### Refine

#### Document Type

- Conference Proceeding (14)
- Article (6)
- Part of a Book (2)
- Doctoral Thesis (2)
- Master's Thesis (2)
- Book (1)
- Preprint (1)
- Report (1)

#### Keywords

- 3D ship detection (1)
- Bayesian convolutional neural networks (1)
- Classification (1)
- Convolutional networks (1)
- Deep Transformation Model (1)
- Deep learning (3)
- Didaktik (1)
- Finite-element (1)
- Forest establishment (1)
- Imaging (1)
- Interpretability (1)
- Inverse perspective (1)
- Ischemic stroke (1)
- LernApp (1)
- Machine Learning (1)
- Machine learning (1)
- Magnetic resonance imaging (1)
- Mask R-CNN (1)
- Mathematik (1)
- Modelling (1)
- Multivariate Differentiation (1)
- Normalizing Flow (1)
- Object detection (1)
- Pedestrian (1)
- Probabilistic modeling (1)
- Regression (1)
- Screening (1)
- Seamless Learning (1)
- Ship dataset (1)
- Statistics (1)
- Tree seedlings (1)
- Un-certainty (1)
- Uncertainty (1)
- Unmanned aerial vehicles (1)

#### Institute

- Institut für Optische Systeme - IOS (29) (remove)

We analyse the results of a finite element simulation of a macroscopic model, which describes the movement of a crowd, that is considered as a continuum. A new formulation based on the macroscopic model from Hughes [2] is given. We present a stable numerical algorithm by approximating with a viscosity solution. The fundamental setting is given by an arbitrary domain that can contain several obstacles, several entries and must have at least one exit. All pedestrians have the goal to leave the room as quickly as possible. Nobody prefers a particular exit.

Die Frage „Wozu braucht man das?“ vonseiten der Studierenden oder Aussagen wie „Das habe ich im Beruf später nie mehr benötigt.“ von ehemaligen Studierenden ist den meisten Mathematikdozierenden sehr vertraut. Im Projekt BiLeSA wird dem Wunsch nach Integration von Praxisnähe im Mathematikunterricht mithilfe einer Smartphone-App, welche ausgewählte Themen in der Mathematik anhand von digitalen Bildern sichtbar macht, umgesetzt. Bei den ausgewählten Themen handelt es sich um (affin) lineare Abbildungen, Ableitungen in höheren Raumdimensionen und Potenzen von Komplexen Zahlen. Die Konzeptionierung des Lernobjekts erfolgte mit dem Design Based Research (DBR) Ansatz, welches im Basisprojekt des IBH-Labs „Seamless Learning“ konzipiert und entwickelt wurde.

Interpretability and uncertainty modeling are important key factors for medical applications. Moreover, data in medicine are often available as a combination of unstructured data like images and structured predictors like patient’s metadata. While deep learning models are state-of-the-art for image classification, the models are often referred to as ’black-box’, caused by the lack of interpretability. Moreover, DL models are often yielding point predictions and are too confident about the parameter estimation and outcome predictions.
On the other side with statistical regression models, it is possible to obtain interpretable predictor effects and capture parameter and model uncertainty based on the Bayesian approach. In this thesis, a publicly available melanoma dataset, consisting of skin lesions and patient’s age, is used to predict the melanoma types by using a semi-structured model, while interpretable components and model uncertainty is quantified. For Bayesian models, transformation model-based variational inference (TM-VI) method is used to determine the posterior distribution of the parameter. Several model constellations consisting of patient’s age and/or skin lesion were implemented and evaluated. Predictive performance was shown to be best by using a combined model of image and patient’s age, while providing the interpretable posterior distribution of the regression coefficient is possible. In addition, integrating uncertainty in image and tabular parts results in larger variability of the outputs corresponding to high uncertainty of the single model components.

The main challenge in Bayesian models is to determine the posterior for the model parameters. Already, in models with only one or few parameters, the analytical posterior can only be determined in special settings. In Bayesian neural networks, variational inference is widely used to approximate difficult-to-compute posteriors by variational distributions. Usually, Gaussians are used as variational distributions (Gaussian-VI) which limits the quality of the approximation due to their limited flexibility. Transformation models on the other hand are flexible enough to fit any distribution. Here we present transformation model-based variational inference (TM-VI) and demonstrate that it allows to accurately approximate complex posteriors in models with one parameter and also works in a mean-field fashion for multi-parameter models like neural networks.

Forecasting is crucial for both system planning and operations in the energy sector. With increasing penetration of renewable energy sources, increasing fluctuations in the power generation need to be taken into account. Probabilistic load forecasting is a young, but emerging research topic focusing on the prediction of future uncertainties. However, the majority of publications so far focus on techniques like quantile regression, ensemble, or scenario-based methods, which generate discrete quantiles or sets of possible load curves. The conditioned probability distribution remains unknown and can only be estimated when the output is post-processed using a statistical method like kernel density estimation.
Instead, the proposed probabilistic deep learning model uses a cascade of transformation functions, known as normalizing flow, to model the conditioned density function from a smart meter dataset containing electricity demand information for over 4,000 buildings in Ireland. Since the whole probability density function is tractable, the parameters of the model can be obtained by minimizing the negative loglikelihood through the state of the art gradient descent. This leads to the model with the best representation of the data distribution.
Two different deep learning models have been compared, a simple three-layer fully connected neural network and a more advanced convolutional neural network for sequential data processing inspired by the WaveNet architecture. These models have been used to parametrize three different probabilistic models, a simple normal distribution, a Gaussian mixture model, and the normalizing flow model. The prediction horizon is set to one day with a resolution of 30 minutes, hence the models predict 48 conditioned probability distributions.
The normalizing flow model outperforms the two other variants for both architectures and proves its ability to capture the complex structures and dependencies causing the variations in the data. Understanding the stochastic nature of the task in such detail makes the methodology applicable for other use cases apart from forecasting. It is shown how it can be used to detect anomalies in the power grid or generate synthetic scenarios for grid planning.

Deep neural networks (DNNs) are known for their high prediction performance, especially in perceptual tasks such as object recognition or autonomous driving. Still, DNNs are prone to yield unreliable predictions when encountering completely new situations without indicating their uncertainty. Bayesian variants of DNNs (BDNNs), such as MC dropout BDNNs, do provide uncertainty measures. However, BDNNs are slow during test time because they rely on a sampling approach. Here we present a single shot MC dropout approximation that preserves the advantages of BDNNs without being slower than a DNN. Our approach is to analytically approximate for each layer in a fully connected network the expected value and the variance of the MC dropout signal. We evaluate our approach on different benchmark datasets and a simulated toy example. We demonstrate that our single shot MC dropout approximation resembles the point estimate and the uncertainty estimate of the predictive distribution that is achieved with an MC approach, while being fast enough for real-time deployments of BDNNs.

Probabilistic Deep Learning
(2020)

Probabilistic Deep Learning is a hands-on guide to the principles that support neural networks. Learn to improve network performance with the right distribution for different data types, and discover Bayesian variants that can state their own uncertainty to increase accuracy. This book provides easy-to-apply code and uses popular frameworks to keep you focused on practical applications.

At present, the majority of the proposed Deep Learning (DL) methods provide point predictions without quantifying the model's uncertainty. However, a quantification of the reliability of automated image analysis is essential, in particular in medicine when physicians rely on the results for making critical treatment decisions. In this work, we provide an entire framework to diagnose ischemic stroke patients incorporating Bayesian uncertainty into the analysis procedure. We present a Bayesian Convolutional Neural Network (CNN) yielding a probability for a stroke lesion on 2D Magnetic Resonance (MR) images with corresponding uncertainty information about the reliability of the prediction. For patient-level diagnoses, different aggregation methods are proposed and evaluated, which combine the individual image-level predictions. Those methods take advantage of the uncertainty in the image predictions and report model uncertainty at the patient-level. In a cohort of 511 patients, our Bayesian CNN achieved an accuracy of 95.33% at the image-level representing a significant improvement of 2% over a non-Bayesian counterpart. The best patient aggregation method yielded 95.89% of accuracy. Integrating uncertainty information about image predictions in aggregation models resulted in higher uncertainty measures to false patient classifications, which enabled to filter critical patient diagnoses that are supposed to be closer examined by a medical doctor. We therefore recommend using Bayesian approaches not only for improved image-level prediction and uncertainty estimation but also for the detection of uncertain aggregations at the patient-level.

Mapping of tree seedlings is useful for tasks ranging from monitoring natural succession and regeneration to effective silvicultural management. Development of methods that are both accurate and cost-effective is especially important considering the dramatic increase in tree planting that is required globally to mitigate the impacts of climate change. The combination of high-resolution imagery from unmanned aerial vehicles and object detection by convolutional neural networks (CNNs) is one promising approach. However, unbiased assessments of these models and methods to integrate them into geospatial workflows are lacking. In this study, we present a method for rapid, large-scale mapping of young conifer seedlings using CNNs applied to RGB orthomosaic imagery. Importantly, we provide an unbiased assessment of model performance by using two well-characterised trial sites together containing over 30,000 seedlings to assemble datasets with a high level of completeness. Our results showed CNN-based models trained on two sites detected seedlings with sensitivities of 99.5% and 98.8%. False positives due to tall weeds at one site and naturally regenerating seedlings of the same species led to slightly lower precision of 98.5% and 96.7%. A model trained on examples from both sites had 99.4% sensitivity and precision of 97%, showing applicability across sites. Additional testing showed that the CNN model was able to detect 68.7% of obscured seedlings missed during the initial annotation of the imagery but present in the field data. Finally, we demonstrate the potential to use a form of weakly supervised training and a tile-based processing chain to enhance the accuracy and efficiency of CNNs applied to large, high-resolution orthomosaics.