### Refine

#### Year of publication

- 2019 (15) (remove)

#### Document Type

- Conference Proceeding (10)
- Article (3)
- Doctoral Thesis (1)
- Master's Thesis (1)

#### Keywords

#### Institute

- Institut für Systemdynamik - ISD (15) (remove)

This paper presents a new likelihood-based partitioning method of the measurement set for the extended object probability hypothesis density (PHD) filter framework. Recent work has mostly relied on heuristic partitioning methods that cluster the measurement data based on a distance measure between the single measurements. This can lead to poor filter performance if the tracked extended objects are closely spaced. The proposed method called Stochastic Partitioning (StP) is based on sampling methods and was inspired by a former work of Granström et. al. In this work, the StP method is applied to a Gaussian inverse Wishart (GIW) PHD filter and compared to a second filter implementation that uses the heuristic Distance Partitioning (DP) method. The performance is evaluated in Monte Carlo simulations in a scenario where two objects approach each other. It is shown that the sampling based StP method leads to an improved filter performance compared to DP.

In the field of autonomously driving vehicles the environment perception containing dynamic objects like other road users is essential. Especially, detecting other vehicles in the road traffic using sensor data is of utmost importance. As the sensor data and the applied system model for the objects of interest are noise corrupted, a filter algorithm must be used to track moving objects. Using LIDAR sensors one object gives rise to more than one measurement per time step and is therefore called extended object. This allows to jointly estimate the objects, position, as well as its orientation, extension and shape. Estimating an arbitrary shaped object comes with a higher computational effort than estimating the shape of an object that can be approximated using a basic geometrical shape like an ellipse or a rectangle. In the case of a vehicle, assuming a rectangular shape is an accurate assumption.
A recently developed approach models the contour of a vehicle as periodic B-spline function. This representation is an easy to use tool, as the contour can be specified by some basis points in Cartesian coordinates. Also rotating, scaling and moving the contour is easy to handle using a spline contour. This contour model can be used to develop a measurement model for extended objects, that can be integrated into a tracking filter. Another approach modeling the shape of a vehicle is the so-called bounding box that represents the shape as rectangle.
In this thesis the basics of single, multi and extended object tracking, as well as the basics of B-spline functions are addressed. Afterwards, the spline measurement model is established in detail and integrated into an extended Kalman filter to track a single extended object. An implementation of the resulting algorithm is compared with the rectangular shape estimator. The implementation of the rectangular shape estimator is provided. The comparison is done using long-term considerations with Monte Carlo simulations and by analyzing the results of a single run. Therefore, both algorithms are applied to the same measurements. The measurements are generated using an artificial LIDAR sensor in a simulation environment.
In a real-world tracking scenario detecting several extended objects and measurements that do not originate from a real object, named clutter measurements, is possible. Also, the sudden appearance and disappearance of an object is possible. A filter framework investigated in recent years that can handle tracking multiple objects in a cluttered environment is a random finite set based approach. The idea of random finite sets and its use in a tracking filter is recapped in this thesis. Afterwards, the spline measurement model is included in a multi extended object tracking framework. An implementation of the resulting filter is investigated in a long-term consideration using Monte Carlo simulations and by analyzing the results of a single run. The multi extended object filter is also applied to artificial LIDAR measurements generated in a simulation environment.
The results of comparing the spline based and rectangular based extended object trackers show a more stable performance of the spline extended object tracker. Also, some problems that have to be addressed in future works are discussed. The investigation of the resulting multi extended object tracker shows a successful integration of the spline measurement model in a multi extended object tracker. Also, with these results some problems remain, that have to be solved in future works.

Flatness-based feed-forward control of solenoid actuators is considered. For precise motion planning and accurate steering of conventional solenoids, eddy currents cannot be neglected. The system of ordinary differential equations including eddy currents, that describes the nonlinear dynamics of such actuators, is not differentially flat. Thus, a distributed parameter approach based on a diffusion equation is considered, that enables the parametrization of the eddy current by the armature position and its time derivatives. In order to design the feedforward control, the distributed parameter model of the eddy current subsystem is combined with a typical nonlinear lumped parameter model for the electrical and mechanical subsystems of the solenoid. The control design and its application are illustrated by numerical and practical results for an industrial solenoid actuator.

In this paper, the problem of controlling the dissolved oxygen level (DO) during an aerobic fermentation is considered. The proposed approach deals with three major difficulties in respect to the nonlinear dynamics of the DO, the poor accuracy of the empirical models for the oxygen consumption rate and the fact that only sampled measurements are available on-line. A nonlinear integral high-gain control law including a continuous-discrete time observer is designed to keep the DO in the neighborhood of a set point value without any knowledge on the dissolved oxygen consumption rate. The local stability of the control algorithm is proved using Lyapunov tools. The performance of the control scheme is first analyzed in simulation and then experimentally evaluated during a successfull fermentation of the bacteria over a period of three days. Pseudomonas putida mt-2

The Lempel–Ziv–Welch (LZW) algorithm is an important dictionary-based data compression approach that is used in many communication and storage systems. The parallel dictionary LZW (PDLZW) algorithm speeds up the LZW encoding by using multiple dictionaries. This simplifies the parallel search in the dictionaries. However, the compression gain of the PDLZW depends on the partitioning of the address space, i.e. on the sizes of the parallel dictionaries. This work proposes an address space partitioning technique that optimises the compression rate of the PDLZW. Numerical results for address spaces with 512, 1024, and 2048 entries demonstrate that the proposed address partitioning improves the performance of the PDLZW compared with the original proposal. These address space sizes are suitable for flash storage systems. Moreover, the PDLZW has relative high memory requirements which dominate the costs of a hardware implementation. This work proposes a recursive dictionary structure and a word partitioning technique that significantly reduce the memory size of the parallel dictionaries.

Flash memories are non-volatile memory devices. The rapid development of flash technologies leads to higher storage density, but also to higher error rates. This dissertation considers this reliability problem of flash memories and investigates suitable error correction codes, e.g. BCH-codes and concatenated codes. First, the flash cells, their functionality and error characteristics are explained. Next, the mathematics of the employed algebraic code are discussed. Subsequently, generalized concatenated codes (GCC) are presented. Compared to the commonly used BCH codes, concatenated codes promise higher code rates and lower implementation complexity. This complexity reduction is achieved by dividing a long code into smaller components, which require smaller Galois-Field sizes. The algebraic decoding algorithms enable analytical determination of the block error rate. Thus, it is possible to guarantee very low residual error rates for flash memories. Besides the complexity reduction, general concatenated codes can exploit soft information. This so-called soft decoding is not practicable for long BCH-codes. In this dissertation, two soft decoding methods for GCC are presented and analyzed. These methods are based on the Chase decoding and the stack algorithm. The last method explicitly uses the generalized concatenated code structure, where the component codes are nested subcodes. This property supports the complexity reduction. Moreover, the two-dimensional structure of GCC enables the correction of error patterns with statistical dependencies. One chapter of the thesis demonstrates how the concatenated codes can be used to correct two-dimensional cluster errors. Therefore, a two-dimensional interleaver is designed with the help of Gaussian integers. This design achieves the correction of cluster errors with the best possible radius. Large parts of this works are dedicated to the question, how the decoding algorithms can be implemented in hardware. These hardware architectures, their throughput and logic size are presented for long BCH-codes and generalized concatenated codes. The results show that generalized concatenated codes are suitable for error correction in flash memories, especially for three-dimensional NAND memory systems used in industrial applications, where low residual errors must be guaranteed.

This work introduces new signal constellations based on Eisenstein integers, i.e., the hexagonal lattice. These sets of Eisenstein integers have a cardinality which is an integer power of three. They are proposed as signal constellations for representation in the equivalent complex baseband model, especially for applications like physical-layer network coding or MIMO transmission where the constellation is required to be a subset of a lattice. It is shown that these constellations form additive groups where the addition over the complex plane corresponds to the addition with carry over ternary Galois fields. A ternary set partitioning is derived that enables multilevel coding based on ternary error-correcting codes. In the subsets, this partitioning achieves a gain of 4.77 dB, which results from an increased minimum squared Euclidean distance of the signal points. Furthermore, the constellation-constrained capacities over the AWGN channel and the related level capacities in case of ternary multilevel coding are investigated. Simulation results for multilevel coding based on ternary LDPC codes are presented which show that a performance close to the constellation-constrained capacities can be achieved.

It is well known that signal constellations which are based on a hexagonal grid, so-called Eisenstein constellations, exhibit a performance gain over conventional QAM ones. This benefit is realized by a packing and shaping gain of the Eisenstein (hexagonal) integers in comparison to the Gaussian (complex) integers. Such constellations are especially relevant in transmission schemes that utilize lattice structures, e.g., in MIMO communications. However, for coded modulation, the straightforward approach is to combine Eisenstein constellations with ternary channel codes. In this paper, a multilevel-coding approach is proposed where encoding and multistage decoding can directly be performed with state-of-the-art binary channel codes. An associated mapping and a binary set partitioning are derived. The performance of the proposed approach is contrasted to classical multilevel coding over QAM constellations. To this end, both the single-user AWGN scenario and the (multiuser) MIMO broadcast scenario using lattice-reduction-aided preequalization are considered. Results obtained from numerical simulations with LDPC codes complement the theoretical aspects.

The Lempel-Ziv-Welch (LZW) algorithm is an important dictionary-based data compression approach that is used in many communication and storage systems. The parallel dictionary LZW (PDLZW) algorithm speeds up the LZW encoding by using multiple dictionaries. The PDLZW algorithm applies different dictionaries to store strings of different lengths, where each dictionary stores only strings of the same length. This simplifies the parallel search in the dictionaries for hardware implementations. The compression gain of the PDLZW depends on the partitioning of the address space, i.e. on the sizes of the parallel dictionaries. However, there is no universal partitioning that is optimal for all data sources. This work proposes an address space partitioning technique that optimizes the compression rate of the PDLZW using a Markov model for the data. Numerical results for address spaces with 512, 1024, and 2048 entries demonstrate that the proposed partitioning improves the performance of the PDLZW compared with the original proposal.

Extracting suitable features from acquired data to accurately depict the current health state of a system is crucial in data driven condition monitoring and prediction. Usually, analogue sensor data is sampled at rates far exceeding the Nyquist-rate containing substantial amounts of redundancies and noise, imposing high computational loads due to the subsequent and necessary feature processing chain (generation, dimensionality reduction, rating and selection). To overcome these problems, Compressed Sensing can be used to sample directly to a compressed space, provided the signal at hand and the employed compression/measurement system meet certain criteria. Theory states, that during this compression step enough information is conserved, such that a reconstruction of the original signal is possible with high probability. The proposed approach however does not rely on reconstructed data for condition monitoring purposes, but uses directly the compressed signal representation as feature vector. It is hence assumed that enough information is conveyed by the compression for condition monitoring purposes. To fuse the compressed coefficients into one health index that can be used as input for remaining useful life prediction algorithms and is limited to a reasonable range between 1 and 0, a logistic regression approach is used. Run-to-failure data of three translational electromagnetic actuators is used to demonstrate the health index generation procedure. A comparison to the time domain ground truth signals obtained from Nyquist sampled coil current measurements shows reasonable agreement. I.e. underlying wear-out phenomena can be reproduced by the proposed approach enabling further investigation of the application of prognostic methods.