Refine
Document Type
- Conference Proceeding (9)
- Article (4)
- Working Paper (4)
- Book (1)
Keywords
- Actuators (1)
- Adaptive Steuerung (1)
- Additive manufacturing (1)
- Aktor (1)
- Aktuatorik (1)
- Bauelement (1)
- Bone Elongation (1)
- Formgedächtniseffekt (2)
- Formgedächtnislegierung (1)
- Formgedächtnislegierungen (2)
- Grundwasserentnahme (1)
- Grundwassergewinnung (1)
- Intramedullary Nail (1)
- Joining Technology (1)
- Knochenverlängerung (1)
- Limb Lengthening (1)
- Marknagelung (1)
- Memory-Effekt (3)
- Memory-Legierung (4)
- Metal laser sintering (1)
- Nitinol (2)
- Prüfgerät (1)
- Selective laser melting (1)
- Shape memory alloys (1)
- Sicherheitsmaßnahme (1)
- Thermal shape memory alloys (1)
- Weight reduction (1)
- Wärmekraftmaschinen (1)
Institute
Ziel dieses Projektes war die Entwicklung eines Linearantriebes mittels Formge-dächtnislegierungen (FGL) zur Knochenverlängerung und Defektüberbrückung ent-sprechend der Methode nach Betz und Baumgart. Der zu entwickelnde Linearantrieb sollte im Idealfall folgende Eigenschaften aufweisen: • mechanisch einfach aufgebaut • leicht zu miniaturisieren • großer Arbeitsweg • variable Positionierung • hohe Leistung • kostengünstig Zur Entwicklung eines derartigen FG-Marknagels sollten die folgenden Teilprobleme gelöst werden: • Auswahl einer geeigneten FGL zur Realisierung der benötigten Kräfte innerhalb der möglichen Temperaturdifferenz • Auswahl der Heizspirale und Messung der Aufheiztemperaturen an der Marknagel-oberfläche • Ausarbeiten der konstruktiven Lösung hinsichtlich der ermittelten Werte bezüglich des Verhältnisses Kraft/Weg • Werkstoffauswahl hinsichtlich der Implantierbarkeit, der Schweißbarkeit mit Laser und der Aufheizung • Mechanische Sicherung (Arretiermechanismus) bei Belastung der Extremität durch den Patienten und Entwicklung eines Rückstellmechanismus • Verbindungstechnik der Komponenten • Erprobung der entwickelten Prototypen in Labortests
In Ländern mit aridem Klima, z.B. in Dürregebieten, und nicht flächendeckender Energieversorgung stellt der Antrieb von Pumpen zur landwirtschaftlichen Bewässerung und zur Trinkwasserversorgung ein erhebliches Problem dar. Bisherige Bewässerungsanlagen arbeiten größtenteils mit Dieselgeneratoren, welche die Umwelt mit Emissionen belasten und zur Verstärkung des weltweiten Treibhauseffektes führen, oder über photovoltaisch betriebene Anlagen. Letztere sind in der Anschaffung sehr kostenintensiv und aufgrund ihrer Funktionsweise gegenüber Störeinwirkungen sehr anfällig. Gerade in den sogenannten Dritte-Welt-Ländern, in denen in der Regel kein geschultes Fachpersonal für Wartungsarbeiten bereitsteht, ist der Ausfall der Anlagen schon kurz nach der Inbetriebnahme eine häufig berichtete Tatsache. Im Werkstoffprüflabor der HTWG Konstanz wurde ein System zur energieautonomen Wasserförderung entwickelt, bei der zum Antrieb der Pumpen Formgedächtnislegierungen (FGL) verwendet werden [1, 2]. Bei Sonnenschein arbeitet diese geplante Bewässerungsanlage völlig energieautonom: Die Wärmeenergie der Sonne wird durch die FG-Drähte direkt in mechanische Energie umgewandelt und betreibt die Bewässerungspumpen. Die Vorteile dieses einfachen Prinzips liegen in der Bedienerfreundlichkeit, Wirtschaftlichkeit und Leistungsfähigkeit der Anlage wie auch in der Fle-xibilität bezüglich weiterer Anwendungsfälle der modular einsetzbaren Wärmekraftmaschine in Industrie und Klimatechnik. Der angestrebte Einsatz von derartigen Anlagen würde zu einer entsprechenden Entlastung der immer stärker mit Emissionen belasteten Umwelt führen. Das überaus große Interesse an diesen Forschungsarbeiten sowie an einem Transfer der Bewässerungsanlage in die Industrie zeigte sich auch schon während früherer Teilnahmen an Messen, Tagungen und Konferenzen. Die Konkurrenzfähigkeit dieser sowohl neuartigen als auch sehr einfachen Systemlösung wurde, ausgehend von den damals zur Verfügung stehenden Ergebnissen, in einer bereits durchgeführten Studie nachgewiesen [2]. Im einzelnen sollten in diesem Projekt neben den anstehenden wissenschaftlichen Untersuchungen zwei Versuchsanlagen konstruiert und gefertigt werden. Dadurch sollten die nötigen Erkenntnisse gewonnen werden, um diese innovative Erfindung zu einem späteren Zeitpunkt zu einer transferfähigen Anlage fertig zu entwickeln. Diese beiden Prototypen bauen auf den bisherigen Arbeiten in diesem Projekt auf, die mit Erfolg gezeigt haben, daß das entwickelte Prinzip sehr gut funktioniert. Ziel dieses Projektes war es also, diese neuartige, innovative Wärmekraftmaschine weiterzuentwickeln, zu optimieren und die nötigen Erkenntnisse zu gewinnen, um diese Anlage nach Abschluß dieses aFuE-Projektes in Zusammenarbeit mit der beteiligten oder neu zu gründenden Firmen zur Serienreife zu bringen. Ein damit eng verbundenes, weiteres Ziel lag in der Entwicklung einer modular einsetzbaren Wärmekraftmaschine, die dann auch für die anderen nachfolgend genannten Anwendungsgebiete verwendet werden kann: • Meerwasserentsalzung • Klimatisierungstechnik • Antrieb der Pumpen bei geothermischer Wärmeeinbringung • Energierückgewinnung aus Wärmequellen (z.B. Geysire in Island) • Energierückgewinnung in industriellen Kühlwasserkreisläufen • Energierückgewinnung in der Verfahrenstechnik • Restwärmenutzung bei konventioneller Energieerzeugung.
Entwicklung einer neuartigen Prüfanlage zur Prüfung von Bauelementen aus Formgedächtnisteilen
(2004)
Im Rahmen des Forschungsvorhabens, unterstützt durch das Förderprogramm des BMBF „Anwendungsorientierte Forschung und Entwicklung an Fachhochschulen“ (aFuE), soll eine voll automatisierte, universale Prüfanlage gebaut werden mit deren Hilfe es möglich ist, das Verhalten von Formgedächtnislegierungen (FGL) bei der Variation verschiedener Parameter zu ermitteln. Die Prüfanlage soll in erster Linie sehr genau die Phasenumwandlungstemperaturen der Formgedächtnislegierungen ermitteln, um damit einen tieferen Einblick in die metallkundlichen Hintergründe zu gewinnen. Aber es gibt auch weitere Anwendungen wie zum Beispiel das so genannte „Training“, indem man durch gezielte thermische und mechanische Belastungen den FGL verschiedene Formgedächtniseffekte trainiert. Ein weiteres Ziel des Forschungsvorhabens ist das Erstellen einer Prüfnorm für FGL die den gesamten Prüfablauf dokumentieren und ergänzen wird. Letztendlich soll die Prüfeinrichtung eine Plattform für die Weiterentwicklung der existierenden FG-Anwendungen sein, sowie die Einsatzmöglichkeiten dieser Werkstoffe zu erweitern. Da es derzeit keine Normung für Bauteile aus FGL gibt, soll in den erfolgten Tests ein Vorschlag für eine FG-Normung gemacht werden. Förderkennziffer 17 092 02
Der Einsatz von adaptiv arbeitenden Sicherheitssystemen im Kraftfahrzeugbereich wird ständig zunehmen. Im vorliegenden Projekt soll ein einfach arbeitendes und schnellschaltendendes Aktorprinzip mit Hilfe des Einsatzes von Formgedächtniselementen realisiert werden. Ein solch kostengünstiges und sehr sicher arbeitendes System wird nicht nur vorhandene teure und aufwendige Systeme ersetzen können, sondern es wird auch durch die hohe Integrierbarkeit und günstige Recyclebarkeit den Einsatz von Aktoren im Kraftfahrzeugbereich erhöhen. Gegenstand dieses Projektes ist die werkstoffkundliche Entwicklung eines adaptiven Sicherheitssystems mit Formgedächtnislegierungen zum Einsatz in Kraftfahrzeugen. Durch die spontane Umwandlung der FGL beim Überschreiten einer kritischen Temperatur, können sehr schnell und funktionssicher Linearbewegungen ausgeführt werden. Das Problem der Langzeitstabilität des Formgedächtniseffektes soll in diesem Forschungsvorhaben betrachtet werden. Hierzu werden durch Auslagerungsversuche sowohl die Auswirkungen von Ausscheidungen, als auch die metallkundlichen Hintergründe für die Entstehung der Ausscheidungen betrachtet. Durch die Kenntnis der ablaufenden Vorgänge sollte es möglich sein Legierungen einzusetzen, welche die erforderliche Langzeitstabilität aufweisen. In einem weiteren Projektschritt sollen Schnellerwärmungssysteme entwickelt und erprobt werden, die es ermöglichen mit dem vorhandenen Bordstromnetz eine schnellstmögliche und sichere Erwärmung der FG-Elemente zu gewährleisten.
In the automotive industry a strong effort has been undertaken to reduce the weight of modern vehicles. In order to reduce the energy consumption and to improve the environmental sustainability, the importance of weight reduction activities is even growing faster. As lightweight designing is becoming more and more expensive and show less potential savings, new approaches are needed. One promising technology could be the use of shape memory elements. In the last years a lot of potential application possibilities were presented, demonstrating the benefit of these functional elements in automotive design solutions: they often reduce complexity, weight and design space of an actuation device and enable new functions. In addition they work silently and are therefore ideally suitable for comfort applications in the passenger cabin. Because of the current trend to electric vehicle the hitherto existing drawback of a high electrical energy consumption of shape memory actuators in some design proposals is not given any more.
In Anlehnung an das Tempcore-Verfahren wurde an wärmebehandeltem Stabstahl das Zugverfestigungsverhalten des Kernes, der Außenhaut sowie dem gesamten Stab experimentell und numerisch ermittelt. Es zeigte sich, dass die Dehnungen am Kern und am äußeren Rand gleich sind und der Einfluss des Kerngefüges entscheidend für den Beginn der Einschnürung in der Außenhaut ist. Eine Verbesserung der Eigenschaften des Kerngefüges kann somit die Bruchempfindlichkeit des gesamten Stabes reduzieren.
Formgedächtnislegierungen
(2018)
Formgedächtnislegierungen sind »Legierungen, die nach geeigneter Behandlung aufgrund einer martensitischen Umwandlung ihre Gestalt in Abhängigkeit von der Temperatur ändern«. Derartige Materialien werden in den nächsten Jahrzehnten eine wachsende Rolle in der Technik spielen. Um die Eigenschaften dieser Werkstoffe optimal nutzen zu können, ist es wichtig, den Einfluss des Herstellungs- und Verarbeitungsprozesses auf ihre Anwendung zu kennen.
Das Buch behandelt die metallkundlichen Hintergründe und die Verwendungsmöglichkeiten der Formgedächtnislegierungen in verständlicher, auf den Anwender zugeschnittener Weise.
Dass sich Stoffe bei Temperaturänderungen zusammenziehen beziehungsweise ausdehnen, ist eine uralte Erkenntnis. Diesbezüglich stechen Formgedächtnislegierungen heraus, da diese die verblüffende Eigenschaft besitzen, sich bei Temperaturänderung ungewöhnlich rasch zusamenzuziehen beziehungsweise auszudehnen. Eine physikalische Besonderheit, die sich auf vielfältige Weise nutzen lässt.
Thermal shape memory alloys show extraordinary material properties and can be used as actuators, dampers and sensors. Since their discovery in the middle of the last century they have been investigated and further developed. The majority of the industrial applications with the highest material sales can still be found in the medical industry, where they are used due to their superelastic and thermal shape memory effect, e.g. as stents or as guidewires and tools in the minimal invasive surgery. Particularly in recent years, more and more applications have been developed for other industrial fields, e.g. for the household goods, civil engineering and automotive sector. In this context it is worth mentioning that for the latter sector, million seller series applications have found their way into some European automobile manufacturers. The German VDI guideline for shape memory alloys introduced in 2017 will give the material a further boost in application. Last but not least the new production technologies of additive manufacturing with metal laser sintering plants open up additional applications for these multifunctional materials. This paper gives an overview of the extraordinary material properties of shape memory components, shows examples of different applications and discusses European trends against the background of the most recent standard and new production technologies.
These days, medical applications of shape memory alloys (SMAs) can be found in cardiovascular devices, gastroenterology and urology as well as in the area of orthopedic implants, orthodontic devices and clinical instrumentation. Their functional properties combined with excellent biocompatibility increase the possibility and the performance of minimally invasive surgeries. Overviews of existing applications can be found in [1-2]. Within the medical field, most of the applications with shape memory (SM) material take advantage of the superelasticity of NiTi SMAs. In contradiction to the superelastic or mechanical SM effect, the application described in this study uses the thermal SM effect for a new medical implant. Before explaining the SM driven intramedullary bone nail in detail, a short introduction to the bone elongation technique is given.
The background of this application on based in the medical fact that normally any tissue reacts to an injury with repair and healing processes through multiplication of cells. If after a transverse osteotomy a strain stimulus is activated, for example by tensile stress, this multiplication of cells and new formation of tissue may be continued for any length of time. Due to this mechanism, even considerable loss of bone caused by fractures or congenital defective positions, may be compensated without bone grafts. The technique of callus distraction by means of external fixation or intramedullary nail stimulates the formation of callus in the bone gap. Callus is the repair tissue of the bone generated in the fracture gap in case of bone fracture or osteotomy. The gap to be bridged should not be wider than 1 mm per day [3]. The process starts with the exudation of callus around the ends of the broken bone. At first, callus is more like a fibrous tissue. Later it hardens due to deposition of calcium and eventually it is converted into true bone. Three weeks after severance, the vascular system is formed. An overview of current bone lengthening techniques, also called callus distraction, can be found in [3]. External systems are normally used for the extension of bones, the bone fragments being fixed on rings by wires. The decisive disadvantages of those external systems are primarily the considerable risk of infection due to protruding wires, noticeable discomfort for the patient because of the external rings, a coarse cosmetic result because of scarring, as well as rather long hospitalization.
Therefore, internal bone extension systems are of great interest to orthopedic surgery.