Machine learning methods for reverse engineering of defective structured surfaces
- Pascal Laube presents machine learning approaches for three key problems of reverse engineering of defective structured surfaces: parametrization of curves and surfaces, geometric primitive classification and inpainting of high-resolution textures. The proposed methods aim to improve the reconstruction quality while further automating the process. The contributions demonstrate that machine learning can be a viable part of the CAD reverse engineering pipeline.
Author: | Pascal Laube |
---|---|
DOI: | https://doi.org/10.1007/978-3-658-29017-7 |
ISBN: | 978-3-658-29017-7 |
ISBN: | 978-3-658-29016-0 |
Parent Title (German): | Schriftenreihe der Institute für Systemdynamik (ISD) und optische Systeme (IOS) |
Publisher: | Springer Vieweg |
Place of publication: | Wiesbaden |
Advisor: | Georg Umlauf, Oliver Deussen |
Document Type: | Doctoral Thesis |
Language: | English |
Year of Publication: | 2020 |
Granting Institution: | Universität Konstanz |
Date of final exam: | 2019/07/25 |
Release Date: | 2020/01/21 |
Page Number: | 160 |
Institutes: | Institut für Optische Systeme - IOS |
Relevance: | Abgeschlossene Dissertation |
Open Access?: | Nein |
Licence (German): | ![]() |