Volltext-Downloads (blau) und Frontdoor-Views (grau)

Challenges in calculating the AHI to diagnose sleep apnoea using deep learning and portable monitors

  • Automatic detection of the apnoea–hypopnoea index (AHI) using a portable monitor (PM) with artificial intelligence (AI) represents a significant challenge. The objective of this study was to examine factors that affect the performance of an AI algorithm that had been previously trained in calculating the AHI with polysomnography (PSG) data using signals collected by a PM.

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Ángel Serrano Alarcón, Natividad Martínez Madrid, Ralf SeepoldORCiDGND
DOI:https://doi.org/10.1007/s11818-025-00508-4
ISSN:1439-054X
ISSN:1432-9123
Parent Title (English):Somnologie
Publisher:Springer
Place of publication:Berlin; Heidelberg
Document Type:Article
Language:English
Year of Publication:2025
Release Date:2025/05/30
Tag:Sleep apnea syndromes; Artificial intelligence; Polysomnography; Algorithms; Obstructive leep apnea
First Page:1
Last Page:5
Institutes:Institut für Angewandte Forschung - IAF
Open Access?:Ja
Relevance:Wiss. Zeitschriftenartikel reviewed: Listung in Positivlisten
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International