### Refine

#### Document Type

- Conference Proceeding (8)
- Article (3)
- Part of a Book (1)
- Doctoral Thesis (1)

#### Keywords

- Actuators (1)
- Beobachterentwurf (1)
- Differential flatness (1)
- Distributed parameter systems (1)
- Eddy currents (2)
- Electromagnetic actuators (1)
- Electromagnetic devices (1)
- Elektromagnete (1)
- Feed-forward control (1)
- Hydraulic actuators (1)

A semilinear distributed parameter approach for solenoid valve control including saturation effects
(2015)

In this paper a semilinear parabolic PDE for the control of solenoid valves is presented. The distributed parameter model of the cylinder becomes nonlinear by the inclusion of saturation effects due to the material's B/H-curve. A flatness based solution of the semilinear PDE is shown as well as a convergence proof of its series solution. By numerical simulation results the adaptability of the approach is demonstrated, and differences between the linear and the nonlinear case are discussed. The major contribution of this paper is the inclusion of saturation effects into the magnetic field governing linear diffusion equation, and the development of a flatness based solution for the resulting semilinear PDE as an extension of previous works [1] and [2].

Knowing the position of the spool in a solenoid valve, without using costly position sensors, is of considerable interest in a lot of industrial applications. In this paper, the problem of position estimation based on state observers for fast-switching solenoids, with sole use of simple voltage and current measurements, is investigated. Due to the short spool traveling time in fast-switching valves, convergence of the observer errors has to be achieved very fast. Moreover, the observer has to be robust against modeling uncertainties and parameter variations. Therefore, different state observer approaches are investigated, and compared to each other regarding possible uncertainties. The investigation covers a High-Gain-Observer approach, a combined High-Gain Sliding-Mode-Observer approach, both based on extended linearization, and a nonlinear Sliding-Mode-Observer based on equivalent output injection. The results are discussed by means of numerical simulations for all approaches, and finally physical experiments on a valve-mock-up are thoroughly discussed for the nonlinear Sliding-Mode-Observer.

The method of signal injection is investigated for position estimation of proportional solenoid valves. A simple observer is proposed to estimate a position-dependent parameter, i.e. the eddy current resistance, from which the position is calculated analytically. Therefore, the relationship of position and impedance in the case of sinusoidal excitation is accurately described by consideration of classical electrodynamics. The observer approach is compared with a standard identification method, and evaluated by practical experiments on an off-the-shelf proportional solenoid valve.

Sliding-mode observation with iterative parameter adaption for fast-switching solenoid valves
(2016)

Control of the armature motion of fast-switching solenoid valves is highly desired to reduce noise emission and wear of material. For feedback control, information of the current position and velocity of the armature are necessary. In mass production applications, however, position sensors are unavailable due to cost and fabrication reasons. Thus, position estimation by measuring merely electrical quantities is a key enabler for advanced control, and, hence, for efficient and robust operation of digital valves in advanced hydraulic applications. The work presented here addresses the problem of state estimation, i.e., position and velocity of the armature, by sole use of electrical measurements. The considered devices typically exhibit nonlinear and very fast dynamics, which makes observer design a challenging task. In view of the presence of parameter uncertainty and possible modeling inaccuracy, the robustness properties of sliding mode observation techniques are deployed here. The focus is on error convergence in the presence of several sources for modeling uncertainty and inaccuracy. Furthermore, the cyclic operation of switching solenoids is exploited to iteratively correct a critical parameter by taking into account the norm of the observation error of past switching cycles of the process. A thorough discussion on real-world experimental results highlights the usefulness of the proposed state observation approach.

Observer-based self sensing for digital (on–off) single-coil solenoid valves is investigated. Self sensing refers to the case where merely the driving signals used to energize the actuator (voltage and coil current) are available to obtain estimates of both the position and velocity. A novel observer approach for estimating the position and velocity from the driving signals is presented, where the dynamics of the mechanical subsystem can be neglected in the model. Both the effect of eddy currents and saturation effects are taken into account in the observer model. Practical experimental results are shown and the new method is compared with a full-order sliding mode observer.

Sensorlose Positionsregelung eines hydraulischen Proportional-Wegeventils mittels Signalinjektion
(2017)

Es wird eine Methode zur sensorlosen Positionsbestimmung bei elektromagnetisch betätigten Aktoren vorgestellt. Dabei werden basierend auf einer Signalinjektion die positionsabhängigen Parameter bei der injizierten Frequenz bestimmt und daraus über ein geeignetes Modell die Position des Magnetankers ermittelt. Die Eignung des Verfahrens zur sensorlosen Positionsregelung wird an einem bidirektionalen Proportionalventil anhand praktischer Versuche demonstriert.

A constructive nonlinear observer design for self-sensing of digital (ON/OFF) single coil electromagnetic actuators is studied. Self-sensing in this context means that solely the available energizing signals, i.e., coil current and driving voltage are used to estimate the position and velocity trajectories of the moving plunger. A nonlinear sliding mode observer is considered, where the stability of the reduced error dynamics is analyzed by the equivalent control method. No simplifications are made regarding magnetic saturation and eddy currents in the underlying dynamical model. The observer gains are constructed by taking into account some generic properties of the systems nonlinearities. Two possible choices of the observer gains are discussed. Furthermore, an observer-based tracking control scheme to achieve sensorless soft landing is considered and its closed-loop stability is studied. Experimental results for observer-based soft landing of a fast-switching solenoid valve under dry conditions are presented to demonstrate the usefulness of the approach.

A constructive method for the design of nonlinear observers is discussed. To formulate conditions for the construction of the observer gains, stability results for nonlinear singularly perturbed systems are utilised. The nonlinear observer is designed directly in the given coordinates, where the error dynamics between the plant and the observer becomes singularly perturbed by a high-gain part of the observer injection, and the information of the slow manifold is exploited to construct the observer gains of the reduced-order dynamics. This is in contrast to typical high-gain observer approaches, where the observer gains are chosen such that the nonlinearities are dominated by a linear system. It will be demonstrated that the considered approach is particularly suited for self-sensing electromechanical systems. Two variants of the proposed observer design are illustrated for a nonlinear electromagnetic actuator, where the mechanical quantities, i.e. the position and the velocity, are not measured