Refine
Year of publication
- 2020 (19) (remove)
Document Type
- Report (14)
- Journal (2)
- Article (1)
- Part of a Book (1)
- Study Thesis (1)
Has Fulltext
- yes (19) (remove)
Keywords
- Architektur (1)
- Design (1)
- Digital Change Management (1)
- Erdbeben (1)
- Ethnologie (1)
- Familie (1)
- Feldforschung (1)
- Hardware-in-the-loop (1)
- Kommunikation im Raum (1)
- Kulturanthropologie (1)
The actual task of electrocardiographic examinations is to increase the reliability of diagnosing the condition of the heart. Within the framework of this task, an important direction is the solution of the inverse problem of electrocardiography, based on the processing of electrocardiographic signals of multichannel cardio leads at known electrode coordinates in these leads (Titomir et al. Noninvasiv electrocardiotopography, 2003), (Macfarlane et al. Comprehensive Electrocardiology, 2nd ed. (Chapter 9), 2011).
In my research sabbatical I was working on three different topics, namely orthogonal polynomials in geometric modeling, re-parametrized univariate subdivision curves, and reconstruction of 3d-fish-models and other zoological artifacts. In the subsequent Sections, I will describe my particular activity in these different fields. The sections are meant to present an overview of my research activities, leaving out the technical details.
Section 1 is on orthogonal polynomials and other related generating systems for functions systems of smooth function.
In Section 2, I will discuss the application of various re-parametrization schemes for interpolatory subdivision algorithms for the generation of space curves.
The next Section 3 is concerned with my research at the University of Queensland, Brisbane, in collaboration with Dr. Ulrike Siebeck from the School of Biomedical Sciences on fish behavior and reconstruction of 3d-fish models in particular.
In the last Section 4, I will describe what effects this research will have on in my subsequent teaching at the University of Applied Science Konstanz (HTWG).
Die Projektaufgabe bestand darin, den aktuellen Laborversuch zu modernisieren, indem die Kommunikation zwischen dem Versuchsaufbau und Laborrechner nicht wie bisher über Wandlerkarten stattfindet, sondern über EtherCAT und TwinCAT 3.
Die Installation von TwinCAT 3 mit den zugehörigen Erweiterungen und erforderlichen Programmen stellt sich als sehr umfangreich und schwierig dar, was die Installationsanleitungen zeigen. Außerdem gab es sehr viele Fehlerquellen, die nicht auf Anhieb ersichtlich waren, wie das Aktualisieren der aktuellen MATLAB Version. Ist die Installation abgeschlossen kann die Kommunikation zwischen MATLAB und TwinCAT relativ einfach umgesetzt werden.
In der Projektarbeit wurde anfangs dann die Kommunikation mit mehreren Tests überprüft und Optimierungen vorgenommen. So wurde zum Beispiel die Wegbegrenzung angepasst. Schwierigkeiten zeigten sich bei der Bedienung über MATLAB oder beim Abstürzen von MATLAB, da beim Stoppen oder Abstürzen von MATLAB, der zuletzt gesendete Wert immer noch an TwinCAT 3 anliegt und somit der Aktor weiter verfahren würde. Diese sehr gefährliche Situation wäre ein gravierender Nachteil, gegenüber der alten Kommunikation mit einer Wandlerkarte. Um einen sicheren Stopp zu garantieren, wird über ein neues TcCOM Objekt der Matlab-Status mit einem Togglebit überprüft, ändert sich der Wert des Bits nicht mehr, stoppt die Anlage sicher.
Um einen Vergleich mit dem bisherigen Masterversuch erhalten zu können, wurde die Strecke mit der neuen Kommunikation untersucht und ein passender Regler dafür auszulegt.
Die Auswertung der Impulsantwort sowie der „Spectrum-Analyse“ zeigten beim Vergleich mit den Schnittstellen gleiche Ergebnisse, somit sind die Versuche bei dem Laborversuch ohne Einschränkungen durchführbar. Die Auslegung des Reglers zeigte entgegen den Prognosen der Beckhoff-Experten sehr gute Ergebnisse und die Kommunikation über die Schnittstelle zeigte keine Probleme.
Einschränkungen zeigten sich jedoch bei der einzustellenden Abtastzeit, da eine Abtastzeit unter 2ms nicht möglich ist. Zwar kann man eine geringere Abtastzeit einstellen, jedoch zeigt sich bei der Auswertung, dass die Schnittstelle mit Abtastzeiten unter 2ms Probleme aufweist. Die Rechendauer wird deutlich größer und die größere Anzahl an Messpunkte kann nicht richtig verarbeitet werden. Ein Regler kann damit nicht implementiert werden.
Die Projektarbeit konnte somit erfolgreich angeschlossen werden und bis auf die aufwendige Installation sind die Erweiterungen von Beckhoff sehr zuverlässig und gut zu bedienen. Die ersten Voruntersuchen waren positiv, somit kann auch an weiteren Laborrechnern eine Umstellung der Schnittstelle in Betracht gezogen werden.
Sabbatical semester report
(2020)