Refine
Year of publication
Document Type
- Conference Proceeding (567)
- Article (312)
- Other Publications (135)
- Part of a Book (124)
- Book (62)
- Doctoral Thesis (41)
- Working Paper (36)
- Report (12)
- Patent (5)
- Study Thesis (2)
Language
- English (670)
- German (626)
- Multiple languages (5)
Has Fulltext
- no (1301) (remove)
Keywords
- (Strict) sign-regularity (1)
- 360-degree coverage (1)
- 3D Extended Object Tracking (EOT) (2)
- 3D Skelett Wickeltechnik (1)
- 3D ship detection (1)
- AAL (3)
- ADAM (1)
- AHI (1)
- Aboriginal people (1)
- Abrasive grain material (1)
Institute
- Fakultät Architektur und Gestaltung (11)
- Fakultät Bauingenieurwesen (19)
- Fakultät Elektrotechnik und Informationstechnik (11)
- Fakultät Informatik (62)
- Fakultät Maschinenbau (24)
- Fakultät Wirtschafts-, Kultur- und Rechtswissenschaften (54)
- Institut für Angewandte Forschung - IAF (43)
- Institut für Optische Systeme - IOS (26)
- Institut für Strategische Innovation und Technologiemanagement - IST (44)
- Institut für Systemdynamik - ISD (86)
Leveraging differences
(2023)
Driver assistance systems are increasingly becoming part of the standard equipment of vehicles and thus contribute to road safety. However, as they become more widespread, the requirements for cost efficiency are also increasing, and so few and inexpensive sensors are used in these systems. Especially in challenging situations, this leads to the fact that target discrimination cannot be ensured which may lead to false reactions of the driver assistance system. In this paper, the Boids flocking algorithm is used to generate semantic neighborhood information between tracked objects which in turn can significantly improve the overall performance. Two different variants were developed: First, a free-moving flock whereby a separate flock is generated per tracked object and second, a formation-controlled flock where boids of a single flock move along the future road course in a pre-defined formation. In the first approach, the interaction between the flocks as well as the interaction between the boids within a flock is used to generate additional information, which in turn can be used to improve, for example, lane change detection. For the latter approach, new behavioral rules have been developed, so that the boids can reliably identify control-relevant objects to a driver assistance system. Finally, the performance of the presented methods is verified through extensive simulations.
Nowadays, information technology (IT) is a strategic asset for organizations. As a result, the IT costs are rising and there is a need for transparency about their root causes. Cost drivers as an instrument in IT cost management enable a better transparency and understanding of costs. However, there is a lack of IT cost driver research with a focus on the strategic position of IT within organizations. The goal of this paper is to develop a comprehensive overview of strategic drivers of IT costs. The Delphi study leads to the identification and validation of 17 strategic drivers. Hence, this paper builds a base for cost driver analysis and contributes to a better understanding of the causes of costs. It facilitates future research regarding cost behavior and the business value of IT. Additionally, practitioners gain awareness of levers to influence IT costs and consequences of managerial decisions on their IT spend.
The importance of sleep for human life is enormous. It affects physical, mental, and psychological health. Therefore, it is vital to recognise sleep disorders in a timely manner in order to be able to initiate therapy. There are two methods for measuring sleep-related parameters - objective and subjective. Whether the substitution of a subjective method for an objective one is possible is investigated in this paper. Such replacement may bring several advantages, including increased comfort for the user. To answer this research question, a study was conducted in which 75 overnight recordings were evaluated. The primary purpose of this study was to compare both ways of measurement for total sleep time and sleep efficiency, which are essential parameters for, e.g., insomnia diagnosis and treatment. The evaluation results demonstrated that, on average, there are 32 minutes of difference between the two measurement methods when total sleep time is analysed. In contrast, on average, both measurement methods differ by 7.5% for sleep efficiency measurement. It should also be noted that people typically overestimate total sleep time and efficiency with the subjective method, where the perceived values are measured.
This paper presents a modeling approach of an industrial heating process where a stripe-shaped workpiece is heated up to a specific temperature by applying hot air through a nozzle. The workpiece is moving through the heating zone and is considered to be of infinite length. The speed of the substrate is varying over time. The derived model is supposed to be computationally cheap to enable its use in a model-based control setting. We start by formulating the governing PDE and the corresponding boundary conditions. The PDE is then discretized on a spatial grid using finite differences and two different integration schemes, explicit and implicit, are derived. The two models are evaluated in terms of computational effort and accuracy. It turns out that the implicit approach is favorable for the regarded process. We optimize the grid of the model to achieve a low number of grid nodes while maintaining a sufficient amount of accuracy. Finally, the thermodynamical parameters are optimized in order to fit the model's output to real-world data that was obtained by experiments.
oday many scientific works are using deep learning algorithms and time series, which can detect physiological events of interest. In sleep medicine, this is particularly relevant in detecting sleep apnea, specifically in detecting obstructive sleep apnea events. Deep learning algorithms with different architectures are used to achieve decent results in accuracy, sensitivity, etc. Although there are models that can reliably determine apnea and hypopnea events, another essential aspect to consider is the explainability of these models, i.e., why a model makes a particular decision. Another critical factor is how these deep learning models determine how severe obstructive sleep apnea is in patients based on the apnea-hypopnea index (AHI). Deep learning models trained by two approaches for AHI determination are exposed in this work. Approaches vary depending on the data format the models are fed: full-time series and window-based time series.
The trajectory tracking problem for a real-scaled fully-actuated surface vessel is addressed in this paper. A nonlinear model predictive control (NMPC) scheme was designed to track a reference trajectory, considering state and input constraints, and environmental disturbances, which were assumed to be constant over the prediction horizon. The controller was tested by performing docking maneuvers using the real-scaled research vessel from the University of Applied Sciences Konstanz at the Rhine river in Germany. A comparison between the experimental results and the simulated ones was analyzed to validate the NMPC controller.
Systematic Generation of XSS and SQLi Vulnerabilities in PHP as Test Cases for Static Code Analysis
(2022)
Synthetic static code analysis test suites are important to test the basic functionality of tools. We present a framework that uses different source code patterns to generate Cross Site Scripting and SQL injection test cases. A decision tree is used to determine if the test cases are vulnerable. The test cases are split into two test suites. The first test suite contains 258,432 test cases that have influence on the decision trees. The second test suite contains 20 vulnerable test cases with different data flow patterns. The test cases are scanned with two commercial static code analysis tools to show that they can be used to benchmark and identify problems of static code analysis tools. Expert interviews confirm that the decision tree is a solid way to determine the vulnerable test cases and that the test suites are relevant.
ISO 26000
(2022)
Bei der internationalen Norm DIN ISO 26000, deren englische Originalfassung unter dem Titel Guidance on Social Responsibility (ISO 26000: 2010) veröffentlicht wurde, handelt es sich um den ersten und einzigen Standard zum Thema, der eine eindeutige, international konsensfähige Definition gesellschaftlicher Verantwortung von Unternehmen (CSR) vorgelegt hat und der empfiehlt, die damit verbundenen Aspekte nicht isoliert zu betrachten und zu managen. Aufgrund der Entwicklung im Rahmen eines aufwendigen globalen Multistakeholderprozesses auf der Basis des Konsensprinzips verfügen ihre Inhalte zudem über ein hohes Maß an Legitimität. Neben einer Betrachtung der Inhalte und Besonderheiten der Norm soll deutlich gemacht werden, dass und warum es für Organisationen aller Art lohnend sein kann, sich auch zehn Jahre nach der Veröffentlichung mit diesem umfassendsten Standard zum Thema auseinanderzusetzen: Welche Hinweise und Ratschläge für ein zeitgemäßes Management von CSR bzw. Nachhaltigkeit lassen sich für die Praxis daraus nach wie vor entnehmen? Welche Antworten bietet die ISO 26000 zu neueren gesellschaftlichen und wirtschaftspolitischen Trends, zu den heutigen Anforderungen an ein Nachhaltigkeitsmanagement? War man bei ihrer inhaltlichen Konzeption und Ausarbeitung dem Mainstream der damaligen Zeit vielleicht sogar voraus?
Because process and product innovations are usually no longer sufficient to establish a company in the market or to generate a competitive advantage, Business Model Innovation is considered a powerful tool, especially for start-ups for which innovation is at the core of their business. Due to the complexity of this process, frameworks should help entrepreneurs with executing Business Model Innovation. However, theory and practice diverge. The aim of this paper is to identify the needs of a start-up regarding Business Model Innovation frameworks, underlining the importance of Business Model Innovation for start-ups as well as the relevance of a supporting framework. The research results aim to contribute to an ideal process for Business Model Innovation when applied to start-ups.
In order to support entrepreneurs in the Business Model Innovation (BMI) process, practice-oriented frameworks such as the St. Gallen Business Model NavigatorTM (BMN) are considered to be a powerful tool. The aim of this paper is to identify strengths and limitations of the BMN when applied to start-ups in their early stages and to contribute to the optimization of the BMN in terms of applicability for start-ups. Furthermore, the paper aims to emphasize the importance of BMI for start-ups and the relevance of a supporting framework as well as formulating a unified catalogue of requirements of BMI frameworks for start-ups.
Das erfolgreiche Gestalten von Organisationen setzt die systematische Analyse ihrer Prozesse voraus. Das gilt auch und insbesondere für kleine und mittelgroße Unternehmen (KMU). Die praktische Durchführung solcher in KMU ist jedoch mit besonderen Herausforderungen verbunden, die in der vorhandenen Literatur bislang kaum reflektiert werden. In diesem Beitrag werden Erfahrungen aus 20 in KMU durchgeführten Prozessanalysen geteilt. Entlang der Prozessphasen werden unterschiedliche Gestaltungsmöglichkeiten vorgestellt und ihre spezifischen Vor- und Nachteile bei der praktischen Anwendung in KMU identifiziert. Der Beitrag unterstreicht die Relevanz von Prozessanalysen in KMU und befähigt zugleich zu ihrer Durchführung.
Dieses Arbeitspapier behandelt den aktuellen Markt von Legal-Tech-Diensten in Deutschland und die rechtlichen Entwicklungen bezüglich der dort bestehenden Law-Tech-Branche. Ziel ist es dabei, anhand einer systematischen Analyse der beteiligten Marktkräfte, die Attraktivität der Legal-Tech-Branche einzuschätzen, um dem Leser dadurch eine Hilfestellung für die Strategiebildung innerhalb Law-Tech bezogener Unternehmen sowie Kanzleien zu bieten, denn die strategische Planung eines Unternehmens ist als Basis für den nachhaltigen Erfolg desselben unabdinglich.
Darüber hinaus zielt die Arbeit darauf ab, dem Leser einen Überblick über die rechtlichen Entwicklungen im Bereich von Legal-Tech sowie damit einhergehend ein Basiswissen über die Hintergründe der Gesetzgebung in Bezug auf die Law-Tech-Branche zu verschaffen.
While managerial mobility is ubiquitously seen as an integral part of the success in firms’ internationalization, discerning its empirical merits has been impaired by the paucity of quasi-experimental evidence, or adequate instrumental variables. To overcome these objective limitations, this paper proposes a novel identification strategy, which uses a control function based on on-the-job search theory to correct estimates for the presence of self-selected mobility flows. Our analysis confirms the finding that managers’ specific market experience matters for firms’ internationalization, especially when it derives from longer tenures at the former jobs.
Regarding the attributes of managerial knowledge, our results reveal that on-the-job earned experience is at least as effective for firms’ internationalization as in born knowledge (i.e. origins) and that managers’ personal network of customers is an important asset in managers’ fund of expertise for the expansion into new markets.
As organizations struggle to cope with digital transformation in
an innovation environment, partnerships between startups and established
companies have become increasingly important. Building upon years of
practical experience and empirical research, we present advantages,
obstacles, and the keys to successful corporate-startup collaboration.
Bürgerliches Recht
(2022)
Die nun vorliegende vollständig überarbeitete und aktualisierte zehnte Auflage des bewährten Lehrbuches deckt die wesentlichen Inhalte des zivilrechtlichen Lehrstoffes ab. Es werden in kompakter Form der Allgemeine Teil des BGB, das (Allgemeine und Besondere) Schuldrecht sowie das Sachenrecht dargestellt. Vervollständigt wird dieses Buch mit einem abschließenden Kapitel zum Zivilprozessrecht. Geschult werden das Verständnis für die Strukturen und Zusammenhänge im Bürgerlichen Recht und das Verständnis für die Verbindungen mit dem Zivilprozessrecht. Eine Vielzahl von Beispielen aus der Praxis, einprägsame Illustrationen, zahlreiche Schemata und Fälle mit Lösungsvorschlägen ermöglichen damit gleichzeitig auch ein anwendungsorientiertes bzw. fallorientiertes Lernen. Seine inhaltliche Kompaktheit macht es so zu einem idealen studienbegleitenden Lehrbuch für Studierende an Universitäten, Hochschulen, Berufsakademien und anderen Bildungseinrichtungen.
Nachhaltige Entwicklung umfasst verschieden weite Definitionen und konzeptionelle Zugänge. Im Zentrum der Diskussion steht die zukünftige Entwicklungsfähigkeit von Biosphäre und Anthroposphäre im Sinne einer Koevolution. Thematisiert werden die zunehmende Eingriffstiefe in die Natur sowie die intersystemische Konkurrenz zwischen diesen beiden Sphären. Das evolutorische Verständnis der naturalen Produktion unterscheidet sich vom herkömmlichen Produktionsverständnis der Ökonomik. Aus diesen verschiedenen Zugängen ergibt sich ein Problemlösungsspektrum, das sich über eine integrative Verknüpfung der drei Strategieansätze und Handlungsfelder Effizienz, Konsistenz und Suffizienz erstreckt.
Ökonomische Aktivitäten sind auf den Input hochwertiger Energieträger angewiesen; diese sind knapp und werden in der fossil-nuklearen Energiewirtschaft aufgrund einer qualitativen Fehlanpassung zwischen Primärenergieeinsatz und Nutzenergiebedarf verschwenderisch genutzt. Daraus resultieren ökologische Probleme, insbesondere der Klimawandel, mit entsprechenden externen Kosten. Ein Umstieg auf erneuerbare Energien und effizientere Nutzungsstrukturen unterliegt diversen Pfadabhängigkeiten und ist aufgrund der multiplen Lernkosten mit hohen Pfadwechselkosten verbunden, die ebenfalls von der Gesellschaft getragen werden müssen. Unterschiedliche politökonomische Interessen der maßgeblichen Staaten verhindern derzeit harmonische weltweite Lösungen. Für eine evolutorische Energieökonomik ergeben sich einige Herausforderungen, insbesondere hinsichtlich der Klärung von sekundären und tertiären Pfadabhängigkeiten, der Erfassung systemischer Wechselwirkungen sowie der Problematik von Interventionsspiralen und der Formulierung von evolutorischen Designregeln für Energie- und Zertifikatemärkte.
Das 'essential' behandelt die technoökonomischen Grundlagen und deren Anwendung auf die Schlüsseltechnologien der Energiewende. Zunächst erfolgt eine inhaltliche Klärung und formale Herleitung von statischen und dynamischen Skaleneffekten sowie eine Übersicht bzgl. deren unterschiedlicher Kombinationsmöglichkeiten für die Diskussion von Best- und Worst-Case-Szenarien. Für eine Anwendung dieser Grundlagen stehen zunächst die diversen brennstoffbasierten KWK-Varianten, insbesondere Blockheizkraftwerke (BHKW), im Zentrum. Anschließend erfolgt eine Ausweitung der Betrachtungen auf die regenerativen Energietechnologien Photovoltaik und Windkraft. Mit einem kurzen Blick auf weitere Technologien wie Wärmepumpen sowie elektrische und thermische Energiespeicher finden diese Darstellungen ihren Abschluss.
Evaluation of tech ventures’ evolving business models: rules for performance-related classification
(2022)
At the early stage of a successful tech venture's life cycle, it is assumed that the business model will evolve to higher quality over time. However, there are few empirical insights into business model evolution patterns for the performance-related classification of early-stage tech ventures. We created relevant variables evaluating the evolution of the venture-centric network and the technological proposition of both digital and non-digital ventures' business models using the text of submissions to the official business plan award in the German State of Baden-Württemberg between 2006 and 2012. Applying a principal component analysis/rough set theory mixed methodology, we explore performance-related business model classification rules in the heterogeneous sample of business plans. We find that ventures need to demonstrate real interactions with their customers' needs to survive. The distinguishing success rules are related to patent applications, risk capital, and scaling of the organisation. The rules help practitioners to classify business models in a way that allows them to prioritise action for performance.
Die Automobilindustrie steht wirtschaftlich aktuell besser da, als von manchem erwartet. Sie steht aber gleichzeitig großen Herausforderungen gegenüber, denn wir erleben die Überlagerung dreier Transformationen, deren Auswirkungen sich wohl in keinem Markt so gravierend niederschlagen wie in diesem. Um hierbei die Rolle als Leitmarkt zu erhalten, braucht es mehr Veränderungsintelligenz und eine noch höhere Innovationsdynamik. Diese sind mit beidhändigen Organisationen zu erreichen, die die Ambidextrie beherrschen, gleichzeitig das Kerngeschäft zu optimieren und mit strategischer Innovation Zukunft zu erfinden.
Sleep analysis using a Polysomnography system is difficult and expensive. That is why we suggest a non-invasive and unobtrusive measurement. Very few people want the cables or devices attached to their bodies during sleep. The proposed approach is to implement a monitoring system, so the subject is not bothered. As a result, the idea is a non-invasive monitoring system based on detecting pressure distribution. This system should be able to measure the pressure differences that occur during a single heartbeat and during breathing through the mattress. The system consists of two blocks signal acquisition and signal processing. This whole technology should be economical to be affordable enough for every user. As a result, preprocessed data is obtained for further detailed analysis using different filters for heartbeat and respiration detection. In the initial stage of filtration, Butterworth filters are used.
The purpose of this paper is to examine the effects of perceived stress on traffic and road safety. One of the leading causes of stress among drivers is the feeling of having a lack of control during the driving process. Stress can result in more traffic accidents, an increase in driver errors, and an increase in traffic violations. To study this phenomenon, the Stress Perceived Questionnaire (PSQ) was used to evaluate the perceived stress while driving in a simulation. The study was conducted with participants from Germany, and they were grouped into different categories based on their emotional stability. Each participant was monitored using wearable devices that measured their instantaneous heart rate (HR). The preference for wearable devices was due to their non-intrusive and portable nature. The results of this study provide an overview of how stress can affect traffic and road safety, which can be used for future research or to implement strategies to reduce road accidents and promote traffic safety.
Extended Target Tracking With a Lidar Sensor Using Random Matrices and a Virtual Measurement Model
(2022)
Random matrices are widely used to estimate the extent of an elliptically contoured object. Usually, it is assumed that the measurements follow a normal distribution, with its standard deviation being proportional to the object’s extent. However, the random matrix approach can filter the center of gravity and the covariance matrix of measurements independently of the measurement model. This work considers the whole chain from data acquisition to the linear Kalman Filter with extension estimation as a reference plant. The input is the (unknown) ground truth (position and extent). The output is the filtered center of gravity and the filtered covariance matrix of the measurement distribution. A virtual measurement model emulates the behavior of the reference plant. The input of the virtual measurement model is adapted using the proposed algorithm until the output parameters of the virtual measurement model match the result of the reference plant. After the adaptation, the input to the virtual measurement model is considered an estimation for position and extent. The main contribution of this paper is the reference model concept and an adaptation algorithm to optimize the input of the virtual measurement model.
Generating synthetic data is a relevant point in the machine learning community. As accessible data is limited, the generation of synthetic data is a significant point in protecting patients' privacy and having more possibilities to train a model for classification or other machine learning tasks. In this work, some generative adversarial networks (GAN) variants are discussed, and an overview is given of how generative adversarial networks can be used for data generation in different fields. In addition, some common problems of the GANs and possibilities to avoid them are shown. Different evaluation methods of the generated data are also described.
Home health applications have evolved over the last few decades. Assistive systems such as a data platform in connection with health devices can allow for health-related data to be automatically transmitted to a database. However, there remain significant challenges concerning intermodular communication. Central among them is the challenge of achieving interoperability, the ability of devices to communicate and share data with each other. A major goal of this project was to extend an existing data platform (COMES®) and establish working interoperability by connecting assistive devices with differing approaches. We describe this process for a sleep monitoring and a physical exercise device. Furthermore, we aimed to test this setup and the implementation with a data platform in both a laboratory and an in-home setting with 11 elderly participants. The platform modification was realized, and the relevant changes were made so that the incoming data could be processed by the data platform, as well as visually displayed in real-time. Data was recorded by the respective device and transmitted into the data server with minor disruptions. Our observations affirmed that difficulties and data loss are far more likely to occur with increasing technical complexity, in the event of instable internet connection, or when the device setup requires (elderly) subjects to take specific steps for proper functioning. We emphasize the importance for tests and evaluations of home health technologies in real-life circumstances.
Sleep is essential to existence, much like air, water, and food, as we spend nearly one-third of our time sleeping. Poor sleep quality or disturbed sleep causes daytime solemnity, which worsens daytime activities' mental and physical qualities and raises the risk of accidents. With advancements in sensor and communication technology, sleep monitoring is moving out of specialized clinics and into our everyday homes. It is possible to extract data from traditional overnight polysomnographic recordings using more basic tools and straightforward techniques. Ballistocardiogram is an unobtrusive, non-invasive, simple, and low-cost technique for measuring cardiorespiratory parameters. In this work, we present a sensor board interface to facilitate the communication between force sensitive resistor sensor and an embedded system to provide a high-performing prototype with an efficient signal-to-noise ratio. We have utilized a multi-physical-layer approach to locate each layer on top of another, yet supporting a low-cost, compact design with easy deployment under the bed frame.
Determination of accelerometer sensor position for respiration rate detection: Initial research
(2022)
Continuous monitoring of a patient's vital signs is essential in many chronic illnesses. The respiratory rate (RR) is one of the vital signs indicating breathing diseases. This article proposes the initial investigation for determining the accelerometric sensor position of a non-invasive and unobtrusive respiratory rate monitoring system. This research aims to determine the sensor position in relation to the patient, which can provide the most accurate values of the mentioned physiological parameter. In order to achieve the result, the particular system setup, including a mechanical sensor holder construction was used. The breathing signals from 5 participants were analyzed corresponding to the relaxed state. The main criterion for selecting a suitable sensor position was each patient's average acceleration amplitude excursion, which corresponds to the respiratory signal. As a result, we provided one more defined important parameter for the considered system, which was not determined before.
Healthy sleep is required for sufficient restoration of the human body and brain. Therefore, in the case of sleep disorders, appropriate therapy should be applied timely, which requires a prompt diagnosis. Traditionally, a sleep diary is a part of diagnosis and therapy monitoring for some sleep disorders, such as cognitive behaviour therapy for insomnia. To automatise sleep monitoring and make it more comfortable for users, substituting a sleep diary with a smartwatch measurement could be considered. With the aim of providing accurate results, a study with a total of 30 night recordings was conducted. Objective sleep measurement with a Samsung Galaxy Watch 4 was compared with a subjective approach (sleep diary), evaluating the four relevant sleep characteristics: time of getting asleep, wake up time, sleep efficiency (SE), and total sleep time (TST). The performed analysis has demonstrated that the median difference between both measurement approaches was equal to 7 and 3 minutes for a time of getting asleep and wake up time correspondingly, which allows substituting a subjective measurement with a smartwatch. The SE was determined with a median difference between the two measurement methods of 5.22%. This result also implicates a possibility of substitution. Some single recordings have indicated a higher variance between the two approaches. Therefore, the conclusion can be made that a substitution provides reliable results primarily in the case of long-term monitoring. The results of the evaluation of the TST measurement do not allow to recommend substitution of the measurement method.
Reliability Assessment of an Unscented Kalman Filter by Using Ellipsoidal Enclosure Techniques
(2022)
The Unscented Kalman Filter (UKF) is widely used for the state, disturbance, and parameter estimation of nonlinear dynamic systems, for which both process and measurement uncertainties are represented in a probabilistic form. Although the UKF can often be shown to be more reliable for nonlinear processes than the linearization-based Extended Kalman Filter (EKF) due to the enhanced approximation capabilities of its underlying probability distribution, it is not a priori obvious whether its strategy for selecting sigma points is sufficiently accurate to handle nonlinearities in the system dynamics and output equations. Such inaccuracies may arise for sufficiently strong nonlinearities in combination with large state, disturbance, and parameter covariances. Then, computationally more demanding approaches such as particle filters or the representation of (multi-modal) probability densities with the help of (Gaussian) mixture representations are possible ways to resolve this issue. To detect cases in a systematic manner that are not reliably handled by a standard EKF or UKF, this paper proposes the computation of outer bounds for state domains that are compatible with a certain percentage of confidence under the assumption of normally distributed states with the help of a set-based ellipsoidal calculus. The practical applicability of this approach is demonstrated for the estimation of state variables and parameters for the nonlinear dynamics of an unmanned surface vessel (USV).
The scoring of sleep stages is an essential part of sleep studies. The main objective of this research is to provide an algorithm for the automatic classification of sleep stages using signals that may be obtained in a non-obtrusive way. After reviewing the relevant research, the authors selected a multinomial logistic regression as the basis for their approach. Several parameters were derived from movement and breathing signals, and their combinations were investigated to develop an accurate and stable algorithm. The algorithm was implemented to produce successful results: the accuracy of the recognition of Wake/NREM/REM stages is equal to 73%, with Cohen's kappa of 0.44 for the analyzed 19324 sleep epochs of 30 seconds each. This approach has the advantage of using the only movement and breathing signals, which can be recorded with less effort than heart or brainwave signals, and requiring only four derived parameters for the calculations. Therefore, the new system is a significant improvement for non-obtrusive sleep stage identification compared to existing approaches.
There have been substantial research efforts for algorithms to improve continuous and automated assessment of various health-related questions in recent years. This paper addresses the deployment gap between those improving algorithms and their usability in care and mobile health applications. In practice, most algorithms require significant and founded technical knowledge to be deployed at home or support healthcare professionals. Therefore, the digital participation of persons in need of health care professionals lacks a usable interface to use the current technological advances. In this paper, we propose applying algorithms taken from research as web-based microservices following the common approach of a RESTful service to bridge the gap and make algorithms accessible to caregivers and patients without technical knowledge and extended hardware capabilities. We address implementation details, interpretation and realization of guidelines, and privacy concerns using our self-implemented example. Also, we address further usability guidelines and our approach to those.
With the high resolution of modern sensors such as multilayer LiDARs, estimating the 3D shape in an extended object tracking procedure is possible. In recent years, 3D shapes have been estimated in spherical coordinates using Gaussian processes, spherical double Fourier series or spherical harmonics. However, observations have shown that in many scenarios only a few measurements are obtained from top or bottom surfaces, leading to error-prone estimates in spherical coordinates. Therefore, in this paper we propose to estimate the shape in cylindrical coordinates instead, applying harmonic functions. Specifically, we derive an expansion for 3D shapes in cylindrical coordinates by solving a boundary value problem for the Laplace equation. This shape representation is then integrated in a plain greedy association model and compared to shape estimation procedures in spherical coordinates. Since the shape representation is only integrated in a basic estimator, the results are preliminary and a detailed discussion for future work is presented at the end of the paper.
The respiratory rate is a vital sign indicating breathing illness. It is necessary to analyze the mechanical oscillations of the patient's body arising from chest movements. An inappropriate holder on which the sensor is mounted, or an inappropriate sensor position is some of the external factors which should be minimized during signal registration. This paper considers using a non-invasive device placed under the bed mattress and evaluates the respiratory rate. The aim of the work is the development of an accelerometer sensor holder for this system. The normal and deep breathing signals were analyzed, corresponding to the relaxed state and when taking deep breaths. The evaluation criterion for the holder's model is its influence on the patient's respiratory signal amplitude for each state. As a result, we offer a non-invasive system of respiratory rate detection, including the mechanical component providing the most accurate values of mentioned respiratory rate.
Sleep is an important part of our life that significantly influences our health and well-being. The monitoring of sleep can provide data based on which sleep quality could be improved. This paper presents a system for heart rate detection during sleep. The data is collected from sensors underneath the test subjects. Though the data contains noise, it needs to be filtered to remove it. Due to the low strength of the signals, they need to be amplified after filtering. At some points of the signal, particular heartbeats may not be tracked by sensors due to the failure of a sensor or other reasons, which should be considered. The heart rate is detected in intervals of 15 s. A tool is implemented that detects the heart rate and visualizes it. The preprocessing of the data is performed with several filters: a highpass filter, a band-reject filter, a lowpass filter, and a motion detector. After the preprocessing of the data, the quality of the signal is significantly increased, and detection is possible.
In this paper, a novel feature-based sampling strategy for nonlinear Model Predictive Path Integral (MPPI) control is presented. Using the MPPI approach, the optimal feedback control is calculated by solving a stochastic optimal control (OCP) problem online by evaluating the weighted inference of sampled stochastic trajectories. While the MPPI algorithm can be excellently parallelized, the closed-loop performance strongly depends on the information quality of the sampled trajectories. To draw samples, a proposal density is used. The solver’s and thus, the controller’s performance is of high quality if the sampled trajectories drawn from this proposal density are located in low-cost regions of state-space. In classical MPPI control, the explored state-space is strongly constrained by assumptions that refer to the control value’s covariance matrix, which are necessary for transforming the stochastic Hamilton–Jacobi–Bellman (HJB) equation into a linear second-order partial differential equation. To achieve excellent performance even with discontinuous cost functions, in this novel approach, knowledge-based features are introduced to constitute the proposal density and thus the low-cost region of state-space for exploration. This paper addresses the question of how the performance of the MPPI algorithm can be improved using a feature-based mixture of base densities. Furthermore, the developed algorithm is applied to an autonomous vessel that follows a track and concurrently avoids collisions using an emergency braking feature. Therefore, the presented feature-based MPPI algorithm is applied and analyzed in both simulation and full-scale experiments.
The use of deep learning models with medical data is becoming more widespread. However, although numerous models have shown high accuracy in medical-related tasks, such as medical image recognition (e.g. radiographs), there are still many problems with seeing these models operating in a real healthcare environment. This article presents a series of basic requirements that must be taken into account when developing deep learning models for biomedical time series classification tasks, with the aim of facilitating the subsequent production of the models in healthcare. These requirements range from the correct collection of data, to the existing techniques for a correct explanation of the results obtained by the models. This is due to the fact that one of the main reasons why the use of deep learning models is not more widespread in healthcare settings is their lack of clarity when it comes to explaining decision making.
Deep Learning-based EEG Detection of Mental Alertness States from Drivers under Ethical Aspects
(2022)
One of the most critical factors for a successful road trip is a high degree of alertness while driving. Even a split second of inattention or sleepiness in a crucial moment, will make the difference between life and death. Several prestigious car manufacturers are currently pursuing the aim of automated drowsiness identification to resolve this problem. The path between neuro-scientific research in connection with artificial intelligence and the preservation of the dignity of human individual’s and its inviolability, is very narrow. The key contribution of this work is a system of data analysis for EEGs during a driving session, which draws on previous studies analyzing heart rate (ECG), brain waves (EEG), and eye function (EOG). The gathered data is hereby treated as sensitive as possible, taking ethical regulations into consideration. Obtaining evaluable signs of evolving exhaustion includes techniques that obtain sleeping stage frequencies, problematic are hereby the correlated interference’s in the signal. This research focuses on a processing chain for EEG band splitting that involves band-pass filtering, principal component analysis (PCA), independent component analysis (ICA) with automatic artefact severance, and fast fourier transformation (FFT). The classification is based on a step-by-step adaptive deep learning analysis that detects theta rhythms as a drowsiness predictor in the pre-processed data. It was possible to obtain an offline detection rate of 89% and an online detection rate of 73%. The method is linked to the simulated driving scenario for which it was developed. This leaves space for more optimization on laboratory methods and data collection during wakefulness-dependent operations.
Experimental Validation of Ellipsoidal Techniques for State Estimation in Marine Applications
(2022)
A reliable quantification of the worst-case influence of model uncertainty and external disturbances is crucial for the localization of vessels in marine applications. This is especially true if uncertain GPS-based position measurements are used to update predicted vessel locations that are obtained from the evaluation of a ship’s state equation. To reflect real-life working conditions, these state equations need to account for uncertainty in the system model, such as imperfect actuation and external disturbances due to effects such as wind and currents. As an application scenario, the GPS-based localization of autonomous DDboat robots is considered in this paper. Using experimental data, the efficiency of an ellipsoidal approach, which exploits a bounded-error representation of disturbances and uncertainties, is demonstrated.
In many cases continuous monitoring of vital signals is required and low intrusiveness is an important requirement. Incorporating monitoring systems in the hospital or home bed could have benefits for patients and caregivers. The objective of this work is the definition of a measurement protocol and the creation of a data set of measurements using commercial and low-cost prototypes devices to estimate heart rate and breathing rate. The experimental data will be used to compare results achieved by the devices and to develop algorithms for feature extraction of vital signals.
Virtual measurement models (VMM) can be used to generate artificial measurements and emulate complex sensor models such as Lidar. The input of the VMM is an estimation and the output is the set of measurements this estimation would cause. A Kalman filter with extension estimation based on random matrices is used to filter mean and covariance of the real measurements. If these match the mean and covariance of the artificial measurements, then the given estimation is appropriate. The optimal input of the VMM is found using an adaptation algorithm. In this paper, the VMM approach is expanded for multi-extended object tracking where objects can be occluded and are only partially visible. The occlusion can be compensated if the extension estimation is performed for all objects together. The VMM now receives as input an estimation for the multi-object state and the output are the measurements that this multi-object state would cause.
Der Beitrag beschreibt beispielhaft die administrativen, organisatorischen und sozialen Voraussetzungen gelungener Austauschprogramme mit chinesischen Partnerhochschulen. Hierzu gehört neben einer intensiven Beziehungspflege mit diesen Partnerinstitutionen eine gelebte Willkommenskultur für chinesische Studierende an der deutschen Hochschule. Letztere beinhaltet eine über die notwendigen administrativen Prozesse hinausgehende Betreuung, besondere Kursangebote sowie eine kontinuierliche Vernetzung und Einbindung der chinesischen Studierenden durch verschiedene extracurriculare Aktivitäten zur Integration in den Studienalltag und in das Alltagsleben über verschiedene Phasen hinweg (vor der Ausreise, bei der Ankunft, im Verlauf des Studiums, bei der Gestaltung von Praxisphasen sowie beim Übergang ins Berufsleben). Als Teil
dieses Maßnahmenplans fördern interkulturelle Kursangebote in kulturell gemischten Gruppen nicht nur die Integration der chinesischen Studierenden. Sie leisten auch einen wichtigen Beitrag zur Stärkung der internationalen Ausbildung deutscher Studierender im Sinne einer internationalization@home. Entsprechende Angebote erhöhen damit die Wertschätzung von Internationalisierung als Mehrwert für die gesamte Hochschule. Gleichzeitig unterstützen sie den Ausbau interkultureller Sensibilität als wichtiger Qualifikation für das zukünftige Berufsleben für die Studierenden beider Seiten. Um all diese Maßnahmen zu verwalten und umzusetzen, sind personelle Ressourcen zur Betreuung und Evaluation der Programme erforderlich. Darüber hinaus bedarf es einer konstruktiven Kommunikationskultur zwischen verschiedenen Abteilungen der Hochschule sowie hinreichend mit China-Kompetenz ausgestatteter Akteur*innen (Mitarbeiter*innen im Akademischen Auslandsamt, Professor*innen, Auslands- und Regionalbeauftragte etc.).
Multi-object tracking filters require a birth density to detect new objects from measurement data. If the initial positions of new objects are unknown, it may be useful to choose an adaptive birth density. In this paper, a circular birth density is proposed, which is placed like a band around the surveillance area. This allows for 360° coverage. The birth density is described in polar coordinates and considers all point-symmetric quantities such as radius, radial velocity and tangential velocity of objects entering the surveillance area. Since it is assumed that these quantities are unknown and may vary between different targets, detected trajectories, and in particular their initial states, are used to estimate the distribution of initial states. The adapted birth density is approximated as a Gaussian mixture, so that it can be used for filters operating on Cartesian coordinates.
Handbuch China-Kompetenzen
(2022)
Angesichts des rasanten wirtschaftlichen und wissenschaftlichen Aufstrebens Chinas offenbart sich an deutschen Hochschulen ein deutlicher Mangel an China-Kompetenzen auf allen Ebenen. Wie sind chinesische Kooperationspartner*innen einzuschätzen? Wie sollten Studierende ausgebildet werden, damit sie in Zukunft informiert und (selbst-)bewusst zusammenarbeiten können? Wie kann erreicht werden, dass chinesische Studierende ihre Zeit in Deutschland als akademisch und persönlich bereichernd empfinden? Best practice-Beispiele von elf deutschen Hochschulen geben Anregungen, die sich auch übergreifend auf verschiedene Bildungseinrichtungen und Partnerländer übertragen lassen.
Der Artikel stellt den methodisch-didaktischen Ansatz get_connected zur Förderung der Zusammenarbeit in kulturell gemischten Teams vor. Mit diesem Ansatz reagiert die HTWG Konstanz auf die langjährige Erfahrung, dass sich trotz grundsätzlich optimaler struktureller Bedingungen für interkulturelles Lernen – mit regelmäßiger Teilnahme chinesischer Studierender im
Fachstudium an der deutschen Hochschule – beiderseitige Vorurteile über »die anderen« nicht automatisch auflösen, sondern sich sogar verstärken können. In der konkreten Zusammenarbeit zeigt sich, dass das eigene Handeln oftmals hinter dem für sich selbst formulierten Anspruch an kulturell adäquates Verhalten zurückbleibt. Mit Methoden des erfahrungsbasierten interkulturellen Lernens
und insbesondere durch die von den Lehrenden als Coachinnen bzw. Coaches begleitete Arbeit mit Emotionen in kulturell gemischten (deutsch-chinesischen) Gruppen werden die Studierenden darin unterstützt, als Vorbereitung auf eine zukünftige Tätigkeit in international vernetzten Teams ihr
Kommunikationsverhalten zu reflektieren, den Perspektivenwechsel sowie neue emotionale bzw. kommunikative Strategien einzuüben und damit ihre interkulturelle Handlungskompetenz – auch im deutsch-chinesischen Dialog – zu verbessern. Der Beitrag stellt den im Rahmen von designbased research über mehrere Semester hinweg (weiter-)entwickelten Ansatz get_connected und
seine Umsetzung in einem Kursformat zum Erwerb interkultureller (China-)Kompetenz für Studierende aller Fachrichtungen vor. Die konkreten Erfahrungen bei der (Online-)Durchführung des Kurskonzepts im Sommersemester 2021 an der HTWG Konstanz unter Einbeziehung chinesischer (und internationaler) Studierender der Partnerhochschule Beijing Institute of Technology werden
im Folgekapitel (Beitrag von Thelen, Bai und Obendiek) dargestellt.
Chinesische Studierende in der wissenschaftlichen Auseinandersetzungskultur an deutschen Hochschulen
(2022)
Die zunehmende internationale Vernetzung der akademischen Welt, die sich in den
aktuellen Internationalisierungsbemühungen deutscher Hochschulen widerspiegelt, erfordert eine Auseinandersetzung mit interkulturellen Aspekten der Hochschuldidaktik. Unterschiedliche Lernstile und Rollenerwartungen an Lehrende und Studierende beeinflussen die gegenseitige Wahrnehmung und den Studienerfolg. Der Beitrag reflektiert Erfahrungen deutscher/westlicher Lehrender und chinesischer Studierender: Aus verschiedenen Perspektiven und auf unterschiedlichen Ebenen werden Diskrepanzen zwischen Erwartungen und tatsächlichen Gegebenheiten aufgezeigt und im Kontext unterschiedlicher Lerntraditionen erklärt. Dabei stehen die Anforderungen an die Lehrenden als den zentralen Akteur*innen einer erfolgreichen Wissensvermittlung im Vordergrund. Im internationalen Kontext sind ihre interkulturellen Kompetenzen ähnlich wichtig wie ihre Fachkompetenzen. Die chinesische Lerntradition erschwert chinesischen Studierenden einen direkten Anschluss an die Studienkultur im deutschen Hochschulsystem. Zu dem Hemmnis, in einer Fremdsprache zu studieren, kommt die Schwierigkeit, Debattenkultur und Wissenschaftsstreit als angemessene Auseinandersetzungsformen zu verstehen. Der direkte, offene und häufig nur aus westlicher Sicht als objektiv empfundene Umgang mit Themen kann aufgrund unterschiedlicher kultureller Prägung dazu beitragen, dass das Studium in Deutschland als anstrengend und befremdlich empfunden wird. In diesem Beitrag werden erfahrungsbasierte Überlegungen geteilt, wie chinesische Studierende an die Debattenkultur an deutschen Hochschulen herangeführt werden können. Der Beitrag endet mit Hinweisen und guidelines für deutsche Lehrende im Umgang mit chinesischen Studierenden.
In diesem Beitrag stellen wir Inhalte und Methoden des Kurses »How to communicate successfully in international teams« vor. Wir zeigen auf, wie einzelne Kurselemente mittels unseres methodisch-didaktischen Ansatzes get_connected vermittelt werden. Die Darstellung basiert auf der Dokumentation eines im Sommersemester 2021 in Kooperation zwischen der HTWG Konstanz und dem Beijing Institute of Technology (online) durchgeführten Kurses. Die im Rahmen der Lehrveranstaltung dokumentierten Reflexionen, Einsichten und Evaluationen der Kursteilnehmenden weisen auf einen Kompetenzaufbau im Hinblick auf die Fähigkeit zu Perspektivenwechsel, Selbstreflexion, Frustrationstoleranz, Flexibilität und empathische Kommunikation hin.
Recognition of sleep and wake states is one of the relevant parts of sleep analysis. Performing this measurement in a contactless way increases comfort for the users. We present an approach evaluating only movement and respiratory signals to achieve recognition, which can be measured non-obtrusively. The algorithm is based on multinomial logistic regression and analyses features extracted out of mentioned above signals. These features were identified and developed after performing fundamental research on characteristics of vital signals during sleep. The achieved accuracy of 87% with the Cohen’s kappa of 0.40 demonstrates the appropriateness of a chosen method and encourages continuing research on this topic.
In this paper, approximating the shape of a sailing boat using elliptic cones is investigated. Measurements are assumed to be gathered from the target's surface recorded by 3D scanning devices such as multilayer LiDAR sensors. Therefore, different models for estimating the sailing boat's extent are presented and evaluated in simulated and real-world scenarios. In particular, the measurement source association problem is addressed in the models. Simulated investigations are conducted with a static and a moving elliptic cone. The real-world scenario was recorded with a Velodyne Alpha Prime (VLP-128) mounted on a ferry of Lake Constance. Final results of this paper constitute the extent estimation of a single sailing boat using LiDAR data applying various measurement models.
Nowadays, the importance of early active patient mobilization in the recovery and rehabilitation phase has increased significantly. One way to involve patients in the treatment is a gamification-like approach, which is one of the methods of motivation in various life processes. This article shows a system prototype for patients who require physical activity because of active early mobilization after medical interventions or during illness. Bedridden patients and people with a sedentary lifestyle (predominantly lying in bed) are also potential users. The main idea for the concept was non-contact system implementation for the patients making them feel effortless during its usage. The system consists of three related parts: hardware, software, and game application. To test the relevance and coherence of the system, it was used by 35 people. The participants were asked to play a video game requiring them to make body movements while lying down. Then they were asked to take part in a small survey to evaluate the system's usability. As a result, we offer a prototype consisting of hardware and software parts that can increase and diversify physical activity during active early mobilization of patients and prevent the occurrence of possible health problems due to predominantly low activity. The proposed design can be possibly implemented in hospitals, rehabilitation centers, and even at home.
The citizen-centered health platform project is intended to provide a platform that can be used in EU cross-border regions, where social and economic exchange occurs across national borders. The overriding challenges are: (a) social: improving citizen-centered health and care provision; (b) technical: providing a digital platform for networking citizens, service providers, and municipal actors; (c) economic: developing long-term successful (sustainable) business models/value chains. The platform should strengthen and expand existing networks and establish new regional networks. Each network addresses particular challenges and apply them in a region-specific manner. Here, the national boundary conditions and the interregional needs play an essential role. These objectives require sufficient participation of civil society representatives. Furthermore, the platform will establish an overarching, sustainable, and knowledge-based network of health experts. The platform is to be jointly developed and implemented in the regions and follow an open-access approach. Therefore, synergies will be shared more quickly, strengthening competencies and competitiveness. In addition to practice partners, scientific and municipal institutions and SMEs are involved. The actors thus contribute to scientific performance, innovative strength, and resilience.
In recent decades, it can be observed that a steady increase in the volume of tourism is a stable trend. To offer travel opportunities to all groups, it is also necessary to prepare offers for people in need of long-term care or people with disabilities. One of the ways to improve accessibility could be digital technologies, which could help in planning as well as in carrying out trips. In the work presented, a study of barriers was first conducted, which led to selecting technologies for a test setup after analysis. The main focus was on a mobile app with travel information and 360° tours. The evaluation results showed that both technologies could increase accessibility, but some essential aspects (such as usability, completeness, relevance, etc.) need to be considered when implementing them.
Gamification is one of the recognized methods of motivating people in various life processes, and it has spread to many spheres of life, including healthcare. This article proposes a system design for long-term care patients using the method mentioned. The proposed system aims to increase patient engagement in the treatment and rehabilitation process via gamification. Literature research on available and earlier proposed systems was conducted to develop a suited system design. The primary target group includes bedridden patients and a sedentary lifestyle (predominantly lying in bed). One of the main criteria for selecting a suitable option was its contactless realization for the mentioned target groups in long-term care cases. As a result, we developed the system design for hardware and software that could prevent bedsores and other health problems from occurring because of low activity. The proposed design can be tested in hospitals, nursing homes, and rehabilitation centers.
The digital twin concept has been widely known for asset monitoring in the industry for a long time. A clear example is the automotive industry. Recently, there has also been significant interest in the application of digital twins in healthcare, especially in genomics in what is known as precision medicine. This work focuses on another medical speciality where digital twins can be applied, sleep medicine. However, there is still great controversy about the fundamentals that constitute digital twins, such as what this concept is based on and how it can be included in healthcare effectively and sustainably. This article reviews digital twins and their role so far in what is known as personalized medicine. In addition, a series of steps will be exposed for a possible implementation of a digital twin for a patient suffering from sleep disorders. For this, artificial intelligence techniques, clinical data management, and possible solutions for explaining the results derived from artificial intelligence models will be addressed.
This paper presents the swinging up and stabilization control of a Furuta pendulum using the recently published nonlinear Model Predictive Path Integral (MPPI) approach. This algorithm is based on a path integral over stochastic trajectories and can be parallelized easily. The controller parameters are tuned offline regarding the nonlinear system dynamics and simulations. Constraints in terms of state and input are taken into account in the cost function. The presented approach sequentially computes an optimal control sequence that minimizes this optimal control problem online. The control strategy has been tested in full-scale experiments using a pendulum prototype. The investigated MPPI controller has demonstrated excellent performance in simulation for the swinging up and stabilizing task. In order to also achieve outstanding performance in a real-world experiment using a controller with limited computing power, a linear quadratic controller (LQR) is designed for the stabilization task. In this paper, the determination of the controller parameters for the MPPI algorithm is described in detail. Further, a discussion treats the advantages of the nonlinear MPPI control.
Docking Control of a Fully-Actuated Autonomous Vessel using Model Predictive Path Integral Control
(2022)
This paper presents the docking control of an autonomous vessel using the nonlinear Model Predictive Path Integral (MPPI) approach. This algorithm is based on a path integral over stochastic trajectories and can be parallelized easily. The controller parameters are tuned offline using knowledge of the system and simulations, including nonlinear state and disturbance observer. The cost function implicitly contains information regarding the surrounding of the docking position. This approach allows continuous optimization of the trajectory with respect to the system state, disturbance state and actuator dynamics. The control strategy has been tested in full-scale experiments using the solar research vessel Solgenia. The investigated MPPI controller has demonstrated excellent performance in both, simulation and real-world experiments. This paper addresses the question of how the MPPI algorithm can be applied to dock a fully-actuated vessel and what benefits its application achieves.
Outcomes with a natural order commonly occur in prediction problems and often the available input data are a mixture of complex data like images and tabular predictors. Deep Learning (DL) models are state-of-the-art for image classification tasks but frequently treat ordinal outcomes as unordered and lack interpretability. In contrast, classical ordinal regression models consider the outcome’s order and yield interpretable predictor effects but are limited to tabular data. We present ordinal neural network transformation models (ontrams), which unite DL with classical ordinal regression approaches. ontrams are a special case of transformation models and trade off flexibility and interpretability by additively decomposing the transformation function into terms for image and tabular data using jointly trained neural networks. The performance of the most flexible ontram is by definition equivalent to a standard multi-class DL model trained with cross-entropy while being faster in training when facing ordinal outcomes. Lastly, we discuss how to interpret model components for both tabular and image data on two publicly available datasets.
Zur Bewertung von Strategien und Handlungsoptionen im Themenfeld Bioökonomie
ist es naheliegend, eine naturinspirierte Bewertungsmethodik zu verwenden.
Dieser Beitrag stellt daher den biokybernetischen Ansatz nach Frederic Vester als
Methodik in den Mittelpunkt, um nachhaltigkeitskonforme Passungskriterien für
bioökonomische Innovationen und Konzepte zu beschreiben sowie insbesondere
die systemischen Wechselwirkungen und damit die Komplexität dieses Themenfeldes
zu erfassen. So wird auch die Ambivalenz von Innovationen im Themen- und
Handlungsfeld Bioökonomie thematisiert. Letztlich können mit diesem Ansatz
die prinzipiellen Voraussetzungen für nachhaltigkeitsorientierte bioökonomische
Innovationen in Richtung Erneuerbarkeit, Zirkularität, Effizienz, ökologische Verträglichkeit und Klimaneutralität geklärt werden.
Mit Effizienz- und Konsistenzlösungen lässt sich sowohl der Energiebedarf vermindern, als auch mit einer besseren ökologischen und strukturellen Passung im
Sinne der Bioökonomie versehen. Dieser Beitrag stellt die Möglichkeiten zur Steigerung der industriellen Energieeffizienz mittels lernenden Energieeffizienz-Netzwerken vor. Thematisiert werden Konzepte zur Überwindung von Hemmnissen durch Lernerfahrungen, insbesondere mittels des Synergiekonzeptes als innovativer Lernplattform sowie die systemischen Wechselwirkungen in diesem Kontext. Darüber hinaus werden hierzu korrespondierende innovationsorientierte Organisationsvarianten für das betriebliche Energiemanagement erläutert. Abschließend beleuchtet der Beitrag Konzepte von betrieblichen und überbetrieblichen Energieverbünden, insbesondere der gekoppelten Energieerzeugung und -nutzung, z. B. im Bereich der Wärmenutzung.
Large persistent memory is crucial for many applications in embedded systems and automotive computing like AI databases, ADAS, and cutting-edge infotainment systems. Such applications require reliable NAND flash memories made for harsh automotive conditions. However, due to high memory densities and production tolerances, the error probability of NAND flash memories has risen. As the number of program/erase cycles and the data retention times increase, non-volatile NAND flash memories' performance and dependability suffer. The read reference voltages of the flash cells vary due to these aging processes. In this work, we consider the issue of reference voltage adaption. The considered estimation procedure uses shallow neural networks to estimate the read reference voltages for different life-cycle conditions with the help of histogram measurements. We demonstrate that the training data for the neural networks can be enhanced by using shifted histograms, i.e., a training of the neural networks is possible based on a few measurements of some extreme points used as training data. The trained neural networks generalize well for other life-cycle conditions.
In this letter, we present an approach to building a new generalized multistream spatial modulation system (GMSM), where the information is conveyed by the two active antennas with signal indices and using all possible active antenna combinations. The signal constellations associated with these antennas may have different sizes. In addition, four-dimensional hybrid frequency-phase modulated signals are utilized in GMSM. Examples of GMSM systems are given and computer simulation results are presented for transmission over Rayleigh and deep Nakagami- m flat-fading channels when maximum-likelihood detection is used. The presented results indicate a significant improvement of characteristics compared to the best-known similar systems.
Personalized remote healthcare monitoring is in continuous development due to the technology improvements of sensors and wearable electronic systems. A state of the art of research works on wearable sensors for healthcare applications is presented in this work. Furthermore, a state of the art of wearable devices, chest and wrist band and smartwatches available on the market for health and sport monitoring is presented in this paper. Many activity trackers are commercially available. The prices are continuously reducing and the performances are improving, but commercial devices do not provide raw data and are therefore not useful for research purposes.
Automotive computing applications like AI databases, ADAS, and advanced infotainment systems have a huge need for persistent memory. This trend requires NAND flash memories designed for extreme automotive environments. However, the error probability of NAND flash memories has increased in recent years due to higher memory density and production tolerances. Hence, strong error correction coding is needed to meet automotive storage requirements. Many errors can be corrected by soft decoding algorithms. However, soft decoding is very resource-intensive and should be avoided when possible. NAND flash memories are organized in pages, and the error correction codes are usually encoded page-wise to reduce the latency of random reads. This page-wise encoding does not reach the maximum achievable capacity. Reading soft information increases the channel capacity but at the cost of higher latency and power consumption. In this work, we consider cell-wise encoding, which also increases the capacity compared to page-wise encoding. We analyze the cell-wise processing of data in triple-level cell (TLC) NAND flash and show the performance gain when using Low-Density Parity-Check (LDPC) codes. In addition, we investigate a coding approach with page-wise encoding and cell-wise reading.
The trajectory tracking problem for a fully-actuated real-scaled surface vessel is addressed in this paper by designing a backstepping controller with a multivariable integral action, considering the thruster allocation problem. The performance and robustness of this controller are evaluated in simulation, taking into account environmental disturbance forces and modeling mismatch, using a docking maneuver as a reference trajectory. Furthermore, a comparison between the backstepping controller and a nonlinear position PID-Control with flatness based-feedforward is also analyzed.
The Black Forest offers renewable energy as a specific tourist destination in the form of bioenergy villages (BEV). Particularly expert tourists tend to visit them. The results of two quantitative surveys on the supply and demand side show that there is, up to now, an untapped potential among experienceoriented
tourists for this type of niche tourism.
Die vorliegende Studie analysiert die Barrierefreiheit der
Stadt Konstanz im Hinblick auf Angebote für und Nachfrage von Touristinnen und Touristen. Die Datenerhebung basierte auf einem Methodenmix aus Interviews und Umfragen von Probanden und Probandinnen mit Behinderungen und zuständigen Akteurinnen und Akteuren in der Stadtplanung sowie Begehungen vor Ort. Als theoretische Grundlage wird das Modell der Unabhängigkeit nach
Nosek and Fuhrer (1992) verwendet. Die Untersuchung zeigt, dass der Bedarf an barrierefreien Angeboten sehr divers ist und die Umsetzung im Sinne eines Universal Design durch die zunehmende Nachfrage zentral. Die Analyse des Tourismusraum Konstanz zeigt Schwachpunkte und Stärken, mit denen sich Implikationen für andere Tourismusregionen ableiten lassen.
Reed-Muller (RM) codes have recently regained some interest in the context of low latency communications and due to their relation to polar codes. RM codes can be constructed based on the Plotkin construction. In this work, we consider concatenated codes based on the Plotkin construction, where extended Bose-Chaudhuri-Hocquenghem (BCH) codes are used as component codes. This leads to improved code parameters compared to RM codes. Moreover, this construction is more flexible concerning the attainable code rates. Additionally, new soft-input decoding algorithms are proposed that exploit the recursive structure of the concatenation and the cyclic structure of the component codes. First, we consider the decoding of the cyclic component codes and propose a low complexity hybrid ordered statistics decoding algorithm. Next, this algorithm is applied to list decoding of the Plotkin construction. The proposed list decoding approach achieves near-maximum-likelihood performance for codes with medium lengths. The performance is comparable to state-of-the-art decoders, whereas the complexity is reduced.
The code-based McEliece cryptosystem is a promising candidate for post-quantum cryptography. The sender encodes a message, using a public scrambled generator matrix, and adds a random error vector. In this work, we consider q-ary codes and restrict the Lee weight of the added error symbols. This leads to an increased error correction capability and a larger work factor for information-set decoding attacks. In particular, we consider codes over an extension field and use the one-Lee error channel, which restricts the error values to Lee weight one. For this channel model, generalized concatenated codes can achieve high error correction capabilities. We discuss the decoding of those codes and the possible gain for decoding beyond the guaranteed error correction capability.
Large-scale quantum computers threaten the security of today's public-key cryptography. The McEliece cryptosystem is one of the most promising candidates for post-quantum cryptography. However, the McEliece system has the drawback of large key sizes for the public key. Similar to other public-key cryptosystems, the McEliece system has a comparably high computational complexity. Embedded devices often lack the required computational resources to compute those systems with sufficiently low latency. Hence, those systems require hardware acceleration. Lately, a generalized concatenated code construction was proposed together with a restrictive channel model, which allows for much smaller public keys for comparable security levels. In this work, we propose a hardware decoder suitable for a McEliece system based on these generalized concatenated codes. The results show that those systems are suitable for resource-constrained embedded devices.
The growing error rates of triple-level cell (TLC) and quadruple-level cell (QLC) NAND flash memories have led to the application of error correction coding with soft-input decoding techniques in flash-based storage systems. Typically, flash memory is organized in pages where the individual bits per cell are assigned to different pages and different codewords of the error-correcting code. This page-wise encoding minimizes the read latency with hard-input decoding. To increase the decoding capability, soft-input decoding is used eventually due to the aging of the cells. This soft-decoding requires multiple read operations. Hence, the soft-read operations reduce the achievable throughput, and increase the read latency and power consumption. In this work, we investigate a different encoding and decoding approach that improves the error correction performance without increasing the number of reference voltages. We consider TLC and QLC flashes where all bits are jointly encoded using a Gray labeling. This cell-wise encoding improves the achievable channel capacity compared with independent page-wise encoding. Errors with cell-wise read operations typically result in a single erroneous bit per cell. We present a coding approach based on generalized concatenated codes that utilizes this property.
Code-based cryptosystems are promising candidates for post-quantum cryptography. Recently, generalized concatenated codes over Gaussian and Eisenstein integers were proposed for those systems. For a channel model with errors of restricted weight, those q-ary codes lead to high error correction capabilities. Hence, these codes achieve high work factors for information set decoding attacks. In this work, we adapt this concept to codes for the weight-one error channel, i.e., a binary channel model where at most one bit-error occurs in each block of m bits. We also propose a low complexity decoding algorithm for the proposed codes. Compared to codes over Gaussian and Eisenstein integers, these codes achieve higher minimum Hamming distances for the dual codes of the inner component codes. This property increases the work factor for a structural attack on concatenated codes leading to higher overall security. For comparable security, the key size for the proposed code construction is significantly smaller than for the classic McEliece scheme based on Goppa codes.
Large-scale quantum computers threaten today's public-key cryptosystems. The code-based McEliece and Niederreiter cryptosystems are among the most promising candidates for post-quantum cryptography. Recently, a new class of q-ary product codes over Gaussian integers together with an efficient decoding algorithm were proposed for the McEliece cryptosystems. It was shown that these codes achieve a higher work factor for information-set decoding attacks than maximum distance separable (MDS) codes with comparable length and dimension. In this work, we adapt this q-ary product code construction to codes over Eisenstein integers. We propose a new syndrome decoding method which is applicable for Niederreiter cryptosystems. The code parameters and work factors for information-set decoding are comparable to codes over Gaussian integers. Hence, the new construction is not favorable for the McEliece system. Nevertheless, it is beneficial for the Niederreiter system, where it achieves larger message lengths. While the Niederreiter and McEliece systems have the same level of security, the Niederreiter system can be advantageous for some applications, e.g., it enables digital signatures. The proposed coding scheme is interesting for lightweight Niederreiter cryptosystems and embedded security due to the short code lengths and low decoding complexity.
Nowadays, most digital modulation schemes are based on conventional signal constellations that have no algebraic group, ring, or field properties, e.g. square quadrature-amplitude modulation constellations. Signal constellations with algebraic structure can enhance the system performance. For instance, multidimensional signal constellations based on dense lattices can achieve performance gains due to the dense packing. The algebraic structure enables low-complexity decoding and detection schemes. In this work, signal constellations with algebraic properties and their application in spatial modulation transmission schemes are investigated. Several design approaches of two- and four-dimensional signal constellations based on Gaussian, Eisenstein, and Hurwitz integers are shown. Detection algorithms with reduced complexity are proposed. It is shown, that the proposed Eisenstein and Hurwitz constellations combined with the proposed suboptimal detection can outperform conventional two-dimensional constellations with ML detection.
Code-based cryptography is a promising candidate for post-quantum public-key encryption. The classic McEliece system uses binary Goppa codes, which are known for their good error correction capability. However, the key generation and decoding procedures of the classic McEliece system have a high computation complexity. Recently, q-ary concatenated codes over Gaussian integers were proposed for the McEliece cryptosystem together with the one-Mannheim error channel, where the error values are limited to Mannheim weight one. For this channel, concatenated codes over Gaussian integers achieve a higher error correction capability than maximum distance separable (MDS) codes with bounded minimum distance decoding. This improves the work factor regarding decoding attacks based on information-set decoding. This work proposes an improved construction for codes over Gaussian integers. These generalized concatenated codes extent the rate region where the work factor is beneficial compared to MDS codes. They allow for shorter public keys for the same level of security as the classic Goppa codes. Such codes are beneficial for lightweight code-based cryptosystems.
Unternehmensberatung
(2022)
Im Kapitel "Unternehmensberatung" geht es um die Themen, inhaltlichen Schwerpunkte und möglichen Ansätze von Beratungsdienstleistungen im Kontext heutiger angewandter Unternehmensethik. Von der Gestaltung einer Unternehmenskultur der Integrität zur Prävention von Wirtschaftskriminalität bis zur Entwicklung eines ganzheitlichen unternehmerischen Verantwortungsmanagements, das neben Nachhaltigkeitsaspekten auch einen ethisch reflektierten Umgang mit Digitalisierung und KI umfasst.
Unternehmenskultur
(2022)
Unternehmenskultur als die zentrale informeller Steuerungsgröße von Organisationen spielt insbesondere bei der Verankerung ethischer Werte und Prinzipien in Unternehmen eine unverzichtbare Rolle. Warum dies so ist und welchen konkreten Beitrag eine bewusste Kulturentwicklung im Kontext angewandter Unternehmensethik leisten kann, ist Gegenstand des Artikels.
Wie gehen mittelständische Unternehmen mit internationaler Geschäftstätigkeit mit Compliance-Risiken um? Wie gelingt das Risikomanagement spezifischer Herausforderungen der Regelkonformität in Wachstumsländern, die aus Compliance-Gesichtspunkten als Hochrisikoländer eingestuft werden? Und was beschäftigt dabei Compliance-Officer im Mittelstand? Diesen Fragen widmete sich ein anwendungsorientiertes Forschungsprojekt am Konstanz Institut für Corporate Governance.
Wirtschaftsprüfung
(2022)
Welche Kompetenzen brauchen Führungskräfte, damit der Ansatz Compliance und Integrity als Führungsaufgabe in Organisationen verfängt? Und wie lassen sich diese systematisch nutzen und trainieren? Der Beitrag stellt den ersten Baustein eines am Konstanz Institut für Corporate Governance angesiedelten Forschungsprojekts vor, das darauf abzielt, bestehende Compliance-Systeme in Unternehmen praxistauglicher zu machen und die Wirksamkeit der Maßnahmen eines Compliance-Management-Systems (CMS) zu steigern.
Unternehmen stehen heute vor der Herausforderung, dass eine klare Trennung von verpflichtenden Anforderungen und freiwilliger Verantwortungsübernahme nur noch schwer möglich ist. Haftungsvermeidung, Reputationsschutz sowie der Aufbau und die Sicherung von Vertrauenskapital in Kooperationsbeziehungen gehen Hand in Hand. Der Beitrag beleuchtet Corporate Compliance und Integrity Management als Gestaltungsansätze eines gezielten und integrierten Managements der Unternehmensverantwortung. Compliance ist dabei das Rückgrat, Integrity ihr Herz.
Vertrauen durch Integrität
(2022)
Dieser Beitrag untersucht, ob externe Interventionen, in Form von Forschung und/oder Wissenschaftskommunikation, als Mediator für Innovationen in Krisenzeiten in der Tourismusbranche fungieren können. Dabei wird anhand dreier Case Studies diskutiert, inwiefern die Corona-Krise ein Window-
of-opportunity für innovative Geschäftsmodelle im Tourismus darstellen konnte. Die Projektergebnisse geben Hinweise darauf, dass Krisen im Allgemeinen und Wissenschaftskommunikation im Speziellen als Push-Faktoren Innovationen befördern können. Zwar kam es bei den Projektpartnern zu einer Entwicklung von Innovationen im Projektzeitraum, jedoch wurde die Implementierung vermehrt in eine unbestimmte Zukunft verschoben. Durch die damit verbundene Rückkehr zum Status-Quo blieben die angestoßenen Innovationen zu einem Großteil auf einer konzeptionellen Ebene. Dies deutet auf eine Attitude-behavior-gap in Bezug auf die Schaffung und Umsetzung von Innovationen in Krisenzeiten.
Uzbekistan is an emerging tourism destination that has experienced a strong increase in tourists since 2017. However, little research on tourism development in Uzbekistan exists to date. This study therefore analyzes possible research topics and proposes a tourism research agenda for Uzbekistan. A mix of methods was used consisting of participant observation, semi-structured qualitative expert interviews and qualitative content anal- ysis. The results revealed a variety of research deficits in different areas, which could be synthesized into a total of ten research fields, which were clustered into three overarching areas, namely market research, management, and culture & environment. The subordi- nate research fields identified are Demand, Statistics, Potentials, Governance, Products, Infrastructure & Development, Marketing, Heritage & Nation-building, Sustainability as well as Peace & Conflict Prevention. A strategic research plan based on this tourism research agenda could help to foster a purposeful scientific debate. Tourism research in these fields has both the potential to investigate and compare theoretical issues in an unique context and to produce applied research results that can make a relevant contri- bution to tourism development in Uzbekistan.
In this paper, we propose a novel method for real-time control of electric distribution grids with a limited number of measurements. The method copes with the changing grid behaviour caused by the increasing number of renewable energies and electric vehicles. Three AI based models are used. Firstly, a probabilistic forecasting estimates possible scenarios at unobserved grid nodes. Secondly, a state estimation is used to detect grid congestion. Finally, a grid control suggests multiple possible solutions for the detected problem. The best countermeasures are then detected by evaluating the systems stability for the next time-step.
In many industrial applications a workpiece is continuously fed through a heating zone in order to reach a desired temperature to obtain specific material properties. Many examples of such distributed parameter systems exist in heavy industry and also in furniture production such processes can be found. In this paper, a real-time capable model for a heating process with application to industrial furniture production is modeled. As the model is intended to be used in a Model Predictive Control (MPC) application, the main focus is to achieve minimum computational runtime while maintaining a sufficient amount of accuracy. Thus, the governing Partial Differential Equation (PDE) is discretized using finite differences on a grid, specifically tailored to this application. The grid is optimized to yield acceptable accuracy with a minimum number of grid nodes such that a relatively low order model is obtained. Subsequently, an explicit Runge-Kutta ODE (Ordinary Differential Equation) solver of fourth order is compared to the Crank-Nicolson integration scheme presented in Weiss et al. (2022) in terms of runtime and accuracy. Finally, the unknown thermal parameters of the process are estimated using real-world measurement data that was obtained from an experimental setup. The final model yields acceptable accuracy while at the same time shows promising computation time, which enables its use in an MPC controller.
This paper presents a systematic comparison of different advanced approaches for motion prediction of vessels for docking scenarios. Therefore, a conventional nonlinear gray-box-model, its extension to a hybrid model using an additional regression neural network (RNN) and a black-box-model only based on a RNN are compared. The optimal hyperparameters are found by grid search. The training and validation data for the different models is collected in full-scale experiments using the solar research vessel Solgenia. The performances of the different prediction models are compared in full-scale scenarios. %To use the investigated approaches for controller design, a general optimal control problem containing the advanced models is described. These can improve advanced control strategies e.g., nonlinear model predictive control (NMPC) or reinforcement learning (RL). This paper explores the question of what the advantages and disadvantages of the different presented prediction approaches are and how they can be used to improve the docking behavior of a vessel.
Lignin is a potentially high natural source of biological aromatic substances. However, decomposition of the polymer has proven to be quite challenging, as the complex bonds are fairly difficult to break down chemically. This article is intended to provide an overview of various recent methods for the catalytic chemical depolymerization of the biopolymer lignin into chemical products. For this purpose, nickel-, zeolite- and palladium-supported catalysts were examined in detail. In order to achieve this, various experiments of the last years were collected, and the efficiency of the individual catalysts was examined. This included evaluating the reaction conditions under which the catalysts work most efficiently. The influence of co-catalysts and Lewis acidity was also investigated. The results show that it is possible to control the obtained product selectivity very well by the choice of the respective catalysts combined with the proper reaction conditions.
Feature-Based Proposal Density Optimization for Nonlinear Model Predictive Path Integral Control
(2022)
This paper presents a novel feature-based sampling strategy for nonlinear Model Predictive Path Integral (MPPI) control. In MPPI control, the optimal control is calculated by solving a stochastic optimal control problem online using the weighted inference of stochastic trajectories. While the algorithm can be excellently parallelized the closed- loop performance is dependent on the information quality of the drawn samples. Because these samples are drawn using a proposal density, its quality is crucial for the solver and thus the controller performance. In classical MPPI control, the explored state-space is strongly constrained by assumptions that refer to the control value variance, which are necessary for transforming the Hamilton-Jacobi-Bellman (HJB) equation into a linear second-order partial differential equation. To achieve excellent performance even with discontinuous cost-functions, in this novel approach, knowledge-based features are used to determine the proposal density and thus, the region of state- space for exploration. This paper addresses the question of how the performance of the MPPI algorithm can be improved using a feature-based mixture of base densities. Further, the developed algorithm is applied on an autonomous vessel that follows a track and concurrently avoids collisions using an emergency braking feature.