Volltext-Downloads (blau) und Frontdoor-Views (grau)

Enhancing Inland Water Safety: The Lake Constance Obstacle Detection Benchmark

  • Autonomous navigation on inland waters requires an accurate understanding of the environment in order to react to possible obstacles. Deep learning is a promising technique to detect obstacles robustly. However, supervised deep learning models require large data-sets to adjust their weights and to generalize to unseen data. Therefore, we equipped our research vessel with a laser scanner and a stereo camera to record a novel obstacle detection data-set for inland waters. We annotated 1974 stereo images and lidar point clouds with 3d bounding boxes. Furthermore, we provide an initial approach and a suitable metric to compare the results on the test data-set. The data-set is publicly available and seeks to make a contribution towards increasing the safety on inland waters.

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Dennis GriesserORCiD, Matthias O. FranzORCiDGND, Georg UmlaufORCiDGND
DOI:https://doi.org/10.1109/ICRA57147.2024.10610600
ISBN:979-8-3503-8457-4
ISBN:979-8-3503-8458-1
Parent Title (English):IEEE International Conference on Robotics and Automation (ICRA), 13-17 May 2024, Yokohama, Japan
Volume:2024
Publisher:IEEE
Document Type:Conference Proceeding
Language:English
Year of Publication:2024
Release Date:2024/08/26
Tag:Data-set; Stereo; Lidar; Multi sensor system
Page Number:7
First Page:14808
Last Page:14814
Note:
Supplemental Items
Institutes:Institut für Optische Systeme - IOS
Relevance:Peer reviewed nach anderen Listungen (mit Nachweis zum Peer Review Verfahren)
Open Access?:Nein
Licence (German):License LogoUrheberrechtlich geschützt