough Space
In our case the measurement data are represented in the 2-dimensional carte-
sian space with the 2 polar- or cartesian point coordinates. The Hough Trans-
formation transforms this Point-Coordinate-Space into the two dimensional
Line-Parameter-Space.

The Transformation itself is quite simple. With the knowledge that a
point appertains to a line with given parameters we have a point function
which assigns a y-value to a particular x-value under constraint of the line
parameters:

y =
ρ − cos(θ) · x

sin(θ)

By the transformation from this coordinate function into the line parameter
space we get trivially the already known function:

ρ = sin(θ) · y + cos(θ) · x

which assigns a ρ-value to a particular θ-value under the constraint of the
point parameters.

5 SEGMENTATION ALGORITHMS 50

The similar transformation in the cartesian space results as:

y = m · x + c0

and gets transformed into the parameter space by:

c0 = y − m · x
where to one slope-value m one y-axis-offset-value c0 is assigned.

Using the polar line parameter space we assign to a given angle θ a norm ρ.
Due to the fact that θ-values of a line contain to a closed set θ ∈]−π

2
; +π

2

]
we partition the given set into regular steps ∆θ and use the given discrete θ-
values with each of the point parameters to calculate the particular ρ-values.
In effect to realize a voting algorithm we have to divide the second dimension
of the line parameters into discrete values as well. Given the maximum range
by the laser with 8100mm the possible ρ-values are restricted to the set
ρ ∈ [−8100 mm; +8100mm]. This set has to be partitioned by a regular
ρ-step ∆ρ. Partitioning the two dimensions of parameter space into discrete
values we now have a countable number of possible line specifications which
can be used as closed Hough-space. To a given constraint parameter pair of
a point and one, in our Hough-space specified, θ-value exactly one specified
ρ-value is assigned by rounding the resulting parameter accordingly to the
defined ∆’s. This characteristic builds the base of our Hough-Transformation
Voting Algorithm.

Figure 16 shows the discrete assignments of ρ to the given θk under con-
straint of particular point parameters and the resulting lines in cartesian
space. The dimension of θ was divided into 4 values with a regular step-
width of ∆θ = π

4
with θ1..4 = { π

2
; π

4
; 0 ; −π

4
}. The constraint parameters

were given by two points Pn =

(
xn

yn

)
and Pm =

(
xm

ym

)
.

The Accumulator
Initially a data structure with the dimensional magnitudes according to our
discrete Hough-space is created and entirely initialized with 0. This data
structure is called Accumulator or Accu. The transformation is calculated for
each constraint parameter-pair Pp with p ∈ {1 · · · q} and q =number of points
and for each possible value of θk with k ∈ {1 · · · l} with l = 16200 mm

∆θ
+1. The

5 SEGMENTATION ALGORITHMS 51

Xn Xm

Yn

Ym

(ɟn1 , ɗn1)

(ɟn2 , ɗn2)

(ɟn3 , ɗn3)
(ɟn4 , ɗn4)

(ɟm1 , ɗm1)

(ɟm2 , ɗm2)

(ɟm3 , ɗm3)

(ɟm4 , ɗm4)

Pn

Pm

Figure 16: Hough Transformation with resulting Lines and Parameter

resulting transformed parameter pair (ρpk ; θpk) specifies a discrete coordinate
in the Hough space and the according value in the Accu is increased by
one. This can be considered as a ”Voting” of one point for one line. After
the complete transformation the sum of the entire accu adds up to q · l.
The coordinate in the Accu with the highest value specifies the line which
was voted mostly from all points so this line can be considered to be the
most possible line which is specified by the given measurements. Other local
maxima as well specify lines with a high possibility to exist.

The definition of ∆ρ and ∆θ depends on the required task. They con-
stitute the ”resolution” of the results i.e. the larger the steps are chosen
the rougher the transformation will assign points to specified lines since the
step-width define the distance between adjacent lines respective angle and
distance. Small ∆’s make it possible to find separated close situated lines as
well as a variation between segments with a small angular difference.

Fig.18 shows the Accumulator after the voting on the original captured
scan data displayed in Fig.17.

5 SEGMENTATION ALGORITHMS 52

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

x
y

Figure 17: Original data
points

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

Figure 18: Filled Accumulator

5.4.1 Variation in Maximum Extraction

The maxima should specify the potential lines with a high probability to
exist. The problem on this characteristic now is to find the relevant maxima
which specify a real existing line because not all local maxima really mirror
the real world model.

Therefore we applied two different possibilities to find relevant maxima.

Hough by Revoting
One possibility is only to give relevance to the global maximum due to the
fact that the global maximum specifies the line with the highest probability
of all the lines found. The goal is to avoid the points which were voting
for the maxima voting as well for others non relevant lines. So the line,
specified by the global maximum, is generated and all the points which are
close enough are extracted and build a resulting point group. This set of
point has to be erased from the original measurements and the reduced data
is taken for a new Hough transformation. This procedure is repeated until
the number of votes of the global maxima is smaller than a given threshold
or if the number of left over points is smaller than this threshold. The way
of extracting point groups and proceeding on reduced data is equal to the

5 SEGMENTATION ALGORITHMS 53

previous explained RANSAC Algorithm.
The threshold which is used to find close enough points obviously should

be chosen accordingly to ∆ρ. If we want to exploit the results of the trans-
formation it should be defined with ∆ρ

2
to keep consistency in our algorithm.

Would it be chosen smaller not all points which were voting for this line
would be found. In case of a larger threshold points which were voting for
other lines would be extracted as well. The threshold for the number of votes
of the maximum is defined accordingly to the parameter Minimum Number
of Points used to specify a line.

The algorithm of Hough by Revoting was implemented as follows:

==
global Points
global point_groups
--
Function: extracts point groups by Hough Revoting Algorithm
Input: predefined deltas of rho and theta
--
function Hough Revote(delta_rho, delta_theta)

P_n = Points
while(getNum(P_n) > MIN_NUM_POINTS)

accu = calcAccu(P_n, delta_rho, delta_theta);
[line, num_votes] = getMaxVote(accu);
if (num_votes >= MIN_NUM_POINTS)

P_c = getClosePoints(line, P_n , delta_rho / 2);
P_n = P_n - P_c
addToPointGroups(P_c)

else
break

end_if
end_while

end_function
==

The Hough-by-Revoting algorithm consists in essence of a loop with the
break condition of a check on the superset size obtained by the function
getNum() compared to the global variable MIN_NUM_POINTS. If this would
be given a further pass obviously would be useless. The two parameters
delta_rho and delta_theta specify the step width for the respective hough-
space parameters. Firstly the Accumulator is calculated in calcAccu() un-
der constraint of the given parameters and the current superset of measure-
ments P_n and returns the filled data structure accu.

5 SEGMENTATION ALGORITHMS 54

==
Function: proceeds hough transformation and

fills accordingly the Accumulator
Input: set of Points, deltas of rho and theta
Output: filled Accumulator
--
function accu = calcAccu(P_n, delta_rho, delta_theta)

num_of_theta = (PI / delta_theta)
for(i=1..getNum(P_n))

for(j=1..num_of_theta)
theta = PI - (j-1)*delta_theta
rho = P_n(1)*cos(theta) + P_n(2)*sin(theta)
index_rho = roundRho(rho, delta_rho)
accu(i,index_rho) = accu(i,index_rho) +1

end_for
end_for
return accu

end_function
==

Inside the function calcAccu() firstly the number of thetas is calculated
by dividing the available θ-range. The currently to use θ as well is calcu-
lated by using the current index. For calculating the values of cos(theta)
and sin(theta) a lookup table is calculated in advance and used through
the programm due to the fact that the exact values of theta are known
and the sine and cosine calculation is proceeded many times. The function
roundRho(rho, delta_rho) takes the calculated, not-discrete ρ-value and
rounds it accordingly to delta_rho to the appropriate discrete ρ-value.

After returning the filled accumulator the function getMaxVote() seeks
the coordinate with the maximum voting value and returns the according
generated line parameters as well as the number of respective votes. This
variable num_votes is the basis on the decision of Hough will be proceeded
further or not by comparing it to MIN_NUM_POINTS. In case of success the com-
patible points to the current global maximum in the Hough space would be
searched. This function is exactly the same as already used in the RANSAC
procedure. The constraint parameter in this case is reasonably defined by
delta_rho/2. As well equally to the RANSAC procedure the measurement
subset is erased from the superset P_n = P_n-P_c and the subset is added
to the global point groups point_groups by addToPointGroups(P_c). In
case of a too small potential subset i.e. the global maximum obtained too
few votes, a break is initiated and the revoting algorithm is finished.

5 SEGMENTATION ALGORITHMS 55

The function to calculate the accu contains a nested for-loop where the
numbers of loops depends on the number of currently to use points and the
number of θ’s. So the complexity is O(n × m) where n = number of points
and m =number of θ’s.

Hough by Neighbourship
Another version for the maximum extraction from the accumulator is to
calculate it only once and searching all the local maxima. So we’re able
to avoid the repeatedly calculation of the accu. To find the local maxima a
recursive clustering algorithm was implemented which searches all neighbours
and the ”neighbours of the neighbours” of a maxima. Firstly all the votes
of the accu were held in a data structure with the number of votes and the
indices, ordered by the number of votes. All indices whose votes are lying
below a predefined threshold are erased in advance i.e. their number of votes
were set to zero. The current global maxima thus is situated on the top of the
structure. Downwards all neighbours are searched recursively, firstly marked
and at last erased. The actualized global maxima now stands on top and the
procedure is repeated until the data structure is empty and all clusters with
a local maxima is found.

The algorithm of Hough by Revoting was implemented as follows:

==
global Points
global maxima
global point_groups
--
Function: extracts local maxima of accu by clustering
Input: predefined deltas of rho and theta
--
function Hough Neighbourship(delta_rho, delta_theta)

P_n = Points
accu = calcAccu(P_n, delta_rho, delta_theta)
list = generateOrderedIndexList(accu, MIN_NUM_POINTS)
while (getNum(list) > 0)

list(1) = marked //top element mark 1
addToMaxima(list (1))
markList(1, list)
eraseMarked(list)

end_while
generatePointgroups()

5 SEGMENTATION ALGORITHMS 56

end_function
==

The Hough-by-Neighbourship-Relations algorithm holds the estimated
maxima in a global data structure maxima with the indices of the accu respec-
tively the line parameters. It starts with a unique calculation of the acumu-
lator calcAccu() which is equal to the calculation in the previous described
algorithm. Further generateOrderedIndexList(accu) generates a list with
all elements of the accu with a voting value bigger than MIN_NUM_POINTS. In
this list the indices and the number of votes are held as well as a marking-
column for each entry. The command list(i) = marked sets the value in
the marking column of element i to 1. This signifies the membership of
this element to the cluster. The first element is marked automatically by
list(1)=marked due to the fact that it specifies the local maxima of the
cluster which is to build. Hence the first element in the list has to be added
to the global list of maxima by addToMaxima(list(1)). In the next step
the cluster around the first element has to be built.

==
Function: marks recursively list by checking on neighbourship

to element elem
Input: element to check on neighbours, list
--
function markList(elem , list)

for(i=2..getNum(list))
if (isNeighbourTo(list(i), elem) AND list(i) !=marked)

list(i) = marked
markList(i,list);

end_if
end_for

end_function
==

The function markList(elem,list) searches the list from top to bot-
tom and checks on neighbourship with the element elem. If a neighbour to
elem is found the function is called again to search the list on neighbour-
ship on the found element. Obviously the first element definitely is element
of the cluster so this element hasn’t to be checked. To avoid an endless
loop it has to be checked if the found neighbour already is marked. The
function isNeighbourTo(list(i),elem) checks the indices of the two ele-
ments list(i),elem and returns 1 if they are neighbours. If all elements

5 SEGMENTATION ALGORITHMS 57

are marked, respectively the cluster is found, the elements have to be erased
from the list. This is proceeded in the function eraseMarked(). This whole
procedure of adding the maximum, marking the cluster and erasing the list
elements is executed until the list is empty. Thus all voted coordinates are
clustered.

==
Function: extracts point groups according to given line parameter
--
function generatePointgroups()

for(i=1..getNum(maxima))
P = getClosePoints(maxima[i],Points,DIST_EPS)
addToPointGroups(P)

end_for
end_function
==

In the end the function generatePointgroups() extracts the points
groups from the entire measurement data Points by means of the guarded
line parameters in maxima. The procedure is equally to the already presented
point group extraction in previous algorithms with the difference that the ex-
tracted point groups aren’t erased from the superset. So the possibility of
measurements to contain preliminary to more the one point group is given.

The recursive clustering algorithm is called for almost each element of the
list and proceeds a check on each other element of the list. The list represents
all coordinates which were voted more times than a specific threshold. The
major variable which specifies the number of coordinates is the number of
θ’s. So the complexity of the clustering algorithm is quadratic O(n2) where
n specifies the number of θ’s.

5.5 The EM-Algorithm

The EM- or Expectation Maximization-Algorithm uses an iterative approach
to improve a pre-defined virtual model. We are using a variation of the
EM-Algorithm whose fundamentals are given by [DeLaRu70].

The basic principle is to use a iterative procedure to change a given model by
probabilistic relations between the given measurement data and the model
which in the end is used to extract the resulting segments. The algorithms
consists of two major steps:

5 SEGMENTATION ALGORITHMS 58

• The Expectation-Step (hereinafter the E-Step) and

• The Maximization-Step (hereinafter the M-Step)

The E-Step calculates the expectation of the measurement data to the
model13 and the M-Step maximizes the expectations by changing the model
parameters under constraint of the previously calculated expectations. [LCBT01]
introduces a 3D approach of a similar problem.

In the following I want to introduce the fundamentals of the algorithm
referring to our problem.

The virtual Line Model
The model we are using is a finite collection of 2D lines which in the end is
used for the segment extraction. Our used model is denoted Θ and it consists
of J lines so each single model line is called Θj with j ∈ {1 · · · J}, so our
model is specified by

Θ = {Θ1 · · ·ΘJ} (49)

Each single model specifies a line in vector representation so the single model
parameters are (αj , βj) where αj specifies the Unity Normal Vector to the
line Θj and βj the Norm of the Normal Vector from the origin of the coordi-
nate system to Θj. Hence each line is defined by

Θj = (αj , βj) ∈ IR3 × IR (50)

Due to the fact that αj is a orthogonal unit vector to the line its given:
αj · αj = 1 where ”·” signifies the Inner Product14.

This representation gives us the distance relation function:

|αj · z − βj| = d (51)

where z denotes a measurement given by 2 parameters in cartesian coor-
dinates. Thus the points z which are elements of the line Θj are specified
by

αj · z = βj (52)

13Model specifies a set of Lines which hereinafter also will be referred to with Single
Models

14Also called Dot-Product or Scalar Product

5 SEGMENTATION ALGORITHMS 59

The given Measurement Model
Our measurement data are represented in 2 dimensional space so each mea-
surement is specified by zi ∈ IR2. The complete set of measurement data will
be denoted with Z and the number of obtained measurements I so:

Z = {zi} with i ∈ {1 · · · I} (53)

Contemplating a probabilistic relation between the measurements and the
line model we have a probability of p(zi|Θj) for each measurement zi to the
single model line Θj. Based on the assumption of Gaussian Measurement
Noise the error distribution from a measurement zi to its closest Θj is given
by the normal distribution

p(zi|Θj) =
1√

2πσ2
e−

1
2

(αj ·zi−βj)2

σ2 (54)

where σ specifies the variance parameter.
The above given equation only is relevant for measurements which in

reality can be assigned to our virtual model. We have to introduce a model
to which measurements are assigned if they don’t belong to a existing model,
e.g. outliers. The goal is to assign each measurement to a single model line
though in reality this isn’t the case. Therefore we introduce a Phantom Model
to which such un-assignable measurements are assigned. Let’s denote this
model with Θ∗. We give this phantom model a uniform error distribution
with p(zi|Θ∗) = 1/zmax where zmax specifies the maximum range of our laser
sensor. Assuming that zi ∈ [0; zmax], which here always is the case, we can
rewrite the phantom normal distribution as

p(zi|Θ∗) =
1√

2πσ2
e−

1
2
ln

z2
max

2πσ2 (55)

This specifies the above chosen uniform distribution due to the constant
exponent.

These distributions are the basis for the E-Step of the EM-Algorithm.

The Log-Likelyhood Function
The Log-Likelyhood function specifies a description of likelyhood between
the measurements and the model. This function is the basis of optimization
because it describes how close the measurements and the model are lying to

5 SEGMENTATION ALGORITHMS 60

each other estimated by the squared perpendicular distance from a point to
a line15.

To define the likelyhood function we have to introduce a new set of vari-
ables the so called the Correspondence. The correspondence exists for each
measurement to each single model and the phantom model. Let’s denote it
with cij and ci∗. In effect the correspondences cij are binary variables which
adopt the value 1 if the measurement zi corresponds to the j′th single model
Θj. If this is not the case it adopts the value 0. One measurement only
can be assigned to one single model that is to say to the model for which its
probability to correspond is the highest. If the measurement is not caused by
any of the given single models the phantom model correspondence is set to 1 .
The given correspondence vector of all correspondences of one measurement
i therefore is denoted by

Ci = {ci∗, ci1, ci2, · · · , ciJ} (56)

So the correspondence vector for one measurement sums up to exactly 1 since
each measurement is caused by exactly one single model θj.

Assuming the knowledge of the correspondences we can rewrite the gen-
eral probability of one measurement under constraint of its correspondence
and the model as follows:

p(zi|Ci, Θ) =
1√

2πσ2
e
− 1

2

[
c(i∗)ln

z2
max

2πσ2 +
∑J

j=1 c(ij)
(αj ·zi−βj)2

σ2

]
(57)

Obviously this formula is partially redundant due to the fact that only one
correspondence value is 1 the rest will be 0 and these parts in the exponent
then are redundant.

By making the correspondence explicit in the measurement model we are
now able to calculate the Joint Probability of one particular measurement
zi along with its correspondences Ci. Assuming that all correspondences of
all J + 1 single models are equally probable in absence of measurements we
have:

p(zi, Ci|Θ) =
1

(J + 1)
√

2πσ2
e
− 1

2

[
c(i∗)ln

z2
max

2πσ2 +
∑J

j=1 c(ij)
(αj ·zi−βj)2

σ2

]
(58)

Under the assumption of independence in measurement noise we can
compute the likelyhood of all measurements Z and their correspondences

15Evaluated in the exponent of the normal error distributions

5 SEGMENTATION ALGORITHMS 61

C = {Ci} simply by multiplying them:

p(Z,C|Θ) =
∏

i

1

(J + 1)
√

2πσ2
e
− 1

2

[
c(i∗)ln

z2
max

2πσ2 +
∑J

j=1 c(ij)
(αj ·zi−βj)2

σ2

]
(59)

This function happens to be maximized. Due to the fact of the incon-
venient product in this formula a common practice is to maximize the Log-
Likelyhood instead:

lnp(Z,C|Θ) =
∑

i

ln
1

(J + 1)
√

2πσ2
− 1

2
c(i∗)ln

z2
max

2πσ2
−

J∑
j=1

c(ij)
(αj · zi − βj)

2

σ2

(60)
The logarithm is strictly monotonic hence the maximization of the log-
likelyhood corresponds to the maximization of the likelyhood though the
maximization of the log-likelyhood is more convenient due to the sum in the
equation.

All the above given equation compute a joint over the model and the
correspondences. All we are interested in are the model parameters and since
the correspondences only are interesting regarding the determination of the
most likely model Θ all we want to achieve is to estimate the Expectation
values of the log-likelyhood taking into account all correspondences C. So
the expectation of the log-likelyhood is given with:

EC [lnp(Z,C|Θ)] =

= EC

[∑
i

ln
1

(J + 1)
√

2πσ2
− 1

2
c(i∗)ln

z2
max

2πσ2
−

J∑
j=1

c(ij)
(αj · zi − βj)

2

σ2

]
(61)

Finally we want to factor in the expectation of the correspondences and
since the expectation is linear the log-likelyhood function under the con-
straint of the expectation values of the correspondences results with:

EC [lnp(Z,C|Θ)] =

=
∑

i

ln
1

(J + 1)
√

2πσ2
− 1

2
E[ci∗]ln

z2
max

2πσ2
−

J∑
j=1

E[cij]
(αj · zi − βj)

2

σ2
(62)

Now we have the log-likelyhood function of all measurements to all single
models and the phantom model for unassignable measurements under con-
straint of the expectations of the correspondences. This is the basis for the
later maximization step.

5 SEGMENTATION ALGORITHMS 62

Expectation-Maximization
The Expectation Maximization consist of the two mentioned steps. The cal-
culation of the expectation values of the correspondences E[cij] and E[cc∗]
of the fixed measurements to a given model Θ[n] and the maximization of
the log-likelyhood function with the calculated expectations regarding the
model parameters. This optimizes the model iteratively until the point of
maximum likelyhood and therefore convergence in the optimization of the
model parameters. The algorithm starts on an initial model which can be
generated randomly or defined systematically.

Let’s first introduce the E-Step.

The Expectation Step
To the given model Θ

[n]
j=1···J = {Θ[n]

1 , · · · , Θ
[n]
J } and the measurements Zi=1···I =

{z1, · · · , zI} we search the expectations E[cij] and E[cc∗] for all i, j.
Assuming a uniform prior over the correspondences Bayes-Rule gives us

directly the expectations by:

E[cij] = p(cij|Θ[n], zi)

=
p(zi|Θ[n], cij) p(cij|Θ[n])

p(zi|Θ[n])

=
e−

1
2

(αj ·zi−βj)2

σ2

e−
1
2
ln

z2
max

2πσ2 +
∑j

k=1 e−
1
2

(αk·zi−βk)2

σ2

(63)

Similarly the expectation for the phantom model is given by:

E[ci∗] =
e−

1
2
ln

z2
max
σ2

e−
1
2
ln

z2
max

2πσ2 +
∑j

k=1 e−
1
2

(αk·zi−βk)2

σ2

(64)

As already mentioned before, the probability and thus the expectation for

measurement i and model j depends directly on the term (αk·zi−βk)2

σ2 which
specifies the squared mahalanobis distance (chap. 3.3.1) from point i to line
j under constraint of the variance parameter σ.

Thus we have the expectation values and are able to use them for the
optimization of the model Θ[n].

5 SEGMENTATION ALGORITHMS 63

The Maximization Step
The given expected log likelyhood in equation 62 is supposed to be maximized
and to extract optimized model parameters (αj, βj) to build model Θ[n+1].
Obviously only one part of (62) is dependent on the model parameters so we
are able to extract the particular part for the maximization. The term to
maximize results with ∑

i

−1

2

∑
j

E[cij](αi · zi − βi)

so the required task can be achieved by minimizing∑
i

∑
j

E[cij](αi · zi − βi) (65)

A given constraint for the minimization of (65) is that αj · αj = 1 since
only then the resulting vector will be a normal vector to a line and thus only
then a correct result will be obtained. So the M-Step can be characterized as
a quadratic optimization problem under equality constraints of some variables,
in our case αj.

The solution for this problem is given ([LCBT01]) by the introduction
of the Lagrange-Multiplier λj with j = {1 · · · J}. So the Lagrange function
results as:

L =
∑

i

∑
j

E[cij](αi · zi − βi)
2 +

∑
j

λjαj ∗ αj (66)

Minimization is obtained in case that the derivation of the variables are equal
to 0.

∂L

∂αj

= 0 and
∂L

∂βj

= 0 (67)

So deriving the Lagrange function and using the normal-constraint of αj we
obtain a linear equation system for each single model Θj:∑

i

E[cij](αi · zi − βi)zi + λjαj = 0 (68)

∑
i

E[cij](αi · zi − βi) = 0 (69)

αi · αi = 1 (70)

5 SEGMENTATION ALGORITHMS 64

From (69) we obtain for βj:

βj =

∑
k E[ckj]αj ∗ ·zk∑

k E[ckj]αj

(71)

and substituted back into (68) we get:

∑
i

E[cij]

(
αj · zi −

∑
k E[ckj]αj · zk∑

k E[ckj]αj

)
zi − λjαj = 0 (72)

By integrating out αj we get the form:

αj

∑
i

E[cij]

(
·zi −

∑
k E[ckj] · zk∑

k E[ckj]

)
zi = λjαj (73)

So this results as a linear equation of the type:

Aj · αj = λjαj (74)

where each Aj is a 2×2 matrix with the solution elements:

ast =

(∑
i

E[cij]ziszit

)
−
(∑

i (E[cij]zit

∑
k E[ckj]zks)

E[ckj]

)
(75)

for s, t = 1, 2.
By solving this matrix we get two Eigenvalues λ1,2. The 2 solution vec-

tors obviously have to be Eigenvectors where the eigenvector with the bigger
eigenvalue constitutes a vector defining the line. The eigenvector with the
smaller eigenvalue therefore defines the Normal Vector to the solution line.
Applying the smaller eigenvalue into the solution matrix we get the appro-
priate values for αj and substituting them back into equation 71 we obtain
the norm of the Normal Vector to the line. So we now have a solution to
our maximization problem and the Expectation Maximization Algorithm is
completed.

This procedure of calculating once the current expectations and calcu-
lating once the optimized log likelyhood function, and consequently the new
parameters of the model, constitutes one closed EM-pass.

5 SEGMENTATION ALGORITHMS 65

The model Θ
The problem with the model is the alleged knowledge of the model mag-
nitude. EM assumes prior knowledge of the correct model but only in the
fewest cases this may be the case. So it’s necessary to implement as well
possibilities to change the model complexity. On one side we have to be able
to introduce new models on the other side we have to be able to erase models
which are considered to be unsupported by the measurements.

Terminating unsupported single models
There are several cases when it’s desired to delete single models.

One trivial case occurs when the solution of a vector returns the zero
vector. This can happen e.g. when a model initially is too far from any
point to be considered to correspond to any measurement. So expectations
to this model are converging to zero and therefore the solution matrix will be
a zero matrix. The resulting solution vector as well will result a zero-vector.
Obviously a zero vector can’t be considered to be an optimization, so this
single model has to be erased. This case only occurs if the model initially is
defined without knowledge and dependence of the points. This case is avoided
if the initial model only consists of lines which are specified by two existing
measurements e.g. by initiating the starting model by choosing randomly
points to define the model lines. If this is not the case i.e. the possibility of
zero-solution vectors is existent each pass of EM the zero vector models have
to be erased.

If two model lines converge towards the same values, EM would be pro-
ceeded for both single models though the result would be the same. The
problem results in the fact that the two single models are ”competing” for
the same measurements and therefore an optimal result would be avoided.
Let’s assume a segment which is specified by several noisy points. It would be
desired that though they are noise affected they should ”vote” for the same
model line. In case of two lines competing from two directions to these points
the segment points would be ”split” into the points which in particular are
slightly closer to one or respective to the other line. Figure 19 shows a virtual
example of two lines competing for one segment. The segment consists of 8
Points and each line is assigned to 4 points. Thus in the end both 4-point
groups would be erased if the minimum number of lines is specified with 5.

To avoid this we define a threshold which is applied on the model parameters

5 SEGMENTATION ALGORITHMS 66

 1 cm

Figure 19: Two model lines competing for the same segment

and specifies the status of two equal lines. In case of two too likely models
one of them will be erased. This procedure has to be applied during the
iterative EM-Step i.e. after each pass the models are checked on likelyhood.

Another case of erasing a model line can be applied after convergence of
the whole model. In case that one line is voted as preferred line from too few
points it will be erased. In this case the previously often applied threshold
Minimum Number of Points is applied again. It’s obvious to see, that if the
number of points which would vote for this line is lower than this threshold
it will be erased definitely afterward in the postprocessing during the check
of number of points. So to avoid a measurement voting accidentally for a
line e.g. by a bad initialization we check after convergence of the model on
the number of ”line member points”. Therefore we check the numbers of
maximal expectation values for each single model line. In case of a lower
number than the given threshold it’s going to be erased.

Adding single models
Our approach adds after each detected convergence a specified number of
randomly generated model lines. This procedure assumes that a model after
convergence is not entirely defined and can be improved continuously. The
procedure is to select randomly two measurements form the current data set
and build the respective line. This line is added to the current model and
the EM algorithm is applied repeatedly. In case that a added model line
is very likely to a already existing one, the newly added single model will
be erased quickly due to similarity, respectively a bad estimated line will be
erased quickly due to absence of significant votes, except the votes of the two
points it was generated of. Hence only relevantly added lines will affect the
results.

Another approach would be a systematic adding of single models i.e. seek-

5 SEGMENTATION ALGORITHMS 67

ing significant lines to add, respectively to the result, though this procedure
would use a lot of time to find the according points to build them e.g. by a
complete measurement-model distance check. Due to the effective procedure
of terminating unsupported lines the approach of randomly generated lines
was found superior.

Exit Condition for EM
The general condition to stop EM is to reach a predefined number of iteration
steps for EM itself or to reach a specified number of found convergence.

An additional condition for a previous algorithm break can be a check
on result quality. The expectation values for the phantom model may serve
to decide if a model is defined well or not. This results from the fact that
measurements will vote more heavily for the phantom model if they don’t
correspond to our current line model.

One possibility is to use the expectation values of all measurements to
the phantom model and computing the mean. If this falls below a predefined
threshold the current model can be considered to be describing the measure-
ment very well. The expectation mean for the phantom model constitutes a
characterization of correspondence of all measurements to the model.

Another possibility is to check on the number of points which are voting
for the phantom model. Therefore we search the measurements with the
maximum expectation value for the phantom model and count them. If
this number falls below a predefined threshold the number of well described
measurements of the whole set can be considered to be sufficiently high so a
break can be initiated.

The above described possibilities to estimate the quality of the model
can’t be applied exclusively due to the fact that the data scans are affected
by noise and the measurements obviously are unpredictable. Though e.g. the
mean of the phantom expectation will converge to a lower value as at the start
of the algorithm, a predefined fixed ”quality threshold” can’t be considered
to be signifying a general quality description since the measurement sets and
the models are varying considerably. So for one scan a threshold could be
specifying an adequate result characteristic whereas for another scan it could
be inapplicable are could lead to a extensive number of EM iterations.

So the thresholds were implemented and defined sufficiently low to make
sure their application only in case of very good results. The general operated
exit condition constitutes the number of iterations.

5 SEGMENTATION ALGORITHMS 68

The algorithm of Expectation-Maximization was implemented as follows:

==
global Points
global point_groups
global model
--
Function: Applies EM algorithm
--
function EM()

model = initializeModel(MODE, NUM)
em_cnt = 0;
conv_cnt = 0;
while (1)

em_cnt = em_cnt + 1
old_model = model
[E , Ep] = E_step(model)
model = M_step(E)
model = terminateEquals(model , EQU_DIFF)
if (checkConvergence(model , old_model, CONV_DIFF))

conv_cnt = conv_cnt +1;
model = terminateMinVoted(model , NUM_MIN_VOTES)
Ep_mean = calcEpMean(Ep)
num_Ep_max = calcNumEpMax(Ep)
if ((Ep_mean < MIN_EP_MEAN) OR

(num_Ep_max < MIN_EP_NUM_MAX) OR
(em_cnt < MAX_EM_ITERATIONS) OR
(conv_cnt < MAX_EM_CONVERGENCES))
break

else
model = addRandomLine(model, NUM_NEW_LINES)

end_if
end_if

end_while
generatePointgroups(model)

end_function
==

EM starts with the initialization of the model initializeModel(). The
parameter MODE specifies the mode how the model should be generated. There
are two modes: RAND and SYS. In RAND-mode from the measurement two
randomly chosen points are used to build the line. This line is added to
the model data structure model. The parameter NUM specifies the number

5 SEGMENTATION ALGORITHMS 69

of lines which have to be generated on initialization. In the mode SYS a
systematic model is generated where the whole scan area is covered with
systematic situated lines. Entering into the loop we have to save the model
old_model parameters which are neccessary afterwards to check with the
new generated model on convergence. The function E_step(model) cal-
culates the expectation values by means of the current model and returns
the model expectations in E and the expectation for the phantom model in
Ep. The function M_step(E) calculates the optimized model parameters by
means of the expectation and returns the new model parameters in model.
The algorithm for these two functions is illustrated in pseudo code after-
wards. After optimization the model lines which are equal are searched and
erased in terminateEquals() where equality holds if the differences between
the model parameters are falling below a predefined threshold EQU_DIFF.
checkConvergence() returns 1 if the previous model old_model and the cur-
rently maximized model model are considered to be equal. This consideration
depends on the parameter differences and the decision is specified my means
of the threshold CONV_DIFF. If convergence is detected we eliminate the mod-
els which are voted by too few measurements terminateMinVoted() deter-
mined by the threshold NUM_MIN_VOTES. calcEpMean(Ep) and calcNumEpMax(Ep)

compute the values for the later break-condition check where they are used
with the counters for convergence and iterations and the predefined thresh-
olds. If no break condition is reached the function addRandomLine() adds
to the model NUM_NEW_LINES randomly generated lines and the next it-
eration is proceeded. If the break condition is reached the loop is quit-
ted and the current model is used to extract from the entire measurement
data Points the respective point groups. This happens in the function
generatePointgroups(model). This procedure already was described in the
above presented algorithms. The general algorithm consists of a while-loop
which is proceeded maximum MAX_EM_ITERATIONS or MAX_EM_CONVERGENCES
times and doesn’t depend directly on input data so the complexity is constant
O(1).

==
Function: calculates Expectations for points to given model
Input: model
Output: Expectation values for model E,

Expectation values for phantom model Ep
--
function [E , Ep] = E_step(model)

5 SEGMENTATION ALGORITHMS 70

for (i = 1..getNum(Points))
Ep(i) = calcE(Point(i) , phantomModel);
for(j = 1..getNum(Model))

E(i,j) = calcE(Point(i), model(j))
end_for

end_for
return [E , Ep]

end_function
==
Function: calculates maximization for each model

under constraint of given expectations (E)
Input: expectation values E
Output: optimized model
--
function model = M_step(E)

for(j = 1..getNum(Model))
model(j) = calcMaximization (model(j))

end_for
return model

end_function
==

In the E-Step for each measurement and for each model the expectation
value (equation 63) is calculated and for each point the expectation for the
phantom model (equation 64). The complexity depends on a nested loop
where n specifies the number of points and m the number of models so
O(n × m).

In the M-Step for each model the parameters are optimized as defined in
equation 75. So the complexity is linear O(m) depending on the number of
models m.

Figure 20 shows an example of the optimization of an initial systematic model
with 4 lines and the resulting parameters after the first expectation and max-
imization step on real scan data. The arrows indicate the assignment from
starting lines and their respective optimizations.

In this chapter the algorithms were presented. We now know the basic prin-
ciples and the general modes of operation. For each algorithm the major
parameters were introduced and the influence their variation can have on
the results. The results are available for all the algorithms in the same for-
mat: as a set of point groups. In the post processing step these point groups
will be used to generate the appropriate segments.

5 SEGMENTATION ALGORITHMS 71

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

[m]

[m
]

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

[m]

[m
]

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

[m]

[m
]

Figure 20: Initial systematic model , first optimization and results after first
convergence by Expectation Maximization

6 POSTPROCESSING 72

6 Postprocessing

As explained before the segmentation algorithms are designed to find point
groups which specify potential segments. All the algorithms provide the
same resulting format which consist of point groups found by the different
algorithm procedures. Thus the extraction of the resulting segments from
the given point groups are equal for all algorithms.

In this chapter I want to describe the procedures which are applied to
transfer the given point groups into initially potential output segments.
These segments are checked on compliance of the criteria given by the prede-
fined segment parameters presented in chapter 3.4. On complete compliance
the potential segments are accepted as resulting segments. After a last check
on overlapping or on partial or entire duplication and respective erasure the
finally resulting segment-set is created. This whole procedure can be sum-
marized as Segment Postprocessing.

6.1 Segmentation

The given point groups were built regarding the geometrical or probabilistic
relation between points and virtual lines. This gives us a certainty about
perpendicular deviation from a collective line. So far we don’t have any
information about the geometrical relation between the points themselves.
One criteria we require to define a continuous segment is the distance between
two adjacent16 points. Therefore the segment criteria Inter-Segment Distance
has to be applied. To build a continuous segment points only are allowed to
have a certain maximum mutual distance. If this is not the case, e.g. a door
in a wall, the segment is split between this two adjacent points. Therefore we
check the distance on each point to his adjacent neighbour where adjacent
signifies the posterior captured measurement. In case of a split the whole
set of already checked points of this segment is separated and specifies a
smaller, independent segment. The procedure of sequential point-to-point
distance check gets further applied for the rest of the segment. So a multiple
separation of one segment is possible. The used distance parameter was
defined distance relative due to the fact that afar captured adjacent points
automatically have larger mutual distances. By comparison of the real world,
the captured data and the final virtual model we came to the conclusion that

16Adjacent: hereinafter will denote two sequentially captured measurements

6 POSTPROCESSING 73

good results were obtained with a Inter-Segment Distance ≈ 0.05m
m

.
Another criteria, a continuous point group has to comply, is the number

of measurements between two adjacent points which aren’t belonging to the
appropriate point group. The associated parameter was denoted with Num-
ber of Invalid Points. This characteristic can be used due to the indexed
measurements. If the difference of indices of two adjacent points is larger
than the predefined threshold the segment is split between this two points.
A very small value e.g. 1 would signify that every outlier which wasn’t fil-
tered in advance, would cause a perhaps unintentional separation. A value
chosen too large would ignore a possible existing segment. Reasonable results
were obtained with a threshold Maximum Number of Invalid Points between
2 and 4.

The corresponding algorithm was implemented as follows:

==
Function: checks one segment on parameters Inter-Segment Distance

and Maximum Number of Invalid Points
Input: point group
Output: vertices where the segment has to be split eventually
--
function vertices = segment(point_group)

for (i = 1..getNum(point_group)-1)
dist = getPointPointDistance(point_group[i] , point_group[i+1])
if (dist > INTER_SEG_DIST)

addVertice(vertices , i)
continue

end_if

ind_dist = index.point_group[i+1] - index.point_group[i];
if (ind_dist < MAX_NUM_INV)

addVertice(vertices , i)
end_if

end_for
end_function
==

The function gets the point group which holds in index.point_group[i]

the corresponding index of point i. getPointPointDistance() obviously
calculates the distance between the two input points. Exceeds the computed
distance the threshold INTER_SEG_DIST the current index is added to the

6 POSTPROCESSING 74

structure vertices which holds the positions where the segment has to be
split eventually. This structure afterward has to be applied to split the point
groups on the appropriate positions. If the distance exceeds the threshold no
further check on invalids has to be applied between this two points therefore
the continue. The check on invalids is applied trivially on the difference of
the indices and the same procedure is applied as previously described.

The algorithm has a linear complexity O(n) where n describes the number
of points.

A third criteria we have to apply is the Minimum Number of Points. As
already explained before, we consider a segments only to be defined by points
if the number of points is big enough. This is achieved quite trivially by
counting the points of each point group after the above explained split. If
the size of a point group is smaller than the predefined threshold the segments
is erased completely from our set of point groups. The application of this
parameter ensures us of the fact that a segment has to be evaluated by a
certain number of measurements. If this is not the case we can’t be sure if
the segment wasn’t ”captured” accidentally by noisy sensor data. Thus we
ignore the respective measurements.

Satisfactory results were obtained with a minimum number of points be-
tween 5 and 10 points.

6.2 Line Generation

The so far obtained point groups can be considered to be ”complete” i.e. they
won’t be split anymore. The proximate step is to generate the line which
would be specified by all points of one group. In the literature (e.g. [Cast98],
[JaScKa95] or [LCBT01]) this step also is referred to as Line Smoothing.

Therefore we realized two implementations:

Total Regression The Total Regression calculates a ”best fit straight line”
by estimating the least squared error from all given points to the line.

Extended Information Filter The EIF calculates the actual state vector
(the line) by integrating all given points simultaneously.

6 POSTPROCESSING 75

6.2.1 Total Regression

The Total Regression ”estimates” the line with the minimized square errors
from the points to the line17 in x and y-direction.

The line parameters are obtained by:

θ =
arctan a

b

2
ρ = (ȳ · cos θ) − (x̄ · sin θ) (76)

using the Arithmetic Mean,

x̄ =
1

N

N∑
i=1

xi ȳ =
1

N

N∑
i=1

yi (77)

the Sum of the squared Errors,

sxx =
N∑

i=1

(xi − x̄)2 syy =
N∑

i=1

(yi − ȳ)2 (78)

the Product of the summed Errors,

sxy =
N∑

i=1

(xi − x̄)(yi − ȳ) (79)

and the resulting Regression Parameters

a = 2 · sxy b = sxx − syy (80)

The Total Regression has to be computed in two passes due to the fact
that for the calculation of the sum of the squared error or the product of
the summed error the arithmetic means have to be known. So we have
to calculate in one closed loop the mean values and in another loop the
furthermore parameters.

6.2.2 Extended Information Filter

Contrary to the total regression the application of the EIF can be done
directly in one loop (see 3.3.4). However the EIF needs a distance calculation
for each measurement to a initial line and requires as well the additional
calculation of the covariance of the resulting line.

17Thus Total Regression is also known as Method of the minimal Squares

6 POSTPROCESSING 76

Comparison
Both of the two above described algorithms for line smoothing were imple-
mented.

The Total Regression can be considered to be easy to comprehend and
to implement. It is a fast an effective algorithm to calculate a line of best
fit whereas the EIF-algorithm calculates additionally the covariance directly
as well as it provides an easy integration of a further point (though in our
case this doesn’t happen). Figure 21 shows the differences between a line
estimated by the Total Regression and the Extended Information Filter on
virtual test data.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

Information Filter

Total Regression

Figure 21: Differences between a line estimated by Total Regression (blue)
and the EIF (red)

The differences in this case aren’t very big. In this case the EIF was initialized
by the line built by the the first and the last point of the measurement
array and only was calculated once, thus no iteration was proceeded. If the
obtained results would be used iteratively to integrate more further elements,
the Information Filter and the Total Regression would converge towards the
same results.

A comparison of the elapsed time neither produced a measurable differ-
ence so the application of each algorithm is equivalent.

6 POSTPROCESSING 77

6.3 Avoiding Overlappings

Due to algorithms characteristics or noisy sensor data in some cases it can
occur overlappings of segments or even that one small segment lies ”embed-
ded” within a another bigger one. From the geometrical point of view this
doesn’t make sense since a sensor isn’t able to detect segments which are
lying behind another so the result definitely should be considered as wrong.
A virtual example of this case is illustrated in Figure 22.

Figure 22: Overlapping or embedded positioned Segments

Obviously this cases have to be avoided or filtered.

To detect overlappings the indices of the point groups are used. If the index
of an endpoint of one segment lies within the index set of another segment
point groups an overlapping is detected. There are three possible procedure
to patch overlapping segments:

Merging It’s tried to merge the point groups under constraint of the given
segment criteria.

Cutting Parts of point groups have to be erased with the objective to loose
as few information as possible.

Erasing Segments have to be erased if no other procedure is applicable

The first and mostly desired possibility is to Merge overlapping point groups.
This is desired since there won’t be loss of information, respectively measure-
ments, regarding the results. This possibility is only applicable if the result-
ing point groups comply the given segment criteria. Therefore the point
groups are combined and a regression line is generated (see chap. 6.2) . If

6 POSTPROCESSING 78

the perpendicular distance of all points to the line lies below the specified
threshold Point-Line Distance we consider the merged segment as valid and
add it to the set of correct point groups.

If a merge is not possible due to the above explained reasons we try to Cut
the segments in a way to obtain valid resulting segments. Again the objective
is to loose as few points as possible.

Thus we seek the overlapping index position of two segments and estimate
which part of which segment has to be erased. Evidently each segment
contains one part which lies ”embedded” within the other so one of these
two parts have to be erased. The potential results have to be contemplated
in both cases of partial segment erasure. The first objective is not to loose one
of the segments completely. This can happen if the number of total points
in a point group would be falling below the threshold Minimum Number of
Points after deleting parts of the segment. If this only would happen to one
segment only the affected part of the other segment will be erased.

If none of both segments would be erased the smaller of the two affected
segment parts will be deleted.

If none of the above given possibilities are applicable one of the segments has
to be erased completely. In this case the smaller segment will be deleted.

The general algorithm results as follows:

==
Function: checks on overlaps and clears them out in case
Input: point groups
Output: adjusted point groups
--
function point_groups = clearOverlappings(point_groups)

num = getNum(point_group)
for (i = 1..num - 1)

for (j = i+1..num)
if (overlap(i , j))

if (merge(i , j , DIST_EPS))
num = num - 1
j = j - 1

else_if (cut(i, i+1,MIN_NUM_OF_POINTS))
num = num - 1;
j = j - 1;

else
erase (i , j)

6 POSTPROCESSING 79

num = num - 1
j = j -1

end_if
end_for

end_for
return point_groups

end_function
==

The major part of the algorithm clearOverlappings() consists of a nested
for loop where each point group i is checked on overlappings with each
other point group j. The initial number of point groups is obtained by
getNum(point_group). If an overlapping is detected firstly it tries to merge
them by merge(). If a merge isn’t possible regarding the global criteria
DIST_EPS the function returns 0. The function returns 1 if the segments
could be merged. The merge consists of deleting the two point groups from
the data structure point_groups and adding the merged point group at the
same position i. Afterwards the number of point groups has to be decreased
num-1. To detect multiple overlappings the current index has to be decreased
as well j-1 to check again on the same segment and the remaining segments.

A similar procedure is applied with a the cut function cut(). The cut-
function checks the segments internally on MIN_NUM_OF_POINTS and seeks
the optimal solution in case of a cut. Again after a cut the number of point
groups have to be decreased as well as the loop index to carry on with the
correct indices.

The function erase() follows the same procedure with the difference that
it seeks the appropriate segment to erase.

Finally the adjusted data structure point_groups is returned.

The algorithms consists of two nested for-loops so the complexity is squared
with O(n2) where n specifies the number of previous given point groups.

6.4 Endpoint Acquirement

After estimating the line and clearing overlappings we have to generate the
segment by calculating the segment endpoints. The segment endpoints have
to be acquired depending on the given group of points. The first and last
point in the given ordered group are not in every case the required endpoints
since they are not always the ”farthest end” of the segment. So we have to

6 POSTPROCESSING 80

find the optimal points of the group which should be used to calculate the
segment endpoints.

Therefore we calculate a reference point by taking the middle of the first
and the last point in the list and search the farthest points in each of the two
direction of the segment. The points with the largest distances are taken to
acquire the perpendicular line points which are now defining the segment.

The procedure of the Endpoint Acquirement is illustrated in Figure 23.

P1 = PMAX 1

PN

P
REF

Reg-Line

PMAX 2

EP1

EP2Segment

Figure 23: Endpoint Optimization and Endpoint Acquirement

In most of the cases the above described Endpoint Optimization doesn’t
provide big deviations on the segment length (in general in dimensions of
mm to a few cm). In case of computational time problems it can be turned
off by parameter.

6.5 Length Check

The final parameter on which the segments are checked is the Segment
Length. The above calculated segment endpoints are used to calculate for
each segment its specific length. If this value falls below the predefined
threshold Minimum Segment Length the segment is ignored completely. This
value depends on the required ”resolution” of the segments. With a value cho-
sen too big, small segments which could be specified by many measurements
would be erased, whereas a value too small in cases leads to many eventually
undesired segment particles. In our case it was set to value around 0.1m so
we’re able to detect e.g. the depth of a door.

Figure 24 shows the finally obtained result on real sensor data (on the left)

6 POSTPROCESSING 81

and the resulting preprocessed, segmented and post processed segments (on
the right).

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

x
y

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

x
y

Figure 24: Original Scan data and the resulting Segments

In this chapter the complete postprocessing procedure was presented. Thus
the extracting of segments from 2 dimensional sensor data is complete. We
started on the raw sensor data and proceeded a preprocessing with filtering
to prepare the data. Afterwards we applied the different algorithms for the
point group extraction and finally we post processed the data and generated
the resulting segments.

In the next chapter I want to point out variations in the algorithm param-
eters as well as modifications in the algorithms themselves. First of all we
will compare the differences and results of the specific algorithm variations.
A comparison between the different algorithms will follow in the chapter
afterwards.

7 ANALYSIS AND ALGORITHM-VARIATIONS 82

7 Analysis and Algorithm-Variations

In this Chapter we will present the results of the algorithms with variations
in the specific and relevant algorithm parameters and with different modes
of operations.

The objective is to show which possibilities exist to tune and optimize
the algorithms as well as to show where are the limits of the algorithms. In
some cases the parameter choice will depend on the task, the algorithm has
to accomplish, so we will present the different possibilities of regarding the
requirements.

On one side we will try to optimize the algorithms regarding computa-
tional time and on the other side towards the quality of the results. The final
objective should be to find a reasonable compromise between velocity and
quality.

All time measurements were obtained on a PC System with a 1,7 GHz CPU
and 1GB RAM under usage of a Windows 2000 c© Operation System.

7.1 Usage of uncertainty characteristics

With the means of the described procedures in chapter 3.3 we have the possi-
bility of integrating the uncertainty characteristics of measurement data. By
applying data uncertainty in distance measurements the question is formu-
lated as: ”Is it possible that calculated distances of geometrical entities are
lying below a specified threshold taking into account the uncertainty of the
entities?”. A very trivial problem is e.g. if we want to know if a point belongs
to a line though the calculated euclidean is �= 0 regarding the uncertainty
of the point and the line. The specified threshold in this case is = 0. The
procedure consists in obtaining the uncertainties of the point and the line (if
it exists), calculating the Mahalanobis distance and applying a hypothesis
test on the result under constraint of a desired probability.

Such calculations could be applied on point-line distances as well as on
point-point distances (Fig. 25) so in our case we could apply it on proce-
dures like the outlier filtering, calculation of inter segments distances or on
point-line distances used e.g. in the Split & Merge algorithm, therefore this
algorithm was used to obtain comparable time measurements.

The measurements were obtained by the MATLAB Profiler Module so
the results will be presented in percentage values to avoid confusions to the

7 ANALYSIS AND ALGORITHM-VARIATIONS 83

E
uclidean

D
istance

M
inim

um
D

istance

by
U

ncertainties

Point Uncertainties

Laser Sensor

Figure 25: Application Mahalanobis Distance

later in this chapter presented time measurements obtained under C/C++.

The outlier filtering by using the Mahalanobis distance produced an average
augmentation of 17.83%, whilst the additional needed time for the inter seg-
ment check resulted in average with 8.62%. In this cases the mahalanobis
distance was used with the respective thresholds. The application of the Ma-
halanobis distance on the point-line distance in the Split & Merge algorithm
produced for the distance checks an augmentation mean of ≈ 46%.

In effect the usage of the Mahalanobis distance led to an average addi-
tional time for the complete algorithm of 6.82%.

The differences in the results were insignificantly small.
The changes for the point-point distance consisted in additional points,

which normally would have been erased, or in a not-separation of a segment
due to a accepted distance. The number of additional points varied between
0 and 4 whereby the average number was smaller than 1.5. A segment which
wasn’t separated due to usage of the Mahalanobis distance almost didn’t
occur.

The usage for the point-line distance in the splitting step neither produces
significant differences in the results for the generated polyline.

7 ANALYSIS AND ALGORITHM-VARIATIONS 84

Alltogether the usage of the uncertainties of the geometrical entities only
produced insignificant differences in the results but led to an augmentation
of computational time. Hence we only used the Mahalanobis distance for
the above given procedures in the MATLAB Prototypes where they were off
turnable by parameter.

In our case the characteristic of uncertainty of sensor data and respec-
tively the statistical and systematical error of the laser was bore in mind
for a reasonable choice of the algorithm parameters. In this thesis I will
use the term reasonable choice of parameters with the signification of taking
into account the required task (e.g. separating a door from a wall), general
environment a priory knowledge (e.g. that walls normally can be considered
to be straight) and the given laser error tolerance.

7.2 Split & Merge

The complete procedure of Segmentation by using the Split & Merge algo-
rithm is illustrated in Figure 26.

Split

Eliminate “Out of Range”-Points

•Eliminate Outliers

START

Results

changed ?

Merge

Yes

No

Segment Parameter Check

Total Regression

• Generating Endpoints

• Length Check

END

Preprocessing

Extraction

Postprocessing

Figure 26: Flow Diagram of the Split&Merge Algorithm

7 ANALYSIS AND ALGORITHM-VARIATIONS 85

Split & Merge uses all points of the given measurement data so it’s necessary
to proceed an outlier filtering (chap. 4.2). But due to the fact that it uses
each point once (except the vertices) and groups the points systematically
we can be sure that no segment overlapping (chap. 6.3) will occur.

Variation of the Distance Threshold

The most important parameter constitutes the used threshold for the split-
decision. The smaller the threshold the deeper the recursion will proceed
and respectively the more segments will be estimated. Figure 27 shows the
split polyline and the resulting segments with a distance threshold of 0.08m
(case 1).

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

x
y

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

x
y

Figure 27: Split & Merge with a distance threshold of 0.08m

It’s easy to see that the ”resolution” is very high where even the depth of a
door is detected. As well the application of the segment parameters is good
to identify. For example the small segments on the left of the doors on the
bottom are erased due to the number of points. The wall segments on the
outer right on the top were erased due to the inter segment distance and the
minimum segment length.

7 ANALYSIS AND ALGORITHM-VARIATIONS 86

The polyline after splitting and merging consists of 24 segments with a
resulting final number of 10 segments.

Figure 28 shows the results with a threshold of 0.5m (case 2). The resolution

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

x
y

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

x
y

Figure 28: Split & Merge with a distance threshold of 0.5m

now is very ”rough”. On the top and on the bottom the doors and walls
were estimated as one segment. The polyline was separated into 5 segments
with a resulting number of 8 segments.

In both cases the segment criteria were set equally:

• Inter Segment Distance: 0.05m (distance relative)

• Minimum Number of Points: 5

• Maximum Invalid Gap: 2

• Minimum Segment Length: 0.1m

The measured computational time, listed in Table 2, present the absolutely

7 ANALYSIS AND ALGORITHM-VARIATIONS 87

EPS = 0.08m EPS = 0.5m
time [sec] % − value time [sec] % − value

Total mean time 0.01372 100.00% 0.00455 100.00%

Split & Merge 0.01261 91.93% 0.00365 80.22%
Preprocessing 0.00106 7.80% 0.0009 19.72%
Postprocessing 0.00002 0.15%

Table 2: Mean computational times of different Split & Merge algorithms

measured elapsed time for the different parts of the algorithm with the rela-
tive percentage values regarding the complete elapsed time. Figure 29 shows
the elapsed times for the different Split & Merge passes in a chart.

MAX_DIST = 0.08 [m] MAX_DIST = 0.5 [m]
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

E
la

ps
ed

 T
im

e
[s

ec
]

Split & Merge

Preprocessing

Figure 29: Calculational Time Chart of different Split & Merge passes

The much faster pass for a bigger distance threshold, due to the flatter recur-
sion, is easy to recognize. The preprocessing obviously is equally for the two
cases and needs a constant computational time whilst the postprocessing in
both cases only plays a redundant role with 0.15% and 0.0%18.

18Measurements obtained by C-function clock(). In case of a very short computational
time the resolution of clock() may be too low thus 0.0 seconds measurements as output
are possible and point to a very short procedure time

7 ANALYSIS AND ALGORITHM-VARIATIONS 88

Altogether the whole algorithm (case 2) only needs 33% compared to the
first case.

The varying threshold values against the time (Figure 30) show that from
a distance of ≈ 0.2m and above the relative time savings are getting smaller
and smaller. This signifies that the depth of recursion stays more or less
the same whereas the depth differences between a threshold value 0.06m and
0.2m are comparatively immense. This gives us a estimation of the general
distance distribution in the scans. Whilst the differences above 0.2m won’t
cause a great difference in time yet small variation beneath 0.2m may lead
to big differences in the algorithm running time.

0.1 0.2 0.3 0.4 0.5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

MAX DIST [m]

E
la

ps
ed

 ti
m

e
[s

ec
]

Figure 30: Elapsed time over varying thresholds

Variation of Merging Procedure
As a variation of the merging procedure we tried different criteria for the
decision: merging or not. Beside the already described Maximum Normalized
Error we implemented as well a merging due to angular deviation of adjacent
segments. If the angular difference between two adjacent segments fell below
a certain threshold the segments were merged.

However this approach doesn’t cause large effects due to the fact that
large segments with a small angular difference nevertheless lead to relatively
large distant deviations. In an iterative splitting step this deviation would
cause the algorithm to split the merged segment repeatedly. So the only

7 ANALYSIS AND ALGORITHM-VARIATIONS 89

positive effect were obtained for a very small threshold (≈ 1◦). This didn’t
lead to a big optimization thus the angular merging was implemented with
a parameter switch and was ”turned off” for the tests.

7.3 RANSAC

A Flow Diagram in Figure 31 illustrates the sequential parts of the complete
RANSAC-Algorithm.

START

Found

sufficient ?

Seek compatible points in {P}

Generate Line

Choose random pair in {P}

Calculate “Max Number of Tries” K

by defined parameters

• Add { P’ } to segment groups

• {P} = {P} - {P’}

No Yes

K

exceeded ?

Yes

No

END

Segment Parameter check

Total Regression

Sufficient

Points {P} ?

Yes

No

• Generating Endpoints

• Length Check

Postprocessing

Eliminating “Out of range Points”Preprocessing

RANSAC

Postprocessing

Figure 31: Flow Diagram of RANSAC Algorithm

RANSAC doesn’t proceed an outlier filtering in advance whereas due to his
characteristic of generating lines randomly and the respective group extrac-
tion an overlapping check has to be applied.

The specification of the criteria now has an important role to play because
RANSAC yet uses the segment criteria during the algorithm and not only

7 ANALYSIS AND ALGORITHM-VARIATIONS 90

in the end for the segment determination. Thus an inconvenient definition
wouldn’t only affect the quality of the results but also the proceeding of the
algorithm.

The probability-parameters have to be defined more or less arbitrary due
to the difficulties of measuring the quality of the results. For a comparison
the results have to be estimated reasonably into ”better or worse” and this
always leaves a margin of subjective interpretation.

For the determination of the distance threshold the interpretation should be
considered as the ”resolution” of the results. If e.g. the detection of a door
as a door is required, and the ”depth” of a door lies around 0.1m, a value
above this value doesn’t make sense since the door and the wall would be
detected as one segment. On the other side a value deep below the error
tolerance of the sensor neither is reasonable due to the noise affected sensor
data. Thus the value of the distance threshold normally was set between
0.05m and 0.1m.

The number of points which are found for the determination if a subset can
be considered as a segment as well has to be chosen arbitrary. Obviously it
should be at least equal or higher as the defined minimum number of points
in a segment. For example a 5 point segment with 1 meter distance to the
sensor can have a minimum length of 0.034m but this would certainly be
erased due to the minimum length of segments whereas a 5 point segment
with a distance of 8 meters would have a minimum length of 0.28m and
would be considered as a normal segment. So with a too small value close
segments with few points would be erase whilst small segments further away
wouldn’t be detected. Would it be too high smaller segments lying close to
the sensor would be ignored.

[FiBo81] provides another point of view. The number has to be deter-
mined sufficiently high to avoid the detection of a segment which doesn’t
exist in the real world model. Let y be the probability of a point belonging
to a not-existing segment, t the defined threshold and n the number of points
to define a subset (in our case n = 2) so yt−n should be minimized. Obviously
y can be considered as smaller than ω because there should exist more points
belonging to a segment than ”Outliers”. So with a ω = 0.5 and therefore
y < 0.5 and t − 2 = 5, hence t = 7, the possibility to find a segment which
doesn’t exist is smaller than 5%.

7 ANALYSIS AND ALGORITHM-VARIATIONS 91

We want to ensure with a probability of z, that at least one of our ran-
domly chosen point set defines a existing line so this value should be chosen
as high as possible taking into account the computational time. In our case
we varied this value normally between 70 and 95%.

In the tests the parameter ω was varied over a larger range to show the
differences in results and computational time. Figure 32 shows an example
of significant differences which can occur though in general the results are
more likely.

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

x
y

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

x
y

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

x
y

ω = 0.1
⇒ k = 299

ω = 0.5
⇒ k = 11

ω = 0.9
⇒ k = 2

z = 0.95
d = 0.1
p

min
 = 10

Figure 32: Different results on same data with varying ω’s

The mean computational times which were obtained over several passes19

with varied parameters are plotted in Figure 33. The plot confirms the
expeced results. The trend shows that a higher z-value leads to a larger
execution time due to the higher demanded probability of correct estimation.
The differences in varying ω-values are even more obvious. In case of a high
probability for a point being valid the maximum number of tries will decrease
immensely and accordingly the used time.

19Each value is the acquired average of Elapsed Time obtained by ≈ 2000 passes

7 ANALYSIS AND ALGORITHM-VARIATIONS 92

0.95 0.9 0.8 0.7 0.6 0.5
0.006

0.0065

0.007

0.0075

0.008

0.0085

0.009

0.0095

Z

El
ap

se
d

Ti
m

e
 [s

ec
]

ω = 0.9

ω = 0.5

ω = 0.1

Figure 33: Average computaional time obtained with varying ω

The obtained maximum differences in time by varying probability pa-
rameters account for ≈ 29% with values for the maximum number of tries
with 1 ≤ k ≤ 299. But though the relative differences seem to be large the
maximum absolute difference accounted with ≈ 0.003 sec i.e. less than 3
milliseconds.

Characteristics of RANSAC
The big advantage of the RANSAC algorithm is its velocity. The number
of maximum tries doesn’t depend on the number of points but only on the
probabilities which have to be defined in advance. The number of points only
is relevant for finding the compatible points to a estimated line.

The quality of RANSAC of using randomly chosen points causes on the same
scan varying results as well as different computational times. Figure 34 shows
an example obtained in several executions with equal data and parameters.

The differences are easy to detect. Segments sometimes are separated into
particles as can be seen in the outer left scan. The corner on top should be
closed like in the middle scan. The door on the bottom wasn’t even partially
detected and the wall segment right to this door results very short.

In general the left scan can be considered to be coincidentally bad esti-
mated whilst the middle and the right scan can be considered to be a standard

7 ANALYSIS AND ALGORITHM-VARIATIONS 93

0.2

Figure 34: Varying results on same data obtained by RANSAC

result of RANSAC.

Proceeding 50 passes over a 289-Scan series provided the following time re-
sults:

• maximum difference: max ∆ = 0.00062sec ≡ 8.61%

• mean: s̄ = 0.0072sec

• sample variance: σ2 = 1.7516 · 10−8

A further problem of RANSAC is the proceeding on a reduced data set af-
ter erasing an estimated subset. Figure 35 shows an example where RANSAC
found enough compatible points to consider it being a line and erased the
points from the data set. It’s obvious that the erased points shouldn’t build a
segment with the set RANSAC estimated. The so produced gaps can cause a
separation of the real world segment or even cause RANSAC not to find it at
all. This characteristics also can cause the separation of one real world seg-
ment into many little segments which normally have slightly different angles
after the total regression (segment particles).

7 ANALYSIS AND ALGORITHM-VARIATIONS 94

−0.5 0 0.5 1 1.5

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x

y

−0.5 0 0.5 1 1.5 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

x

y

Figure 35: Gaps after erasing points from data set by RANSAC

This behaviour can be improved by increasing the minimum number of points
but therewith small real world segments wouldn’t be detected anymore. A
better way is to increase the probability of finding the most relevant real world
segments firstly. Therefore we implemented another version of RANSAC
which proceeds a split of the whole data set in advance.

7.3.1 Extended RANSAC with Split

The goal was to generate point groups where the probability to find the more
relevant segments first is very high. Thus we avoid e.g. to be two different,
unlike walls of a room in one group. The splitting algorithm is similar to
the algorithm explained in chapter 5.2. The only difference consists in the
choice of the distance threshold which in this case should be chosen much
bigger. Successively the RANSAC algorithm has to be applied on each group.
The probability parameter ω then can be defined significantly higher so the
maximum number of tries will be significantly lower whereby the additional
computational time, caused by the splitting, can partly be compensated.

Figure 36 shows the split groups which were build on the given data with
a threshold of 2 m.

7 ANALYSIS AND ALGORITHM-VARIATIONS 95

Figure 36: Split groups before proceeding RANSAC

Comparison of different RANSAC versions To compare the previous
explained algorithms we tried to vary the parameters in a way to obtain
more or less likely results. Figure 37 shows a series of equal data sets and
the results once obtained by the original RANSAC algorithm (above) and
the RANSAC algorithm with a split in advance (bottom).

It shows slightly better results for the second way. On the first two scans
it’s recognizable that the segments are less separated, corners are identifiable
and objects like doors are detected.

Nevertheless in general the differences on the results are not very signifi-
cant like the third scan shows.

Following parameters were used:

• Common parameters

∗ Distance Threshold d = 0.06 cm

∗ Minimum Number of Points t = 7

• Pure RANSAC

7 ANALYSIS AND ALGORITHM-VARIATIONS 96

0 2 4 6 8
−6

−4

−2

0

2

4

6

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

0 2 4 6 8
−6

−4

−2

0

2

4

6

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

0 2 4 6 8
−6

−4

−2

0

2

4

6

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

0 2 4 6 8
−6

−4

−2

0

2

4

6

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

0 2 4 6 8
−6

−4

−2

0

2

4

6

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

0 2 4 6 8
−6

−4

−2

0

2

4

6

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

RANSAC

RANSAC
& SPLIT

Figure 37: Comparison of the results of RANSAC without (above) or with
split (below)

∗ ω = 0.2

∗ z = 0.8

∗ ⇒ k = 40

• Extended RANSAC with Split

∗ ω = 0.9

∗ z = 0.9

∗ ⇒ k = 2

∗ split.d = 2 m

Figure 38 illustrates the average computational time measured of the different
algorithm parts. The chart shows that the absolute difference in time is
very small (≈ 0.6 ms) though the relative difference accounts to 9.6%. As
expected the procedure time for RANSAC decreases in the split case due to

7 ANALYSIS AND ALGORITHM-VARIATIONS 97

RANSAC & Split RANSAC
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

El
ap

se
d

tim
e

[s
ec

]

Postprocessing

RANSAC

Split
Preprocessing

Figure 38: Calculational time for the different algorithm parts

the higher estimated probability parameters. The split step merely needs
≈ 1 ms what constitutes ≈ 15% of the whole algorithm. The preprocessing
plays again a very small role whereas the postprocessing the biggest part of
both algorithm versions constitutes with each time more than the half of the
time. This results on one side due to the normally large number of potential
point groups which are generated through the randomly chosen points and
on the other side on the required check on overlaps.

The measured absolute average and percentage values20 are listed in Table
3.

The results show that the extension of the general RANSAC algorithm with
a Splitting algorithm in advance generally improves the quality of the results
and decreases the computational time.

7.4 Hough-Transformation

The mode of operation of the two different implemented versions of the
Hough-Transformation already were described in chapter 5.4. In this chap-
ter I want to describe the specific characteristics more detailed as well as to

20Values are rounded so a cumulated sum �= 1 is possible

7 ANALYSIS AND ALGORITHM-VARIATIONS 98

RANSAC SPLIT & RANSAC
time [sec] % − value time [sec] % − value

Total mean time 0.0067 100.00% 0.007347 100.00%

Preprocessing 0.000243 3.63% 0.00031 4.22%
Split 0.00096 14.33%
RANSAC 0.00155 23.13% 0.002947 40.11%
Postprocessing 0.003946 58.90% 0.004093 55.72%

Table 3: Average computational times and percentage values of different
RANSAC parts

present the results.

7.4.1 Hough-Transformation by Revoting

The sequential parts of the Hough by Revoting (hereinafter also HbR) algo-
rithm are illustrated in the flow diagram in Figure 39.
An Outlier filtering is not necessary due to the characteristic of a voting
algorithm.

The iterative search for the most probable line in the current measurement set
and the erasure of the respective points is illustrated sequentially in Figure
40.

The algorithm stops in the 8th iteration since the number of votes of the
maximum is too low. Hence the number of potential point groups is 7 which
are passed further to the postprocessing.

Each iteration the accumulator has to be recalculated so in general the
number of votes v is specified by:

v = n + (n − n′
1) + (n − (n′

1 + n′
2)) + · · · + (n − (n′

1 + · · · + n′
m) (81)

where n specifies the number of the initial point sets, n′
i number of the

recently found and erased point set P ′
i and m is the number of valid sets.

In example of Fig.40 the subsets have the size [105, 88, 37, 24, 21, 18, 8] the
initial number of valid points is [310] and θ-step = 2 degrees. So we have for
this example a resulting number of votes v with

v = 90 ∗ [310 + 205 + 117 + 80 + 56 + 35 + 17 + 9] = 90 ∗ 829 = 74610

7 ANALYSIS AND ALGORITHM-VARIATIONS 99

Calculate Accumulator

for whole data{P}

START

Sufficient

Points in

{P’} ?

Yes

No

Find Maximum in Accu in

generate Line

Search compatible points {P’}

within error tolerance d

END

Segment Parameter check

Total Regression

• Generating Endpoints

• Length Check

Overlapping Check

• Add { P’ } to segment groups

• {P} = {P} - {P’}

Sufficient

Points in

{P} ?

Yes

No

Eliminate

“ Out of Range”- Points

Preprocessing

Hough

By Revoting

Postprocessing

Figure 39: Flow diagram of Hough by Revoting Algorithm

As well we have to proceed a maximum search on the current accu 8 times.

The final result was obtained under constraint of the following parameters:

• ρ-step: 0.1 m

• θ-step: 2◦ ≡ 0.0349 rad

• Max. Distance: 0.05 m

• Min. Num. Points: 5

• Inter Segment Distance: 0.05m
m

• Max. Invalids Gap: 2

so the accu had the dimensions of a [162×90]-matrix. The other parameters
were chosen according to the previous considerations on the already described
algorithms above.

7 ANALYSIS AND ALGORITHM-VARIATIONS 100

0 2 4 6

−4

−2

0

2

4

6

0 2 4 6

−4

−2

0

2

4

6

0 2 4 6

−4

−2

0

2

4

6

0 2 4 6

−4

−2

0

2

4

6

0 2 4 6

−4

−2

0

2

4

6

0 2 4 6

−4

−2

0

2

4

6

0 2 4 6

−4

−2

0

2

4

6

0 2 4 6

−4

−2

0

2

4

6

1. 2. 3. 4.

5. 6. 7. 8.

x
Figure 40: A HbR sequence of seeking and erasing points of one scan

The resulting segments are presented in Figure 41. The needed compu-
tational time was measured with 0.15 sec

Also in this case the application of the parameter Maximum Inter segment
Distance can be demonstrated very well in the enlarged clipping shown in
Figure 42. HbR estimated a line through the points on the outer left side
of the scan since there exist definitely more points than the used minimum
number of points threshold (5). Nevertheless between small groups of these
points exist distances > 0.1 m. So the whole point group will be split into
small ones since the measured points have a distance < 2m to the laser and
the defined threshold accounted with 0.05m

m
. These split point groups have

a size of [2], [2], [2], [2], [4] thus each of them will be erased. Consequently a
line which was estimated by HbR as the currently most probable one, due to
the number of votes, was erased during the postprocessing process.

7 ANALYSIS AND ALGORITHM-VARIATIONS 101

0 2 4 6 8
−6

−4

−2

0

2

4

6

Figure 41: Result computed
by Hough by Revoting

0 0.5 1 1.5 2 2.5 3

0

1

2

3

4

5

6

Figure 42: Application of the
Inter-Segment Distance Pa-
rameter

A normally not desired characteristic of Hough by Revoting is the procedure
on a reduced data set after point erasure as already explained in connec-
tion with RANSAC. A real example where it caused unintended results is
presented in Figure 43.

The immense calculational effort and the loss of information due to proceed-
ing on reduced data led us to another version of Hough.

7.4.2 Hough-Transformation by Neighbourship-Relation

By the implementation of Hough by Neighbourship (hereinafter also HbN) we
tried to avoid the repeated calculations of the accu and the erasure of data
from the set.

The complete Algorithm is illustrated in Figure 44.

The accumulator only has to be calculated once. From this accumulator we
want to extract the local maxima by means of a clustering algorithm which
considers the neighbourship relations between the accumulator values, re-

7 ANALYSIS AND ALGORITHM-VARIATIONS 102

0 2 4 6 8
−4

−2

0

2

4

6

8

x

y

Figure 43: Separation caused due to erasure of points by HbR

spectively the Hough-Space coordinates. There are two different kinds of
neighbourship: direct and indirect. The direct neighbours of a value are sit-
uated in the accu directly above, below, left or right. So one value has got
4 direct neighbours and the neighbours are defined by a deviation from the
original value either one θ-step OR one ρ-step whereas the indirect neigh-
bours are situated in the ”diagonal” neighbourship of the original value. If
you are using as well indirect neighbourship this signifies that a neighbour
can deviate one θ-step AND/OR one ρ-step. In our implementation the
usage of indirect neighbours was parameterized and thus can be turned off.

The problem with this algorithm is to find the limits of a cluster because
the Hough Transformation in general doesn’t provide separable clusters but
a ”value-cloud” where more or less all values are recursively adjacent (Fig.18
page 52). So we have to generate recognizable gaps between the clusters.
First we set ρ to a lower value e.g. 0.05m to ”stretch” the accu maximums
further away and we eliminate in advance all values which fall below a par-
ticular threshold e.g. 10. Thus all lines which only are defined by less than
10 points will be ignored. This makes our results worse, but is necessary to
find separate clusters at all.

Figure 45 shows the previous used accu filtered under constraint of a
threshold of 7, 10 and 13 votes. The clusters in the second and third case

7 ANALYSIS AND ALGORITHM-VARIATIONS 103

Calculate Accumulator

for whole data{P}

Accu

Empty?

YesNo

Find Maximum

Build Cluster recursively

END

Clear Accu by threshold

Total Regression

• Generating Endpoints

• Length Check

Overlapping check

• Add Maximum

to Candidates

• Erase Cluster from Accu

• Generate all Lines of Maximums

• Search compatible points {P’}

within error tolerance d

for each Line

• Add {P’} to segment groups

Segment Parameter check

START

Eliminate

“Out of Range”- Points

Preprocessing

Hough by
Neighbourship

Postprocessing

Figure 44: Flow Diagram of the Hough by Neihgbourhsip Algorithm

are easy to recognize.

This version of a Hough applying algorithm has the characteristic to provide
much more candidate-lines than in the real world model really exist. Due to
the error tolerance of the laser different points of one real world segment could
vote for different parameters so if this parameters aren’t adjacent they could
cause different clusters which can be very close though not directly adjacent.
The previously introduced example (Fig.17 & 18, page 52) with a chosen
threshold of 10 votes produces 34 candidates. So on all these candidates the
complete postprocessing has to be applied.

Figure 46 shows on the left the obtained candidate-lines and the result of
the whole algorithm after the postprocessing.

Comparison of the two Hough versions
For an adequate comparison of the different versions it was essential to im-
plement them under C/C++ due to the immense computational effort and

7 ANALYSIS AND ALGORITHM-VARIATIONS 104

Figure 45: Filtered accus by a threshold of 7, 10 and 13 votes

the used recursion. MATLAB provided results which couldn’t be considered
to be close to reality if we want to bear in mind the later use on a real time
robot.

The advantages and disadvantages of the two versions are obvious. The
Revoting algorithm produces very good results considering the currently most
probable line but this has to be ”payed” with an immense computational
effort whereas the Neighbourship algorithm reduces the computations but
extracts an ”unordered” set of potential lines from a pre-filtered data set that
obviously contains less information than the unfiltered original measurement.

The segmentation results were obtained on equal scan data whereby the pa-
rameters were considered reasonably regarding the tasks and the advantages
of the algorithms and were chosen as follows:

• Hough by Revoting

∗ number-threshold = 7

∗ ρ-step = 0.1 m

∗ θ-step = 2◦

∗ line error tolerance = 0.05 m

• Hough by Neighbourship

∗ number-threshold = 10

∗ ρ-step = 0.05 m

7 ANALYSIS AND ALGORITHM-VARIATIONS 105

0 2 4 6 8
−6

−4

−2

0

2

4

6

0 2 4 6 8
−6

−4

−2

0

2

4

6

Figure 46: All candidate-lines of one HbN pass and the resulting segments

∗ θ-step = 1◦

∗ line error tolerance = 0.025 m

The results are given in Figure 47. The scales were partly changed to get
better display results though the axes of two same scans are equal.

The figure shows above the obtained segments, provided by the Hough by
Neighbourship algorithm (algo1) and below provided by the Hough by Revot-
ing algorithm (algo2). In general the results of algo2 were at least the same
quality as algo1 or even better. The second and third scans show the dis-
advantage of algo1. Segments with almost equal parameters are ignored
because they are too close to be distinguished in clusters as well as ignored
segments due to the recursive building of the clusters. Scan no.1 shows more
or less equal results. There the advantage of algo1 can be seen since the
points aren’t erased from the data set and so one point can be used for two
segments e.g. in building a corner.

Figure 48 illustrates the chart of the time measurements average values and
Table 4 contains the absolute values and the relative percentage values.

As expected, the Revoting version (algo2) needs more time with an av-
erage computational time of ≈ 0.186 sec compared to HbN (algo1) with
≈ 0.153 sec. In effect algo2 proceeds ≈ 22% longer than algo1. The postpro-

7 ANALYSIS AND ALGORITHM-VARIATIONS 106

0 2 4 6
−4

−2

0

2

4

0 2 4 6
−4

−2

0

2

4

0 2 4 6
−8

−6

−4

−2

0

2

4

6

8

0 2 4 6
−8

−6

−4

−2

0

2

4

6

8

0 2 4 6
−4

−2

0

2

4

0 2 4 6
−4

−2

0

2

4

Figure 47: Different results on same data obtained by different versions of
Hough

cessing of algo1 is slightly longer compared to algo2 due to the large number
of candidate lines which have to be filtered whilst the preprocessing in both
cases can be disregarded with ≈ 0.2% of the entire algorithms. The recursive
clustering algorithms consumes only ≈ 25%. The accumulator gets calcu-
lated only once in algo1 whereas in algo2 the accumulator is filled on average
≈ 9.6 times. Despite this fact the cumulated time of accu-calculation of algo1

only needs ≈ 64% more compared to the one-time calculation of algo2. This
is caused on one side by the larger dimensioned accu of algo2 as well as the
rapidly decreasing number of points which have to be transformed into the
Hough space after erasing the first potential line points.

Parameter Variations
Improving the quality of the segments of the Neighbourship version by means
of the used clustering algorithm arises as problematic. Trying to produce
more convenient clusters signifies to enlarge the dimensions of the accumula-
tor what in turn entails larger computational costs. By raising the threshold

7 ANALYSIS AND ALGORITHM-VARIATIONS 107

Neihgbourship Revoting
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

El
ap

se
d

Ti
m

e
[s

ec
]

Postprocessing

Preprocessing Preprocessing

Accu

Accu

Clustering

Max−Search
Postprocessing

Figure 48: Time-comparison of algorithm parts of HbR and HbN

the loss of data, i.e. ignoring the small segments, gets immense and thus
results counterproductive.

The above used parameters produced a reasonable compromise between
quality and computational time.

The big disadvantage of the Hough by Revoting version consists in the used
computational time which primarily depends on the accu dimensions. Hence
the improvement approach leads to reduction of the accu. To influence di-
rectly the calculation dimensions we varied the parameter θ-step. The mea-
sured average times are given in Figure 49. It’s easy to see that the used
time decreases drastically. To compare the results a sequence of the same
measurement data with a different θ-step can be seen in Figure 50 and Figure
51. The values for the sequential parts were chosen from left to right with:
∆θ = [1◦, 9◦, 15◦, 30◦] ≡ [0.0175, 0.1571, 0.2618, 0.5236][radience].

Obviously the first segments on the left always are optimal due to the
chosen θ-value. For this parameter an average time of ≈ 0.29 seconds was
obtained. The first sequence (Fig. 50) shows an example where the results in
all cases almost are equal since the angles of the major segments are exactly
in the direction (”corridor”) of the used angular parameters. This quality
of results was obtained in few cases. The second sequence (Fig. 51) shows
a standard case. The first results on the left are optimal whereas the last
result is worse. With a increasing of ∆θ the segments which aren’t situated

7 ANALYSIS AND ALGORITHM-VARIATIONS 108

Hough by Neighbourship Hough By Revoting
time [sec] % − value time [sec] % − value

Total mean time 0.152969 100.00% 0.185596 100.00%

Preprocessing 0.000331 0.22% 0.00034 0.18%
Accu 0.108820 71.14% 0.179117 96.51%
Clustering 0.038029 24.86%
Maxima-Search 0.00298 1.61%
Postprocessing 0.005786 3.78% 0.003158 1.70%

Table 4: Average computational times and percentage values of different
Hough versions

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

θ − step

El
ap

se
d

Ti
m

e
[s

ec
]

Figure 49: Average time with varying θ-step by Revoting Algorithmus

exactly in a respective angle direction will be partitioned or not even found
at all. But this characteristics only were observed in this quantity and with
such effect on a ∆θ > 15◦. The results in the second and third example are
still rather acceptable. Regarding the immense saving of time slightly worse
results are absolutely acceptable.

A used ∆θ of 9◦ consumed an average time of ≈ 0.0535 seconds and
produced very good results though in few cases separations occurred.

Compared to the Hough by Neighbourship version the results of Hough by
Revoting are equal or better but needs due to the above explained optimiza-
tion less time for the procedure.

7 ANALYSIS AND ALGORITHM-VARIATIONS 109

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

Figure 50: Results of equal data with varying θ-steps

7.5 EM-Algorithm

The complete Expectation-Maximization-Algorithm is illustrated in Figure
52.

EM proceeds an outlier filtering since outliers would influence the expectation
values of the valid measurements in a considerable way.

Beside the normal used parameters which in this case were chosen in a rea-
sonable way we have to specify several EM specific parameters.

Specifying σ
The parameter σ which is used in the expectation calculation specifies the
”closeness” of the points to a line. It denotes the variance parameter of the
distance function and so specifies the weighting a point gets with a certain
distance to the line. σ is used as denominator in the exponent of the proba-
bility distribution function whilst the numerator has a constant value for one
measurement zi and one single model Θj. The smaller σ the bigger the value
of the fraction hence the smaller the probability (due to negated exponent)
of this point to pertain to this line. σ normally can be calculated by a trans-
formation of the covariances of the line and the point. With a systematically
initialized model we have no information about the uncertainty of the line
so σ only would depend on the constant covariance of the measurement. In
case of a line defined by two randomly chosen points a covariance for the line

7 ANALYSIS AND ALGORITHM-VARIATIONS 110

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

Figure 51: Results of equal data with varying θ-steps

can be calculated by a transformation of the two point covariances. This in
turn can be used to calculate σ. This procedure would have to be calculated
for each point to each model line (Complexity O(n × m)) in each iteration.
In general the covariances only have small differences due to the constant
covariances of the points so a constant variance σ can be considered to be
absolutely sufficient in this case.

A small σ (e.g. 0.05m) leads to a fast convergence since already small
differences of distances of a measurement to different models leads to clearly
weighted votes from the point to the lines with a significant preference to the
closest. So the optimization produces relatively fast clearly defined models
whilst a big value for σ would lead to slightly different expectation values
for one point to all the model lines so the optimization will proceed small
actualizations of the current model. On the other side a small σ leads quickly
to a voting for the phantom model since the expectation for a far away line
compared to σ will decrease quickly. Thus single model lines will be erased
from model Θ rather quickly if no points are ”close” to them.

Figure 53 shows a virtual test scenario. There exist two point groups
with each 5 points. Each of the point groups are situated on a ”virtual” line
parallel to the x-axis and the groups have a mutual distance of 1 m. The
initial model line (blue) is situated slightly closer (1 cm) to the below point
group. On this situation EM is applied once with σ = 0.25 [1] and once
σ = 0.02 [2]. In case [1] EM needs 7 iterations to converge in case [2] only
3. It’s good to see how in case [1] the optimization are ”advancing” slower

7 ANALYSIS AND ALGORITHM-VARIATIONS 111

Preprocessing

Expectation-
Maximization

Postprocessing

START

Yes

Convergence ?
No

Yes

•Eliminating “Out of range Points”

•Outlier Filtering

Initialize Model

Counter = 0

E-Step

Calculating Expecation values

•Eliminate equal single models

•Counter+1

M-Step

Optimize Model Parameters

Ep < threshold?

numEpmax< threshold?

Eliminate “too few” voted

•Calculate mean Phantom Expectation Ep

•Calculate number of Phantom Maxima

Counter >

Thershold ?

No

END

Segment

Parameter check

Total Regression

• Generating Endpoints

• Length Check

Overlapping Check

Add <NUM> Random Lines

No

Yes

Figure 52: Flow Diagram of EM-Algorithm

than in case [2].

The limits for convenient σ-values were collected experimentally and were
determined approximately with 0.018 < σ < 0.4 (≡ 1√

2π
< σ < 1√

10π
). In

case of σ > 0.4 in the above specified test scenario the model converges to
the line exactly in between the two point groups. In case of σ < 0.018 the
first optimization isn’t parallel anymore and the model converges vertically
to only two points of the groups.

After the above obtained results in tests and further examinations we used
a σ between 0.02 and 0.1.

Model initialization
The initial model has essential influence regarding the quality of the results

7 ANALYSIS AND ALGORITHM-VARIATIONS 112

0 2 4 6
0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 2 4 6
0.8

1

1.2

1.4

1.6

1.8

2

2.2

initial Model
1.

2.

3.

4. / 5. / 6.

converged Model (7.)

initial Model

1. / 2.

converged Model (3.)

σ = 0.25 σ = 0.02

Figure 53: EM with different σ’s on a virtual test scenario

of EM. The worse a model is initialized the worse are the results or the
longer EM needs to obtain satisfactory results. Thus a flexible but complete
initialization should be applied.

As described in the introduction of EM (chap. 5.5) the initialization of the
model was implemented in two different modes: on one side with an initial
systematic, pre-defined model and on the other side with a certain number
of randomly generated lines.

Systematic Model Initialization
A systematic model consists of regularly distributed lines scattered system-
atically over the whole scan range. The primary intention was to achieve a
initial distribution of lines to ”reach” as many points as possible in the begin-
ning without concrete a priori knowledge of the measurement distribution.
The redundant lines which aren’t relevant regarding the current measure-
ments are optimized to the zero-vector and so are detectable and can be
erased immediately i.e. each iteration. A check of the entire model on zero-
vectors is realized rather fast regarding the computational effort (complexity
O(n) with n = numbers of current models), thus irrelevant models affect the
computational costs insignificantly due to their early detection and erasure.

In our case we used three different kinds of systematical models with

7 ANALYSIS AND ALGORITHM-VARIATIONS 113

different numbers of lines21. The lines were specified regularly (varying line
parameter ρ) taking into account the ”direction range” of the laser with four
different values for θ with θ ∈ [+π

2
, +π

4
, 0 , −π

4
]. A big initial model consists

of 17 lines, a medium sized of 13 and a small one with 7.

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

Figure 54: EM applying a big systematic initial model

Figure 54 and 55 show the sequence of EM applied on the same scan once
with a big initial systematic model and once with the small one. The first
images on the left shows the measurements (black) and the initial model
(blue), the one in the middle shows the model after the first EM-Iteration
(one optimization) and the left one shows the model after the first detected
convergence. The used σ-value was 0.02.

The initial vertical and horizontal model lines have a distance of 2 meters
and the diagonal each ≈ 2.8 meters (

√
(8)). The whole scan range can be

considered to be covered quite completely. Obviously the probability of a
model lying close to each potential point group is rather high and regarding
the results they can be considered relatively good since after first convergence

21These were test models and were found to be reasonably and satisfactory. Obviously
the model specification is absolutely arbitrary and can be chosen regarding prior environ-
ment knowledge and task requirements.

7 ANALYSIS AND ALGORITHM-VARIATIONS 114

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

Figure 55: EM applying a small systematic initial model

almost each of the potential segments are covered, except the segment on the
top.

In the small model the horizontal and vertical lines have a distance of 4
meters and in diagonal direction there exists only one single model. Eviden-
tally the smaller number of initial lines reduce the possibility of covering as
much as by using the big model so after the first iteration and first conver-
gence it can be considered as well quite good though not as complete as in
the previous case.

Table 5 presents the results on number of lines, iterations etc. of the above
given cases as well as the additional case for the medium model. EM only
was proceeded until the first convergence thus no lines were added neither a
break condition was reached.

In the case [1] two single lines were erased immediately due to the 0-
vector check whilst in the other cases no 0-vector was detected. The results
regarding the used models are as expected since the bigger models having
finally more resulting lines than the small one. Though here the arbitrary
specification of the models leads to a slightly more resulting lines for case
[2] than in case [1]. This shows that an ideal initial model doesn’t exist
without knowledge of the measurement distribution hence there is not a

7 ANALYSIS AND ALGORITHM-VARIATIONS 115

Big [1] Medium [2] Small [2]

Initial Lines 17 13 7
Lines after 1st iteration 15 13 7
Lines after 1st convergence 7 8 4
Detected 0-vectors 2 0 0
Iterations until convergence 8 10 6
Used time until convergence ≈ 0.34 sec ≈ 0.34 sec ≈ 0.14 sec

Table 5: Results on varying initial Models

”best” initialization though in general a larger model can be considered with
a bigger probability to cover a major part of the points.

For the necessary number of iterations this neither is the case since the
medium sized model needs more iterations until convergence than the large
model though the trend to less iterations with a small model is easy to
confirm.

Regarding the computational time the results are as expected. In case
[1] the early eliminating of unnecessary model lines, the smaller number of
resulting lines and the smaller number iterations compensate the primarily
larger number of models compared to case [2]. The small initial model and
few iterations in case [3] lead to the smallest elapsed time.

If EM would end with the first convergence the following results (Fig 56)
would be obtained after the complete segmentation procedure.

The results are more or less equal and anything but satisfactory. So the proce-
dure of EM proceeds until convergence iteratively and adds each convergence-
iteration a specified number of randomly, by the points, generated lines. Due
to the fact that the model after the first convergence already is associated
to a major part of the entire measurement set an added line which isn’t at-
tached to previous minor assigned points will be erased very quickly due to
the absence of heavy weighted votes. Therefore the number of lines to add
normally was set larger than one. On the other side too much added lines
would cause an enlargement of iterations until the next convergence.

Tests with an iteratively differing systematical model to add were ap-
plied as well, though didn’t produce satisfactory results since in most of
the cases a major part of the added model has been erased immediately.

7 ANALYSIS AND ALGORITHM-VARIATIONS 116

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

Figure 56: Potential results after 1st convergence with varying initial models

The initial model already defines the measurement model in a way that a
added systematic model only would ”overdefine” the current points. Only a
rather different model compared to the initial model would lead to significant
changes whereas such a model can be considered not very different to ran-
domly generated lines so the random way can be considered as more flexible
and normally leads faster to significant results.

Good results were obtained with a fixed value of randomly generated lines
between 3 and 8.

Random Model Initialization
Another way to initialize the starting model is to generate a specific number
of randomly chosen lines using existing measurements to specify them. In this
case a single model always will be voted of at least two points (respectively
the specification points) hence zero vectors won’t appear.

The problem with this procedure is obvious: randomly chosen lines tend
to equality in case of very probable potential point groups as well as to pile
up to certain measurements (e.g. to data close to the laser since the density
is much higher for data with small laser distances). So the point of view we
had with a systematic model, to assign initially as much as data as possible,
only can be achieved with the random version by creating a big number of

7 ANALYSIS AND ALGORITHM-VARIATIONS 117

lines. This leads to many likely lines and to a preference in location.

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

Figure 57: Generated random line models with varying numbers

Figure 57 shows three randomly generated models with a number of [5 , 10 , 15]
lines. The more lines are generated the more lines seem likely as well as line
”bunches” are growing bigger and bigger. It’s obvious that quickly a lot of
lines will be erased due to equality. The results led to the approach of inte-
grating the initial model into the process of converging iteratively and adding
randomly generated lines, i.e. the number of initial lines coincides with the
number of lines to add on each detected convergence (between 3 and 8).

This approach can be considered as a ”slow” approximation to the fi-
nal result with an iterative improvement of the current model whereas the
initialization with a systematic model tries to begin with a model as good
and complete as possible and afterward to optimize it by adding few lines
iteratively.

Maximum number of Iterations
The major break condition for EM is the Maximum Number of Iterations.
EM only stops in case of convergence thus only if the number of iterations
after convergence is higher than the specified threshold EM will stop. Oc-
casionally it occurs that EM iterates a lot of times more than the defined

7 ANALYSIS AND ALGORITHM-VARIATIONS 118

threshold though in general this was not the case due to the fast convergence
characteristics of EM22.

The specification of the maximum number of tries was achieved experimen-
tally due to the fact that an analytical way to specify an appropriate value
is very hard to achieve. Figure 58 shows a sequence of EM on equal scan
data with different maximum number of iterations. From left to right the
values were z = [10, 20, 30, 50]. A medium sized initial model was used and
the number of additional random lines per convergence was specified with 3.

0 5

−8

−6

−4

−2

0

2

4

6

8

0 5

−8

−6

−4

−2

0

2

4

6

8

0 5

−8

−6

−4

−2

0

2

4

6

8

2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

Figure 58: Results on equal scan data with varying Maximum Iterations

The trend of better results with more iterations should be obvious. In the
test series a maximum number of iterations > 50 didn’t improve the results
significantly. The results with the value 50 in most cases are very good and
only occasionally certain ”important” segments aren’t detected. A value < 20
produced only unsatisfactory results so the normally used value was defined
between 20 and 50. A good compromise between computational time and
results was found with 25.

22Taking into account the respective parameters σ and Convergence threshold

7 ANALYSIS AND ALGORITHM-VARIATIONS 119

Defining Convergence Threshold
The threshold of convergence specifies the difference of the line parameters
of two lines which they may have to be considered as equal. The problem
with this definition lies in the fact that small differences of a short line vector
can lead to completely different line direction whereby farther away situated
lines aren’t affected significantly by small differences.

This threshold may affect the number of iterations EM is proceeding
significantly. In case of a too small chosen value lines which are changed
(optimized) slightly but still aren’t considered to converge won’t improve
the results significantly but only will enlarge the computational time. In
the major part of the cases the lines aren’t situated very close to the laser
so we can more or less ignore this situation. Taking into account the laser
error tolerance and examinations of further tests we specified the convergence
threshold between 0.005 and 0.025 meter.

Defining max. Ē[Θ∗]-mean and number of E[Θ∗]-max
Another break condition for EM was the quality of the result. We consider
a current model as good if the mean value of the expectation values for
the phantom model falls below a certain threshold or if the number of the
maxima in phantom expectations are falling below a threshold.

These thresholds only should be considered to be used if we really can
be certain that the defined thresholds are specifying a ”quality”-model. The
threshold for the phantom expectation mean value Ē[Θ∗] was determined
experimentally by estimating the quality of the results and comparison of
the given values. In some cases yet a value of Ē[Θ∗] = 0.2 was extracted of
a good model whereas in further cases only a value of 0.05 specified a good
model. So this value normally was specified with a value between 0.05 and
0.02.

Points which are situated too far from a model will vote primarily for the
phantom model. Thus a possibility to find the number of points which are not
voting for a existing model is to find for each point the most probable (closest)
single model. If the most probable line is the phantom model this particular
point can be considered not to be defined by the current model. Obviously the
number of such points should decrease through the optimization procedure.
The threshold was defined with the required maximum number of points we
want to be unassigned. For example if we want to have assigned at least 99%
of a data set of 330 points the value would have to be chosen with 4. In our

7 ANALYSIS AND ALGORITHM-VARIATIONS 120

case we specified the maximum number of such ”Phantom Maxima” with a
value between 2 and 5.

Figure 59 shows the plotted series of the mean Ē[Θ∗] and the number of
maxima E[Θ∗]-max over 200 Iterations.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200
0

5

10

15

20

25

30

35

40

45

50

Figure 59: Ē[Θ∗] and number of maxima of E[Θ∗] over 200 Iterations

In both cases the value converges. The mean value converges around a value
≈ 0.045 and the value for the phantom maxima around a value of 4. The
results of the segmentation haven’t changed significantly after 50 iterations.
The final result is given in Figure 60.

Time measurement
The time measurements were made on one side with the randomly initialized
model and on the other side with systematical models and were captured
under C/C++.

Following Parameters were used:

• Maximum Iterations: 20

• σ: 0.02

• Convergence Threshold: 0.02 m

• Number of Lines to add per Convergence: 3

• Ē[Θ∗] : 0.03

• maximum number of E[Θ∗] − max : 3

7 ANALYSIS AND ALGORITHM-VARIATIONS 121

0 1 2 3 4 5 6 7 8 9 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 60: Results of EM after 200 Iterations

Elapsed Time [sec]

Randomly initialized 1.76
Init with medium sys. model 1.829
Init with small sys. model 1.529

Table 6: Results on different EM variations

Table 6 shows the average measured times for the different versions of
EM. Figure 61 and 62 shows some standard results for EM. On the left the
final segments for the randomly initialized version of EM [1] with a number
of 3 initial lines. In the middle a systematic initialization with a medium
sized model (13 lines) [2] and on the right with a small systematical model
(7 lines) [3].

In the first figure the results are acceptable but not very good since some
major segments are missing in each case. The best results provides case [2]
and as expected the results are better than in case [3]. Case [1] neither finds
all major segments e.g. the segments of the corner on top.

The second figure shows more ore less equal results for all versions. All
segments which can be considered to be important to be detected are detected
except the door on the bottom in case [3].

7 ANALYSIS AND ALGORITHM-VARIATIONS 122

0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

0 2 4 6 8

−8

−6

−4

−2

0

2

4

6

8

0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 61: Final results of different EM versions after 20 Iterations [1]

In general the results are not as equal and are more similar to the results
given in Fig. 61. The systematically initialized and afterwards randomly
altered versions provide in general better results than the randomly initialized
versions. The trend shows a preference for a big initial model and not more
than 25 Iterations.

The big problem obviously is the computational time which is necessary
for EM. An average time of ≈ 1.6 seconds ! can be considered as unbearable
compared to the previously presented algorithms since the results neither are
better. One advantage of EM consists in the possibility to find a very good
result if it’s only possible to give it sufficient iterations though thereby the
computational cost would increase immensely.

In this chapter we specified the parameter and estimated reasonable compro-
mises between quality of the results and calculation time for each algorithm.
We tried to point out the limits of the algorithms and tried to find the best
mode of operation regarding the required task to extract the potential seg-
ments from a set of measurement data captured in an indoor environment.

Now we have the results to compare the algorithms mutually.

7 ANALYSIS AND ALGORITHM-VARIATIONS 123

0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 62: Final results of different EM versions after 20 Iterations [2]

8 ALGORITHM COMPARISON 124

8 Algorithm Comparison

In this chapter we want to use the results of the previous chapter and apply
a direct comparison of the algorithms.

8.1 Direct Comparison

For each algorithm the following parameters were used:

• Common Parameters

∗ Minimum Number of Points: 5

∗ Inter Segment Distance: 0.05 m
m

∗ Max. Number of ”Invalids”: 2

∗ Minimum Segment Length: 0.1 m

• Split & Merge

∗ Max. Point-Line Distance: 0.08 m

∗ Merging by MNE

• RANSAC (with Split)

∗ Max. Point Line Distance: 0.06 m

∗ ω: 0.8

∗ z: 0.9

∗ → k = 3

∗ Max. Split Point Line Distance: 2 m

• Hough (by Revoting)

∗ θ-step: 6◦ (≡ 0.1571rad)

∗ ρ-step: 0.1 m

∗ Max. Point Line Distance: 0.05 m

• EM

∗ Initialization with medium sized systematical Model

∗ Max. Iterations: 20

8 ALGORITHM COMPARISON 125

∗ Convergence Threshold: 0.01 m

∗ Number of Phantom Expectation Maxima: 3

∗ Maximum Phantom Expectation Mean: 0.04

Result Comparison
In the following Figures the results for each algorithm with the above given
parameters will be presented.

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

xy

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

xy

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

xy

Split & Merge RANSAC

EM Hough

Figure 63: Results of all algorithms on equal scan data [1]

8 ALGORITHM COMPARISON 126

The first series (Fig. 63) shows the results on the example which was used
previously.

This typical scan was captured in a university corridor. The Laser was sit-
uated angularly to the corridor direction and had insight into a laboratory
(on top) through a double door where only the left door part is opened.

The results of Split & Merge (hereinafter also denoted as SM) and Hough
were rather good since all major walls and segments, which comply the seg-
ment requirements, are detected as complete segments. The closed door on
the bottom and the second part of the double door, both with a depth around
0.1 meter, also are detected separately.

RANSAC shows some separations e.g. of the wall segment on the bottom
with a gap of ≈ 30 cm or a segment in the laboratory with a gap of ≈ 10
cm. But in general all the major segments are detected as well.

The results of EM are not very satisfactory. The important segment of
the bottom wall are only partially or not even at all detected. Nevertheless
the two closed doors are identified as such.

The next series (Fig. 64) shows a case which was merely untypical. This
scan was captured whilst the laser was situated in a laboratory door and had
direct sight into the corridor with an opposite wall with several closed doors.

In this case the results are more or less the same for all algorithms though
regarding some characteristics RANSAC and EM showed even better results
than Split & Merge and Hough. The door on the most top was only detected
by RANSAC and EM. In reality the segment on the bottom is a window so
the laser beam reflection characteristics weren’t optimal. Due to this Hough
doesn’t detect it at all equally to EM. RANSAC separates it whereas SM
generates it as a whole. One large wall segment directly opposite to the laser
was separated only by Hough.

The opened door on the bottom leads to a complete different segmenta-
tion. SM and RANSAC can’t detect the part of the opened door neither the
corner between the door and the window. Hough detects the partially visible
door and EM only the small wall segment between the door and the window.

The small part of the inner laboratory door was specified by ≈ 50 cap-
tured points with a distance to the laser of approx 45 cm and was extracted
exactly equal by all 4 algorithms.

Figure 65 was captured in a laboratory with artificially placed walls. In this

8 ALGORITHM COMPARISON 127

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

xy

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

xy

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

xy

Split & Merge RANSAC

Hough EM

Figure 64: Results of all algorithms on equal scan data [2]

way corners and gaps with behind situated walls were created. In this scan
almost all points should be assigned to 5 major segments. The results are
rather good in all cases but I want to use this series to show the particular
characteristics of each of the algorithm.

Split & Merge is able to use corner points for two different segments. In
this case it’s very good to recognize how the generated vertices are used to
build a connection between two segments thus between two segments are no
gaps. In case of the large segment on the bottom the segment was separated
due to only 1 scan point which had a larger distance than the specified
threshold but wasn’t declared as outlier or as inter segment gap. So this point
lead to a separation of a major segment with a gap with ≈ 20 centimeters.

8 ALGORITHM COMPARISON 128

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

xy

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

xy

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

xy

Split & Merge RANSAC

Hough EM

Figure 65: Results of all algorithms on equal scan data [3]

RANSAC shows on the bottom segment and on the right segment on top
its typical fragmentation characteristic.

In this case the problem on reduced data with Hough can be seen very
well. In the corner on the right one segment considers some points of the
orthogonal segments as compatibles (respectively the points within the spec-
ified line error tolerance). So these points aren’t at the other segments dis-
posal. The segment on the bottom isn’t completely situated in a angular
corridor of a particular θ-step so the segment gets separated with a gap
around 10 centimeters.

EM shows for his means very good results. All major segments are de-

8 ALGORITHM COMPARISON 129

tected without any separation. Only two small segments on the left side
aren’t detected though they are specified by 10 and 20 points.

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

xy

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

xy

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

xy

Split & Merge RANSAC

Hough EM

Figure 66: Results of all algorithms on equal scan data [4]

The last figure I want to present illustrates a very typical result for all algo-
rithms. The used scan in Figure 66 was captured inside a laboratory with
separated wall segments and behind situated walls inside the laser range.
Some obstacles produce point clouds which are vaguely to identify as seg-
ments.

Split & Merge produces very good results. It detects all major segments
as well as the minor ones. From vague point clouds it extracts the most

8 ALGORITHM COMPARISON 130

probable segments which comply the segment requirements. Corners are
closed.

RANSAC detects all major segments though in many cases these seg-
ments are separated and contain gaps.

Hough also detects all segments though in some cases segments are sep-
arated due to the inconvenient angle. Small point clouds without major
orientation are ignored.

EM ignores some major and obviously existing segments. But neither it
is affected by small vague point clouds.

Computational Time Comparison
By the means of the parameters which were used to obtain the above given
results the following average times were measured (Fig. 67):

Figure 68 shows a chart of the measured average times without the time
captured from EM. EM needs more than 2700% longer than Hough so the
subtle differences of the other algorithms wouldn’t be detectable anymore.

time [sec]

Split & Merge 0.01864
RANSAC 0.00784
Hough 0.06613
EM 1.8695

Figure 67: Measured av-
erage Times of all Algo-
rithms

Split & Merge RANSAC Hough
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

El
ap

se
d

Ti
m

e
[s

ec
]

Figure 68: Chart of the measured average
times

Used Points Comparison
Table 7 shows the measured values of used Points. Evidently the average
number of valid measurements is larger in case of RANSAC and Hough since
they don’t apply an Outlier filtering. With Outlier filtering the average value
accounts to 348.29 which represents 96.48% of the whole captured scan data.

8 ALGORITHM COMPARISON 131

In case without Outlier filtering the value accounts to 351.68 representing
97.41%. Thus in average 3.39 Points are considered to be Outliers.

Valid Points Used Points %-value of valids

Split & Merge 348.29 317.52 91.17%
RANSAC 351.68 256.52 72.94%
Hough 351.68 287.25 81.68%
EM 348.29 251.20 72.12%

Table 7: Average Number of used Points from Measurement Set

A weighting of theses results only is relevant if we can be sure that the major
part of the scan data can be considered to be correct. With the definition
of segment requirements (criteria) we tried to evaluate an estimation of the
quality of the scan data though this still doesn’t give an estimation about
the rate of good scan data.

Though in general can be said that the more measurements are used the
better it can be considered to be, since due to the small laser error tolerance
the major part of the data can be considered to be correct and that the major
part of the environment consists of segments which should be relevant for a
later mapping.

Robustness Test
A typical test on Robustness of a segmentation algorithm is the test of finding
a line in an unordered point cloud. Therefore a defined area is filled with
a specified number of randomly distributed points. The same number of
points specifying a segment are set into this area thus we know that 50% of
the data specify relevant segment data. A robust algorithm should find the
line exactly without being influenced by the random points. This test only
can be applied for algorithms that don’t need an ordered group hence Split
& Merge was excluded.

Figure 69 shows such a point cloud on which RANSAC, Hough and EM were
applied. On the top left the pure point data is given. The further sequence
consists of the results given by RANSAC (top, right), Hough (bottom, left)
and EM (bottom, right).

8 ALGORITHM COMPARISON 132

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Data RANSAC

Hough EM

Figure 69: Test on Robustness of RANSAC, Hough and EM

In general all the algorithms produced the correct results.
In this case RANSAC produced a separated line though in other passes

this was not the case. Obviously this depends on the randomly generated
lines.

The quality of the resulting segment by Hough obviously depends on the
angle the line has got. If it lies in a specified Hough-θ-corridor it will be found
and not separated. Is this not the case in general the line will be found but
the segment will be partitioned.

EM found the correct and complete line in every pass the test was applied.

This test was executed further times with less relevant data compared to the
number of points of the complete set.

EM produced the desired results until a rate of valid segment data of 30%.
Below this value it converged towards two undescript points which weren’t
part of the sought segment.

The results of Hough depend on the angle and the number of points which
are used. So the rate itself is not essential for Hough but the absolute number
of relevant data and the specified θ-step. Thus an essential characteristic

8 ALGORITHM COMPARISON 133

of the given point set is the Density of the data. With a number of 200
given Points in an area of 1m2 Hough provided the correct results until a
rate of around 10%. But as explained above the results of Hough only are
conditionally relevant for a comparison.

The results of RANSAC showed its typical characteristic of fragmenta-
tion. Though the probabilistic parameters were changed accordingly to the
rate of relevant data it produced below 60% more and more segment par-
ticles with increasing size of the gaps. Nevertheless the segment only was
fragmented but the general direction was found.

8.2 Characteristics of Split & Merge

The results showed that Split & Merge produces very good results in short
time.

In only few cases it didn’t produce an optimal result regarding the re-
quired criteria. The procedure of iterative splitting and merging to optimize
the results doesn’t provide weightings on particular segments which could be
important to find small segments in the same way as large ones. On the other
side it provides no information about the relevance of the different segments
since the segments are extracted simultaneously containing no information
of segment relevance.

It is able to produce closed segment connections by using one measure-
ment (a vertex) for two segments so Split & Merge thus can provide closed
segment series.

One problem of Split & Merge is its sensitivity to outliers so they have
to be filtered out. Another big disadvantage is the requirement on a ordered
list of measurements. Split & Merge only works if the data is available in an
ordered list to specify measurement adjacency.

There are only few parameters which specify the mode of operation of
Split & Merge. The only relevant one is the maximum distance that is used
as threshold for a splitting. This arbitrary value can be chosen accordingly
to the characteristics of the environment or the required task. If an arbitrary
choice should be avoided a further possibility is to use the error tolerances, re-
spectively the covariances, of the measurements and to decide against a split
only in case if the uncertainty of the line and the points give the probability
of a distance =0.

Nevertheless Split & Merge produces in general the best results of the pre-

8 ALGORITHM COMPARISON 134

sented algorithms.

8.3 Characteristics of RANSAC

The big advantage of RANSAC is its velocity and its independence of the size
of the measurement set. Its complexity is only dependent on the specified
probabilistic parameters. If the probabilistic distributions of the scan are
known or well estimated it produces very fast good results. Furthermore
RANSAC can be considered to be unsensible against outliers.

A disadvantage of RANSAC certainly consists in the iterative proceeding
on reduced data sets. This characteristics avoids to obtain any good results as
desired. The choice of randomly generated lines leads to increasing separation
of large segments thus RANSAC can be considered to be sensible to a large
sensor error tolerance.

The parameters of RANSAC are easy to estimate accordingly to the task.
z only depends on the self chosen, desired probability of result-quality. ω
specifies the probability of finding a correct line. In general the rate of rele-
vant data of the entire measurement set can be considered to be much higher
than the irrelevant data23 so ω depends on the number of segments and their
respective number of points. To ensure the finding of correct data we should
tend to chose ω smaller than necessary since an exact a priori knowledge of
the scan in most cases isn’t available. The value of maximum distance for
points to comply compatibility to the line should be chosen reasonable taking
into account the desired ”resolution” of the resulting segments as well as the
error tolerance of the sensor.

Nevertheless RANSAC by far is the fastest of the presented algorithms and
provides in most cases good results.

8.4 Characteristics of Hough

Through its ”Voting Characteristic” Hough is able to produce a weighted
set of the potential segments. The revoting version of Hough always finds
the currently most relevant segment first though this has to be payed with
repeatedly transformation and a proceeding on a reduced data set. The
”rougher” the segments are situated the faster Hough by revoting can be

23See the rate of number of estimated outliers compared to the entire set.

8 ALGORITHM COMPARISON 135

working thus with a priori knowledge of the environment the optimization
possibilities are very good.

The two different versions are showing how flexible the Hough space can
be used to acquire likely results hence the possibilities to expand Hough are
immense e.g. by filtering the Hough space or varying clustering algorithms
etc. .

By varying the Hough parameters the results can be obtained in almost
any desired quality though this obviously would increase the computational
costs significantly.

The choice of parameters depends on the desired compromise between
velocity and quality of the results. By decreasing the size of θ- and ρ-step
any desired resolution of the scan can be obtained though obviously the
limits are specified by the sensor error tolerance. The maximum distance
parameter for the finding of line-compatibles points depends directly on the
chosen resolution of ρ. The breaking condition for the algorithm depends on
the given criteria of minimum segment point number which can be estimated
by regarding scan resolution, i.e. potential distances between measurements,
as well as the desired point density of a segment.

Hough can be considered to be a very flexible algorithm with plenty of pos-
sibilities of algorithm tuning and optimization thus the previously described
modes of operation still don’t tap the full potential of the Hough Transfor-
mation.

The obtained results showed that Hough is able to produce very good results
in an acceptable necessary time.

8.5 Characteristics of EM

Evidentally the big disadvantage of the Expectation Maximization algorithm
is the necessary computational cost. The in this project presented algorithm
has no possibility to reach the velocity of the other presented algorithms.

An advantage of EM could be considered with the initialization with
a certain model. In case of a priori knowledge of the environment a high
quality of the results can be acquired. It’s convergence characteristic and
the iterative adding and terminating of models makes it possible for EM to
provide any desired result-quality if the computational time can be considered
to be less relevant. Furthermore EM provides already after few iterations a

8 ALGORITHM COMPARISON 136

relevant model thus it gives the possibility to proceed as long as you want
but always holds a current solution model.

In addition EM showed the best characteristics on an unordered point
cloud with partly relevant data.

The parameters of EM are not easy to evaluate analytically. σ influences
the velocity of convergence due to it’s influence on the weightings for the
particular single models. A small value leads to fast and significant opti-
mization but this also leads to a fast elimination of potentially good models,
which in this case are considered to be irrelevant for the result. The number
of maximum iterations has to be found experimentally but obviously leads
to better results the higher it is. The breaking condition parameters which
should define the quality of results are varying significantly and so should be
chosen sufficiently low to ensure to proceed a procedure break only in case
of absolute certainty of good results. The specification of the initial model
affect the quality of results essentially. Hence the possibilities of algorithm
optimization can be considered best in case of prior measurement knowledge.

Nevertheless EM currently can’t be considered to compete with the other
presented algorithms though in special cases, e.g. unordered point clouds, its
results are very good and there could be a lot of possibilities of optimization.

8.6 Conclusion

The in this project presented algorithms all are able to produce good segmen-
tation results depending on parameters or time. The very different algorithm
paradigms showed different strengths and weaknesses hence each algorithm
could be recommended for particular tasks.

• If computational time is the most relevant characteristic of the task
RANSAC would be the best solution.

• In case of required high quality results Split & Merge should be the
choice. Further it depends only on few parameters which have to be
specified.

• The Hough transformation produces in most cases very good results.
As well it gives the possibility of weighted segments and flexible opti-
mization possibilities.

8 ALGORITHM COMPARISON 137

• EM could be produce very fast a good model state in case of prior
knowledge and respective initialization though in our case this isn’t the
case. As well it shows good characeristics in case of highly randomly
distributed data.

So each of the algorithms can be considered to be relevant in a certain par-
ticular way for segmentation embedded in the operation cycle of a mobile
robot.

9 SUMMARY AND PERSPECTIVE 138

9 Summary and Perspective

9.1 Summary

In this thesis we presented a project of analysis, implementation and com-
parison of different segmentation algorithms treating on 2 dimensional laser
captured sensor data. Segmentation of sensor data constitutes an embedded
part of the complete data proceeding process in the field of mobile robotic.

The objective of segmentation is to extract geometrical segments from an
ordered list of measurement data which can be used in the following process
step to build a virtual map. This map in turn is used to allow an error free
navigation in the mobile robot environment.

After an introduction to the available Robot Hardware and the used Devel-
opment Software in chapter 2 we introduced the geometrical and stochastic
fundamentals which were used through this project in chapter 3. Beside the
different trivial geometrical objects we presented different possibilities of geo-
metrical representations with the Cartesian Space and the Polar Space. One
of the most relevant relations of geometrical objects consists in the distance
whereby we presented the Euclidean Distance and the Mahalanobis Distance.
This statistical estimation takes into account the statistical distribution of
error affected sensor data, which was presented furthermore in this chapter.

To begin with the algorithms we had to introduce to the requirements, we
are asking for, to define a segment which is specified primarily by mere mea-
surement points. These requirements consist of a set of parameter thresholds
which have to be complied by the later segments.

The first part of the complete algorithms consists in the Preprocessing. This
is necessary to prepare the raw scan data for further data proceeding. Thus
in chapter 4 we presented the necessary procedure of Range Filtering and the
further Outlier Filtering which was applied in some cases.

In chapter 5 we started to describe the mode of operation of the different algo-
rithms. The chosen algorithms were The combined Split & Merge-Algorithm
[JaScKa95], the Random Sample Consensus(RANSAC)-Algorithm [FiBo81],
the Hough Transformation [JaScKa95] and the Expectation-Maximization-

9 SUMMARY AND PERSPECTIVE 139

Algorithm [LCBT01] & [DeLaRu70].
In the beginning we presented the Split & Merge algorithm and the par-

ticular parts it consists of. The iterative application of polyline splitting and
bottom-up merging was shown as well as the mode of mutual complementing.

The next algorithm was specified with the RANSAC algorithm. After
introducing to the parameters of probabilistic description of scan measure-
ments the way of randomly generated lines and extracting the respective
points was presented.

Further we introduced the Hough-Transformation. We presented the pro-
cedure of transforming the available 2-dimensional measurement data into the
discrete 2 dimensional line parameter space. Each measurement proceeds a
voting on particular coordinates, which are defining with its own dimensional
parameters a particular line in the 2 dimensional cartesian space. The char-
acteristics of a Voting Algorithm were shown by introducing the Accumulator
which is used to hold the cumulated votes and finally the weighted discrete
line parameters. Different ways of extracting the local maxima were demon-
strated by the implementation of the Hough by Revoting and the Hough by
Neighbourship Algorithm.

The last algorithm we presented was the so called Expectation Maximiza-
tion Algorithm. Its fundamentals lies in a specified line model which in an
iterative procedure of calculation of probabilistic expectations and the opti-
mization of the current model parameters gets improved.

To complete the cycle of segmentation we introduced the Postprocessing pro-
cedure in chapter 6. Each of the algorithms produces equally formatted point
groups of potential Segments. To generate the resulting segments several
steps have to be carried out. The different implemented steps consisted in
Segmentation of the point groups, Line Generation, where we presented the
algorithms of Total Regression and parameter extraction using the Discrete
Information Filter, the elimination of Segment Overlappings, Endpoint Ac-
quirement and the terminating Length Check. The final results are uniformly
formatted and build the output of the Implementations.

In chapter 7 we described the algorithms and their relevant parameters more
detailed.

Firstly we analysed the usage of uncertainty handling and came to the
conclusion that it could be applied but in these special cases the differences
between the results were very small. So we concluded the usage of uncertainty

9 SUMMARY AND PERSPECTIVE 140

characteristics as useful but the improvement are standing in no relations to
the additional used computational times. Finally the uncertainty handling
was implemented as off turnable feature in the prototypes.

In the following chapters we presented first results of the algorithms and
the variations in quality and used time depending on the variation of the
algorithm parameters. Regarding the Split & Merge algorithm we modified
basically the used threshold for the split-decision and illustrated the variation
of the results and measured times. Further we introduced different modes
of operation for the Merging-part which consisted in using the Maximum
Normalized Error and/or using angular deviations.

For RANSAC we presented views of specifying the parameters and pointed
out the importance of the segment criteria for the proceeding of RANSAC.
We demonstrated the results and came to the conclusion that an improvement
of the results could be achieved by the extension of the RANSAC algorithm
by adding a previous application of the Split algorithm. By comparing the
varying results we demonstrated the advantages of the extended RANSAC
algorithm. After examination of results and characteristics we concluded the
extended Ransac version as the superior solution.

Furthermore we introduced the differences of distinguished Hough - Trans-
formations which are consisting in the maxima extraction of the accumula-
tor. We described the differences of parameters and illustrated the com-
pared results. Especially we introduced the clustering algorithm applied by
the Hough by Neighbourship algorithm and pointed out the advantages and
disadvantages of both versions of Hough. In effect the biggest difference
constitutes the repeatedly calculation of the accumulator in the Revoting
version and the iterative search of the current global maximum whereas the
Neighbourship version only calculates the accumulator once and tries to ex-
tract all local maxima by clustering the contents. In various illustrations we
compared the results and pointed out the advantages and disadvantages of
each of the versions. Finally we concluded an optimized version of Hough by
Revoting with a decreased number of discrete θ-values as the best solution
regarding a compromise between quality of results and computational costs.

The last algorithm was presented with the Expectation-Maximization-
algorithm. Primarily we introduced the parameter σ and its altering effect
to variations. Further we demonstrated the importance of the initialization of
the starting model and showed different possibilities to achieve this with the
respective results. In effect the possibilities of model initialization resulted

9 SUMMARY AND PERSPECTIVE 141

in choosing randomly generated lines or an initialization with a systematic
model. The different options of breaking conditions were presented as well
as an estimation of the respective parameter specification. After illustrating
several series of results we assembled a set of parameters which were found
to be considered as a reasonable compromise between quality of the results
and computational costs.

In the final chapter (chap. 8) we applied a direct comparison between the
algorithms. Therefore we used with each algorithm a set of parameters which
previously were considered to be optimal. By means of several sequences of
finally obtained segmentation results on equal scan data we demonstrated
standard cases as well as untypical examples of obtained results. Further
comparisons were presented regarding necessary computational time and
number of used measurements. A final test consisted of a comparison on
algorithm robustness which only was applied on RANSAC, Hough and EM.

The final paragraphs treated on pointing out the the particular character-
istics, advantages and disadvantages of each of the four implemented algo-
rithms. In a final consideration we concluded particular tasks for which each
algorithm could be considered to be optimal or a reasonable choice of appli-
cation.

9.2 Perspective

The implemented Software is intended to be embedded into the complete
procedure of data proceeding given by a mobile robotic task. The Software
module receives as input the raw laser scan data and produces as output a set
of estimated environment segments. So far the software only was tested and
simulated offline i.e. only on the given test data. A further step should be the
integration of the segmentation algorithms into a real time robot application.

As well there exist some starting points to advance the algorithm develop-
ment.

The Hough Transformation could be extended by further accumulator
proceedings like filtering (e.g. smoothing) or a different clustering algorithm
(slope clustering) could be applied.

In case of scan series which are captured with small location differences
EM could be modified by taking into account the previous obtained results

9 SUMMARY AND PERSPECTIVE 142

to initialize the model.

The current implementation of a graphical output under C/C++, using the
free library Allegro, was developed task-specific. For further implementations
of distinguished procedures a general usable graphic module could be useful
for further C-simulations.

A DEVELOPPED SOFTWARE 143

A Developped Software

A.1 Prototypes developed by using MATLAB

The Software Prototypes were implemented under the development environ-
ment MATLAB.

MATLAB is a scripting language with the possibility of defining function-
scripts and source them out into files (*.m). Thus the Software consists of
a collection of function files which will be listed in the following. Only the
most important files will be listed and explained.

The given directories are named as follows:

proceed_splitandmerge
proceed_RANSAC
proceed_hough
proceed_em

A.1.1 MATLAB Software - Split & Merge

Mainfile: This is the main script of the Programm.

proceed.m

Parameter Initialization and Preprocessing:

initCriteria.m
initMahalanobis.m
validCoords.m
checkPointPointDistance.m

Split & Merge Algorithm:
Recursive-iterative Split & Merge algorithm with subfunctions.

splitAndMerge.m
split.m
splitRec.m
checkPointLineDistance.m
perpDist.m
getNormMaxErr.m

Postprocessing with Segmentation, regression line, endpoint acquirement.

A DEVELOPPED SOFTWARE 144

createSegments.m
clearGapPoints.m
createRegLines.m
computeTotReg.m
ReglineByFilter.m
calcRegEndPoint.m

The preprocessing and postprocessing step use more or less the same function
for each algorithm hence in the following I only will list the most important
files for each algorithm. In some cases each the implemented functions have
the name of the algorithm as prefix.

A.1.2 MATLAB Software - RANSAC

RANSAC procedure with estimating the maximum number of tries and ran-
dom line generation with subfunctions.

ransacEstim.m
getNumOfTrials.m
singleRandPair.m
oneLineRansac.m

A.1.3 MATLAB Software - Hough

Hough by Revoting: Transformation, proceeding accumulator, maximum ex-
traction and compatible point extraction.

hough_getRhos.m
hough_getVoteValues.m
hough_getMaxParam.m
hough_getClosePoints.m

Hough by Neighbourship: Transfomation, proceeding accumulator, clus-
tering with subfunctions, maximum parameter extraction and subfunctions.

hough_getRhos.m
hough_getVoteValues.m
hough_getMaxAndClusters.m
hough_testOnNeighbourship.m
hough_markNeighbours.m
hough_extractLocMax.m

A DEVELOPPED SOFTWARE 145

A.1.4 MATLAB Software - EM

Model initialization, adding randomly generated lines, Correspondences and
Expectation Calculation, Model optimization, Convergence Check and Final
compatible line extraction.

clearModel.m
addRandomLines.m
calcCorresp.m
calcExpect.m
calcMaxEp.m
optimizeModel.m
checkConvergence.m
createLineParam.m

A.2 Algorithm Implementation under C++

The algorithms were developed under the development environment Mi-
crosoft Visual C++ c©. The complete software is organized as a MS-VC++ -
workspace in which each algorithm is specified as an embedded Project.

The modules were implemented as C++-Classes and except the algorithm
classes all classes are used by all algorithms.

In the following I will give the class-names and the functionality of each
class. The most important class members will be presented for each class.

A.2.1 Common Classes

==
class c_scandata

Members:
int num_scans
char *data_file_name

This class was used to read from the given data files the raw scan data.
It opened the specified data file and hold the number of entire scans and the
respective scan data.

==
class c_scan

Members:

A DEVELOPPED SOFTWARE 146

long double pol_elements[361]
int *valids_indices
int num_valids
long double *points_x
long double *points_y

This class contains one entire scan as polar elements. The entire func-
tionality regarding a scan were implemented here. Conversion to cartesian
coordinates as well as the range filtering. After the range filtering the indices
of the valid coordinates are hold as well as the respective number.

This class contains the functionality of extracting from a given point set
compatible points to a line specified by input parameters as well as deleting
them from a point set. All the methods were implemented for polar and
cartesian coordinates as well as for different line representations.

==
class c_parameters

This class reads all specified parameters from the general parameter file
parameter.dat. In this file all relevant parameters are defined and can be
read on runtime.

==
class c_lines

Members:
int num_lines;
int num_segments;
s_cartarray *lines[MAXIMUM_LINES];
s_segment *segments[MAXIMUM_LINES];

This class holds the complete functionality regarding point groups, lines
and segments. The lines are hold as cartesian point groups in a defined
structure called s_cartarray in an array of structure pointer *lines with
a fixed maximum number. Besides trivial basic functions like eraseLine or
addLine the entire postprocessing is implemented in this class. Therefore
the following major methods are implemented:

Methods:
void clearInvalidSegments(void);
void clearOverlappings(void);
void createAllSegments(void);

A DEVELOPPED SOFTWARE 147

s_pol_line calcTotalRegression(s_cartarray*);
s_pol_line calcRegByInfFilter (s_cartarray*);
float segmentLength(s_segment*);

The point groups which are hold as members are checked, split etc. due
to the given segment criteria. An overlapping check is realized as well as the
generating of the segments by the point groups using Total Regression or the
Discrete Information Filter. Additional Endpoint Acquirement and Length
Check.

The generated segments are hold as class members in an array of a defined
structure called s_segment.

==
class c_time

This class was implemented to provide an easy to use object to proceed
time measurements. The time measurements are realized by the ANSI-C
function clock().

==
class c_figure

In this class the graphical output was implemented using the graphical
library Allegro. Due to the introduction and usage of an external library
I want to give a more detailed introduction to this library and the class
implementation later in this appendix.

A.2.2 Algorithm Classes

Split & Merge

==
class c_splitandmerge

public:
s_cartarray clearOutliers(s_cartarray*, float);
float getPerpSegDistance(/* ... */);
s_indexarray split(s_cartarray*, float);
s_indexarray splitandmerge(s_cartarray *, float);

protected:
float getMaxNormError(s_cartarray*, int, int);
void getVertice(s_cartarray*, s_indexarray*, float, int, int);

A DEVELOPPED SOFTWARE 148

int tryOneMerge(s_cartarray*, s_indexarray*);
int merge(s_cartarray*, s_indexarray*);
void qsortIndexArray(s_indexarray*, int, int);
void qswap(s_indexarray* , int , int);
s_indexarray uniqueIndexArray(s_indexarray*);

This class holds all the methods for the Splitting and Merging. It doesn’t
hold class members thus some methods which had to be used external (e.g.
Extended RANSAC) were realized as public.

It holds the methods for the Outlier Filtering as well as the complete
splitting and merging. As a subfunction a Quicksort of an index structure
s_index_array was implemented.

RANSAC

==
class c_ransac

int max_tries;
public:

int getMaxTries(void);
s_pol_line createRandomLine(s_cartarray*);

This class holds the necessary methods for RANSAC. It only contains a
generation of max_tries by using the parameters read from the parameter
file and a generation of a random line (defined structure s_pol_line) using
an input point group.

Hough

==
class c_hough

int *accu;
int (*indexed_accu) [3];
s_indexarray maximums;

public:
void buildAccu(void);
void voteAccu(s_cartarray);
s_accu_max getAccuMax();

int buildIndexedAccu(void);
void qsortIndexedAccu(int, int);
void markNeighbours(int, int);
s_indexarray getMaximumsByNeighbourship(void);

float getRoundValue(float,float);

A DEVELOPPED SOFTWARE 149

In this class the functionality of the different Hough versions were im-
plemented. As class member it holds a dynamically allocated accumulator
according to the given parameters. Further it holds the used structure for
the clustering algorithm and the respective array of extracted maxima.

EM

==
class c_em {

private:
int num_P;
int num_L;
int num_old_L;

long double **E;
long double *Ep;

s_vec_line *model[MAX_MODEL_LINES];
s_vec_line *old_model[MAX_MODEL_LINES];
s_cartarray points;

public:
int initModelRand(int);
void initModelSys_big(void);
void initModelSys_media(void);
void initModelSys_small(void);
int initModelVectors(s_vec_line*, int);

int addVectorModelLine(s_vec_line*);
int deleteModelLine(int);
int addRandomModelLines(int);

void calcE(void);

s_sol_matrix calcSolutionMatrix(int);
s_vec_line calcOptVector(int);

void one_EM(void);

int checkConvergence(void);
int clearDoubled(void);
int clearFewMaximums(void);
int clearZeroVectors(void);

This class hold the functionality of the EM algorithm.

A DEVELOPPED SOFTWARE 150

The members are the model as an array of defined (vector)line struc-
tures s_vec_line, a backup array for the model to proceed a comparison for
convergence, the given measurements, a dynamical allocated array for the
Expectations and the Phantom Expectations.

The methods are: An initialization for the model with the different,
in previous chapter described initial models, a possibility for generating a
random single model, adding new model lines and deleting an unsupported
model. Calculating the expectation values and optimization of the current
model. Further the check on convergence and check on unsupported models.
The main function constitutes in one_EM which proceeds one expectations
and one maximization iteration.

A.3 Graphic Library-Allegro

In this chapter I want to describe the implemented class c_figure more
detailed due to the introduction to a new graphical library Allegro.

The free available graphical library Allegro24 provides the possibility of
accessing a graphical window and applying different graphical functions as
well as access to the mouse or keyboard driver. Beside direct access on the
video memory in our case the most important thing was the possibility of
drawing primitives (Lines, Points, Scaling etc.).

The graphical window can be used inside a console application and draws
the graphical entities into the separated window. This was very important
for us for debugging purposes. The graphical window has to be initialized in
the C-main function:

allegro_init();
install_keyboard();
install_mouse();
install_timer();

So the graphical methods only can be accessed directly in the main-
function thus we implemented the class c_figure externally from other
classes and only call the graphical functions in the main function.

The general mode to access the graphical window was to draw all geomet-
rical entities to a buffer which has to be ”blitted” into the video buffer after
changing the class context. This is due to the slow direct access to the video

24http://www.talula.demon.co.uk/allegro/

A DEVELOPPED SOFTWARE 151

buffer which would lead to a screen flickering with each alteration. Therefore
we hold all entities (Points, Lines, Segments, axis etc.) in dynamical data
structures as class members with the previous described data types.

==
class c_figure

BITMAP *buffer;

s_pol_line *drawn_lines[MAX_LINES];
int drawn_lines_color[MAX_LINES];
int num_drawn_lines;

s_cartarray* drawn_cartarrays[MAX_CARTARRAYS];
int num_drawn_cartarrays;
int drawn_cartarrays_color[MAX_CARTARRAYS];

s_segment* drawn_segments[MAX_SEGMENTS];
int num_drawn_segments;
int drawn_segments_color[MAX_SEGMENTS];

s_point* drawn_point[MAX_POINTS];
int num_drawn_point;
int drawn_point_color[MAX_POINTS];

public:
clearClass();

void redrawFigure();

void drawScale(void);
void drawPoint(float x, float y, int color);
void drawPoints(s_cartarray input, int color);
void drawPolyline(s_cartarray*points,s_indexarray*vertices,int color);
void drawPolarLine(float theta, float rho, int color);
void drawVectorLine(float x, float y, int color);
void drawCartLine(float x1, float y1, float x2, float y2, int color);
void drawSegment(s_segment segment, int color) ;
void drawSegments(s_segment* [MAX_SEGMENTS], int , int color);
void drawCartarraySegments(s_cartarray* [MAX_SEGMENTS],int,int color);

The used buffer has the library-specific type BITMAP. Easy to see from
the name that all functions work directly as bitmap primitives. In the above
given class definition only the most important members and methods are
given due to a large overhead on hereinafter irrelevant data structures.

All the drawing functions add the input entities directly, or after required
conversion, into the entity ”containers” of the class with the respective used

A DEVELOPPED SOFTWARE 152

color. After changing the containers the function redrawFigure() copies the
entire context of the entity containers into the buffer and proceeds a final
blit into the video buffer.

Besides the implementation of drawing primitives the functionality of
moving and zooming the context of the graphical windows by keyboard keys
was realized.

Figure 70 shows a screenshot of the output given by Allegro applied in the
Split & Merge algorithm:

A DEVELOPPED SOFTWARE 153

Figure 70: Graphical Screen Output generated by Allegro

REFERENCES 154

References

[Cast98] J.A. Castellanos, Doctoral Thesis, Mobile Robot Localization and
Map Building: A Multisensor Fusion Approach, 1998

[DeLaRu70] A.P. Dempster, N.M. Laird, D.B. Rubin Maximum Likelyhood
from Incomplete Data via EM Algorithm, 1970

[DuHa73] R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis,
Wiley-Interscience, 1973

[FiBo81] M. A. Fischler, R. C. Bolles: Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography, 1981

[JaScKa95] R. Jain, B. G. Schunck, R. Kasturi , Machine Vision, McGraw-
Hill, 1995

[LCBT01] Y. Liu, R. Emery, D. Chakrabarti, W. Burgard, S. Thrun: Using
EM to learn 3D Models of indoor environment with mobile robots, 2001

[Neira93] J. Neira, Doctoral Thesis, Geometric Object Recognition in Multi-
sensor Systems, 1993

[WeBi02] G. Welch, G. Bishop, An Introduction to the Kalman Filter, 2002

Declaration 155

Declaration

Name: Gabriel,Josef Nock
Day of birth: 12th of May, 1977
Place of birth: Furtwangen, Germany

Matriculation Number (Zaragoza) 519 913
Matriculation Number (Konstanz) 268 003

Herewith I declare having my Diploma Thesis with the title:

Segmentation Algorithms for 2D-Laserscans in an indoor
environment

realized at the

Universidad de Zaragoza
Dept. de Informática e Ingenieŕıa de Sistemas

Grupo de Robótica y Tiempo Real

under supervision of

Prof. José Neira Parra and
Prof. Oliver Bittel

accomplished independently and without external help as well as having uti-
lized no further help than the mentioned.

Further I declare having indicated the usage of literal cites, tables, graphics,
programms from literature or other sources as well as the usage of ideas of
other authors on the respective locations inside this thesis.

I’m aware of the potential legal measures on an insincere declaration.

..

Erklärung 156

Erklärung

Name: Gabriel,Josef Nock
Geburtstag: 12.05.1977
Geburtsort: Furtwangen, Deutschland

Matrikelnummer (Zaragoza) 519 913
Matrikelnummer (Konstanz) 268 003

Hiermit erkläre ich, dass ich meine Diplomarbeit, mit dem Titel:

Segmentation Algorithms for 2D-Laserscans in an indoor
environment

durchgeführt an der

Universidad de Zaragoza
Dept. de Informática e Ingenieŕıa de Sistemas

Grupo de Robótica y Tiempo Real

unter Anleitung von

Prof. José Neira Parra und
Prof. Oliver Bittel

selbständig und ohne fremde Hilfe angefertigt habe und keine anderen als die
aufgeführten Hilfen benutzt habe.

Desweitern dass ich die Übernahme wörtlicher Zitate, Tabellen, Zeichnungen,
Bildern und Programmen aus der Literatur oder anderen Quellen, sowie die
Verwendungder Gedanken anderer Autoren an den entsprechenden Stellen
innerhal der Diplomarbeit gekennzeichnet habe.

Ich bin mir bewusst, dass eine falsche Erklärung rechtliche Folgen haben
wird.

..

