### Refine

#### Year of publication

- 2020 (2)

#### Document Type

#### Language

- English (2)

#### Has Fulltext

- no (2)

#### Keywords

- Public key cryptography (2) (remove)

#### Institute

The Montgomery multiplication is an efficient method for modular arithmetic. Typically, it is used for modular arithmetic over integer rings to prevent the expensive inversion for the modulo reduction. In this work, we consider modular arithmetic over rings of Gaussian integers. Gaussian integers are subset of the complex numbers such that the real and imaginary parts are integers. In many cases Gaussian integer rings are isomorphic to ordinary integer rings. We demonstrate that the concept of the Montgomery multiplication can be extended to Gaussian integers. Due to independent calculation of the real and imaginary parts, the computation complexity of the multiplication is reduced compared with ordinary integer modular arithmetic. This concept is suitable for coding applications as well as for asymmetric key cryptographic systems, such as elliptic curve cryptography or the Rivest-Shamir-Adleman system.

Side Channel Attack Resistance of the Elliptic Curve Point Multiplication using Gaussian Integers
(2020)

Elliptic curve cryptography is a cornerstone of embedded security. However, hardware implementations of the elliptic curve point multiplication are prone to side channel attacks. In this work, we present a new key expansion algorithm which improves the resistance against timing and simple power analysis attacks. Furthermore, we consider a new concept for calculating the point multiplication, where the points of the curve are represented as Gaussian integers. Gaussian integers are subset of the complex numbers, such that the real and imaginary parts are integers. Since Gaussian integer fields are isomorphic to prime fields, this concept is suitable for many elliptic curves. Representing the key by a Gaussian integer expansion is beneficial to reduce the computational complexity and the memory requirements of a secure hardware implementation.