### Refine

#### Document Type

- Conference Proceeding (27)
- Article (6)
- Report (2)
- Part of a Book (1)

#### Keywords

- Actuators (2)
- Aerobic fermentation (1)
- Aktorik (1)
- Alterungsbeständigkeit (1)
- Collision avoidance (1)
- Continuous-discrete time observer (1)
- Correlation analysis (1)
- DO control (1)
- Data compression algorithms (1)
- Differential flatness (1)

This paper presents a new likelihood-based partitioning method of the measurement set for the extended object probability hypothesis density (PHD) filter framework. Recent work has mostly relied on heuristic partitioning methods that cluster the measurement data based on a distance measure between the single measurements. This can lead to poor filter performance if the tracked extended objects are closely spaced. The proposed method called Stochastic Partitioning (StP) is based on sampling methods and was inspired by a former work of Granström et. al. In this work, the StP method is applied to a Gaussian inverse Wishart (GIW) PHD filter and compared to a second filter implementation that uses the heuristic Distance Partitioning (DP) method. The performance is evaluated in Monte Carlo simulations in a scenario where two objects approach each other. It is shown that the sampling based StP method leads to an improved filter performance compared to DP.

Flatness-based feed-forward control of solenoid actuators is considered. For precise motion planning and accurate steering of conventional solenoids, eddy currents cannot be neglected. The system of ordinary differential equations including eddy currents, that describes the nonlinear dynamics of such actuators, is not differentially flat. Thus, a distributed parameter approach based on a diffusion equation is considered, that enables the parametrization of the eddy current by the armature position and its time derivatives. In order to design the feedforward control, the distributed parameter model of the eddy current subsystem is combined with a typical nonlinear lumped parameter model for the electrical and mechanical subsystems of the solenoid. The control design and its application are illustrated by numerical and practical results for an industrial solenoid actuator.

In this paper, the problem of controlling the dissolved oxygen level (DO) during an aerobic fermentation is considered. The proposed approach deals with three major difficulties in respect to the nonlinear dynamics of the DO, the poor accuracy of the empirical models for the oxygen consumption rate and the fact that only sampled measurements are available on-line. A nonlinear integral high-gain control law including a continuous-discrete time observer is designed to keep the DO in the neighborhood of a set point value without any knowledge on the dissolved oxygen consumption rate. The local stability of the control algorithm is proved using Lyapunov tools. The performance of the control scheme is first analyzed in simulation and then experimentally evaluated during a successfull fermentation of the bacteria over a period of three days. Pseudomonas putida mt-2

Extracting suitable features from acquired data to accurately depict the current health state of a system is crucial in data driven condition monitoring and prediction. Usually, analogue sensor data is sampled at rates far exceeding the Nyquist-rate containing substantial amounts of redundancies and noise, imposing high computational loads due to the subsequent and necessary feature processing chain (generation, dimensionality reduction, rating and selection). To overcome these problems, Compressed Sensing can be used to sample directly to a compressed space, provided the signal at hand and the employed compression/measurement system meet certain criteria. Theory states, that during this compression step enough information is conserved, such that a reconstruction of the original signal is possible with high probability. The proposed approach however does not rely on reconstructed data for condition monitoring purposes, but uses directly the compressed signal representation as feature vector. It is hence assumed that enough information is conveyed by the compression for condition monitoring purposes. To fuse the compressed coefficients into one health index that can be used as input for remaining useful life prediction algorithms and is limited to a reasonable range between 1 and 0, a logistic regression approach is used. Run-to-failure data of three translational electromagnetic actuators is used to demonstrate the health index generation procedure. A comparison to the time domain ground truth signals obtained from Nyquist sampled coil current measurements shows reasonable agreement. I.e. underlying wear-out phenomena can be reproduced by the proposed approach enabling further investigation of the application of prognostic methods.

This paper describes an early lumping approach for generating a mathematical model of the heating process of a moving dual-layer substrate. The heat is supplied by convection and nonlinearly distributed over the whole considered spatial extend of the substrate. Using CFD simulations as a reference, two different modelling approaches have been investigated in order to achieve the most suitable model type. It is shown that due to the possibility of using the transition matrix for time discretization, an equivalent circuit model achieves superior results when compared to the Crank-Nicolson method. In order to maintain a constant sampling time for the in-visioned-control strategies, the effect of variable speed is transformed into a system description, where the state vector has constant length but a variable number of non-zero entries. The handling of the variable transport speed during the heating process is considered as the main contribution of this work. The result is a model, suitable for being used in future control strategies.

A constructive nonlinear observer design for self-sensing of digital (ON/OFF) single coil electromagnetic actuators is studied. Self-sensing in this context means that solely the available energizing signals, i.e., coil current and driving voltage are used to estimate the position and velocity trajectories of the moving plunger. A nonlinear sliding mode observer is considered, where the stability of the reduced error dynamics is analyzed by the equivalent control method. No simplifications are made regarding magnetic saturation and eddy currents in the underlying dynamical model. The observer gains are constructed by taking into account some generic properties of the systems nonlinearities. Two possible choices of the observer gains are discussed. Furthermore, an observer-based tracking control scheme to achieve sensorless soft landing is considered and its closed-loop stability is studied. Experimental results for observer-based soft landing of a fast-switching solenoid valve under dry conditions are presented to demonstrate the usefulness of the approach.

A constructive method for the design of nonlinear observers is discussed. To formulate conditions for the construction of the observer gains, stability results for nonlinear singularly perturbed systems are utilised. The nonlinear observer is designed directly in the given coordinates, where the error dynamics between the plant and the observer becomes singularly perturbed by a high-gain part of the observer injection, and the information of the slow manifold is exploited to construct the observer gains of the reduced-order dynamics. This is in contrast to typical high-gain observer approaches, where the observer gains are chosen such that the nonlinearities are dominated by a linear system. It will be demonstrated that the considered approach is particularly suited for self-sensing electromechanical systems. Two variants of the proposed observer design are illustrated for a nonlinear electromagnetic actuator, where the mechanical quantities, i.e. the position and the velocity, are not measured

This paper focuses on the multivariable control of a drawing tower process. The nature of the process together with the differences in measurement noise levels that affect the variables to be controlled motivated the development of a new MPC algorithm. An extension of a multivariable predictive control algorithm with separated prediction horizons is proposed. The obtained experimental results show the usefulness of the proposed algorithm..

Comparison and Identifiability Analysis of Friction Models for the Dither Motion of a Solenoid
(2018)

In this paper, the mechanical subsystem of a proportional solenoid excited by a dither signal is considered. The objective is to find a suitable friction model that reflects the characteristic mechanical properties of the dynamic system. Several different friction models from the literature are compared. The friction models are evaluated with respect to their accuracy as well as their practical identifiability, the latter being quantified based on the Fisher information matrix.