Volltext-Downloads (blau) und Frontdoor-Views (grau)

Influence of gender and age distinction on patient data for sleep apnea detection using artificial intelligence models

  • The massive use of patient data for the training of artificial intelligence algorithms is common nowadays in medicine. In this scientific work, a statistical analysis of one of the most used datasets for the training of artificial intelligence models for the detection of sleep disorders is performed: sleep health heart study 2. This study focuses on determining whether the gender and age of the patients have a relevant influence to consider working with differentiated datasets based on these variables for the training of artificial intelligence models.

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Ángel Serrano Alarcón, Natividad Martínez MadridORCiD, Ralf SeepoldORCiDGND
URL:http://www.dii.univpm.it/MAES-2023
ISBN:978-88-87548-00-6
Parent Title (English):Models and Applications for Embedded Systems
Publisher:Università Politecnica delle Marche, Dipartimento di Ingegneria dell’Informazione
Place of publication:Ancona, Italy
Document Type:Article
Language:English
Year of Publication:2023
Release Date:2024/01/12
Tag:Artificial intelligence models; Apnea detection
First Page:15
Last Page:18
Institutes:Institut für Angewandte Forschung - IAF
DDC functional group:500 Naturwissenschaften und Mathematik
600 Technik, Medizin, angewandte Wissenschaften
Relevance:Keine peer reviewed Publikation (Wissenschaftlicher Artikel und Aufsatz, Proceeding, Artikel in Tagungsband)
Open Access?:Nein
Licence (German):License LogoUrheberrechtlich geschützt