### Refine

#### Document Type

- Conference Proceeding (12)
- Article (9)
- Doctoral Thesis (1)
- Other Publications (1)

#### Keywords

- Cauchon algorithm (5)
- Cauchon diagram (1)
- Cauchon matrix (1)
- Checkerboard ordering (3)
- Checkerboard partial ordering (1)
- Entry-wise perturbation (2)
- Extended Perron complement (1)
- Hankel matrix (1)
- Hurwitz matrix (3)
- Interval matrix (2)
- Interval property (1)
- K-subdirect sum (1)
- Linear independence (1)
- Matrix interval (3)
- Perron complement (1)
- Quasi-stable polynomial (2)
- R-function (2)
- Rank (2)
- Schur complement (1)
- Sign regular matrix (3)
- Stable polynomial (2)
- Totally nonnegative matrix (9)
- Totally nonpositive matrix (1)
- Totally nonpositve matrix (1)
- Totally positive matrix (2)
- Vertex matrix (1)
- entry-wise perturbation (1)
- matrix interval (1)
- vertex matrix (1)

Vortrag auf dem Doktorandenkolloquium des Kooperativen Promotionskollegs der HTWG, 09.07.2015

This paper considers intervals of real matrices with respect to partial orders and the problem to infer from some exposed matrices lying on the boundary of such an interval that all real matrices taken from the interval possess a certain property. In many cases such a property requires that the chosen matrices have an identically signed inverse. We also briefly survey related problems, e.g., the invariance of matrix properties under entry-wise perturbations.

We consider classes of (Formula presented.)-by-(Formula presented.) sign regular matrices, i.e. of matrices with the property that all their minors of fixed order (Formula presented.) have one specified sign or are allowed also to vanish, (Formula presented.). If the sign is nonpositive for all (Formula presented.), such a matrix is called totally nonpositive. The application of the Cauchon algorithm to nonsingular totally nonpositive matrices is investigated and a new determinantal test for these matrices is derived. Also matrix intervals with respect to the checkerboard ordering are considered. This order is obtained from the usual entry-wise ordering on the set of the (Formula presented.)-by-(Formula presented.) matrices by reversing the inequality sign for each entry in a checkerboard fashion. For some classes of sign regular matrices, it is shown that if the two bound matrices of such a matrix interval are both in the same class then all matrices lying between these two bound matrices are in the same class, too.

We consider classes of n-by-n sign regular matrices, i.e., of matrices with the property that all their minors of fixed order k have one specified sign or are allowed also to vanish, k = 1, ... ,n. If the sign is nonpositive for all k, such a matrix is called totally nonpositive. The application of the Cauchon algorithm to nonsingular totally nonpositive matrices is investigated and a new determinantal test for these matrices is derived. Also matrix intervals with respect to the checkerboard partial ordering are considered. This order is obtained from the usual entry-wise ordering on the set of the n-by-n matrices by reversing the inequality sign for each entry in a checkerboard fashion. For some classes of sign regular matrices it is shown that if the two bound matrices of such a matrix interval are both in the same class then all matrices lying between these two bound matrices are in the same class, too.

A real matrix is called totally nonnegative if all of its minors are nonnegative. In this paper the extended Perron complement of a principal submatrix in a matrix A is investigated. In extension of known results it is shown that if A is irreducible and totally nonnegative and the principal submatrix consists of some specified consecutive rows then the extended Perron complement is totally nonnegative. Also inequalities between minors of the extended Perron complement and the Schur complement are presented.

In this paper totally nonnegative (positive) matrices are considered which are matrices having all their minors nonnegative (positve); the almost totally positive matrices form a class between the totally nonnegative matrices and the totally positive ones. An efficient determinantal test based on the Cauchon algorithm for checking a given matrix for falling in one of these three classes of matrices is applied to matrices which are related to roots of polynomials and poles of rational functions, specifically the Hankel matrix associated with the Laurent series at infinity of a rational function and matrices of Hurwitz type associated with polynomials. In both cases it is concluded from properties of one or two finite sections of the infinite matrix that the infinite matrix itself has these or related properties. Then the results are applied to derive a sufficient condition for the Hurwitz stability of an interval family of polynomials. Finally, interval problems for a subclass of the rational functions, viz. R-functions, are investigated. These problems include invariance of exclusively positive poles and exclusively negative roots in the presence of variation of the coefficients of the polynomials within given intervals.