Refine
Year of publication
Document Type
- Conference Proceeding (585)
- Article (354)
- Other Publications (141)
- Part of a Book (129)
- Working Paper (122)
- Book (111)
- Report (93)
- Journal (Complete Issue of a Journal) (79)
- Master's Thesis (68)
- Doctoral Thesis (52)
Language
- German (1015)
- English (768)
- Multiple languages (7)
Keywords
- (Strict) sign-regularity (1)
- .NET Remoting (1)
- .NET-Plattform (1)
- 2 D environment Laser data (1)
- 360-degree coverage (1)
- 3D Extended Object Tracking (EOT) (2)
- 3D Skelett Wickeltechnik (1)
- 3D ship detection (1)
- 3D urban planning (1)
- AAL (3)
Institute
- Center for Business Compliance & Integrity - CBCI (1)
- Fakultät Architektur und Gestaltung (35)
- Fakultät Bauingenieurwesen (83)
- Fakultät Elektrotechnik und Informationstechnik (30)
- Fakultät Informatik (114)
- Fakultät Maschinenbau (48)
- Fakultät Wirtschafts-, Kultur- und Rechtswissenschaften (86)
- Institut für Angewandte Forschung - IAF (78)
- Institut für Naturwissenschaften und Mathematik - INM (2)
- Institut für Optische Systeme - IOS (33)
Im Sommersemester 2022 habe ich laufende und neue Forschungsprojekte sowohl national wie auch international vorangetrieben. Schwerpunktmäßig wurde die international etablierte Global Sanctions Data Base (GSDB) in Kooperation mit Forschern aus den USA und Österreich aktualisiert und in Form einer Forschungsarbeit der Forschungsgemeinschaft bekannt gemacht. Aufgrund der erarbeiteten Expertise habe ich zahlreiche Vorträge und Interviews in Medien zu Sanktionen und deren ökonomische Wirkung gegeben. Darüber hinaus wurde ein Buchkapitel zu Sanktionen in Kooperation mit internationalen Wissenschaftlern verfasst. Ferner wurde ein neues Forschungsprojekt in Kooperation mit einem regionalen Unternehmen zur Entwicklung eines Prozesses für die THG-Bilanzierung initiiert. Zwei wissenschaftliche Publikationen (peer-reviewed) wurden finalisiert. Ferner wurden 2 neue wissenschaftliche Forschungsprojekte mit internationalen Wissenschaftlern initiiert und die Ergebnisse in Arbeitspapieren veröffentlicht. Die zugrundeliegenden Manuskripte wurden in peer-reviewed Zeitschriften eingereicht. In Kooperation mit der Universität Konstanz wurde ein Schülertag für Gymnasiasten organisiert, um die Bedeutung von Wirtschaftspolitik den Schülern näher zu bringen.
ABCdarium of a journey
(2017)
Recognizing Human Activity of Daily Living Using a Flexible Wearable for 3D Spine Pose Tracking
(2023)
The World Health Organization recognizes physical activity as an influencing domain on quality of life. Monitoring, evaluating, and supervising it by wearable devices can contribute to the early detection and progress assessment of diseases such as Alzheimer’s, rehabilitation, and exercises in telehealth, as well as abrupt events such as a fall. In this work, we use a non-invasive and non-intrusive flexible wearable device for 3D spine pose measurement to monitor and classify physical activity. We develop a comprehensive protocol that consists of 10 indoor, 4 outdoor, and 8 transition states activities in three categories of static, dynamic, and transition in order to evaluate the applicability of the flexible wearable device in human activity recognition. We implement and compare the performance of three neural networks: long short-term memory (LSTM), convolutional neural network (CNN), and a hybrid model (CNN-LSTM). For ground truth, we use an accelerometer and strips data. LSTM reached an overall classification accuracy of 98% for all activities. The CNN model with accelerometer data delivered better performance in lying down (100%), static (standing = 82%, sitting = 75%), and dynamic (walking = 100%, running = 100%) positions. Data fusion improved the outputs in standing (92%) and sitting (94%), while LSTM with the strips data yielded a better performance in bending-related activities (bending forward = 49%, bending backward = 88%, bending right = 92%, and bending left = 100%), the combination of data fusion and principle components analysis further strengthened the output (bending forward = 100%, bending backward = 89%, bending right = 100%, and bending left = 100%). Moreover, the LSTM model detected the first transition state that is similar to fall with the accuracy of 84%. The results show that the wearable device can be used in a daily routine for activity monitoring, recognition, and exercise supervision, but still needs further improvement for fall detection.
Leveraging differences
(2022)