Further applications of the Cauchon algorithm to rank determination and bidiagonal factorization

  • For a class of matrices connected with Cauchon diagrams, Cauchon matrices, and the Cauchon algorithm, a method for determining the rank, and for checking a set of consecutive row (or column) vectors for linear independence is presented. Cauchon diagrams are also linked to the elementary bidiagonal factorization of a matrix and to certain types of rank conditions associated with submatrices called descending rank conditions.

Download full text files

  • LAA-applic_Cauchon.pdf
    eng

    Zugriff beschränkt auf das Campusnetz der Hochschule Konstanz.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Mohammad AdmORCiDGND, Khawla Al Muhtaseb, Ayed Abedel Ghani, Shaun M. FallatGND, Jürgen GarloffORCiDGND
URN:urn:nbn:de:bsz:kon4-opus4-14604
DOI:https://doi.org/10.1016/j.laa.2018.01.035
ISSN:0024-3795
ISSN:1873-1856
Parent Title (English):Linear Algebra and its Applications
Volume:545
Document Type:Article
Language:English
Year of Publication:2018
Release Date:2019/01/10
Tag:Cauchon algorithm; Cauchon diagram; Cauchon matrix; Rank
First Page:240
Last Page:255
Institutes:Institut für Angewandte Forschung - IAF
DDC functional group:500 Naturwissenschaften und Mathematik / 510 Mathematik
Open Access?:Nein
Relevance:Peer reviewed Publikation in Thomson-Reuters-Listung
Licence (English):License LogoLizenzbedingungen Elsevier