### Refine

#### Document Type

- Conference Proceeding (14)
- Article (6)
- Part of a Book (3)
- Doctoral Thesis (2)
- Master's Thesis (2)
- Book (1)
- Preprint (1)
- Report (1)

#### Keywords

- 3D ship detection (1)
- Bayesian convolutional neural networks (1)
- Classification (1)
- Convolutional networks (1)
- Crowdmanagement (1)
- Deep Transformation Model (1)
- Deep learning (3)
- Didaktik (2)
- Finite-element (1)
- Forest establishment (1)
- Freistellungssemesterbericht (1)
- Imaging (1)
- Interpretability (1)
- Inverse perspective (1)
- Ischemic stroke (1)
- LernApp (1)
- Machine Learning (1)
- Machine learning (1)
- Magnetic resonance imaging (1)
- Mask R-CNN (1)
- Mathematik (1)
- Modelling (1)
- Multivariate Differentiation (1)
- Normalizing Flow (1)
- Object detection (1)
- Pedestrian (1)
- Probabilistic modeling (1)
- Regression (1)
- Screening (1)
- Seamless Learning (2)
- Ship dataset (1)
- Statistics (1)
- Tree seedlings (1)
- Un-certainty (1)
- Uncertainty (1)
- Unmanned aerial vehicles (1)

#### Institute

- Institut für Optische Systeme - IOS (30) (remove)

Forecasting is crucial for both system planning and operations in the energy sector. With increasing penetration of renewable energy sources, increasing fluctuations in the power generation need to be taken into account. Probabilistic load forecasting is a young, but emerging research topic focusing on the prediction of future uncertainties. However, the majority of publications so far focus on techniques like quantile regression, ensemble, or scenario-based methods, which generate discrete quantiles or sets of possible load curves. The conditioned probability distribution remains unknown and can only be estimated when the output is post-processed using a statistical method like kernel density estimation.
Instead, the proposed probabilistic deep learning model uses a cascade of transformation functions, known as normalizing flow, to model the conditioned density function from a smart meter dataset containing electricity demand information for over 4,000 buildings in Ireland. Since the whole probability density function is tractable, the parameters of the model can be obtained by minimizing the negative loglikelihood through the state of the art gradient descent. This leads to the model with the best representation of the data distribution.
Two different deep learning models have been compared, a simple three-layer fully connected neural network and a more advanced convolutional neural network for sequential data processing inspired by the WaveNet architecture. These models have been used to parametrize three different probabilistic models, a simple normal distribution, a Gaussian mixture model, and the normalizing flow model. The prediction horizon is set to one day with a resolution of 30 minutes, hence the models predict 48 conditioned probability distributions.
The normalizing flow model outperforms the two other variants for both architectures and proves its ability to capture the complex structures and dependencies causing the variations in the data. Understanding the stochastic nature of the task in such detail makes the methodology applicable for other use cases apart from forecasting. It is shown how it can be used to detect anomalies in the power grid or generate synthetic scenarios for grid planning.

Die Frage „Wozu braucht man das?“ vonseiten der Studierenden oder Aussagen wie „Das habe ich im Beruf später nie mehr benötigt.“ von ehemaligen Studierenden ist den meisten Mathematikdozierenden sehr vertraut. Im Projekt BiLeSA wird dem Wunsch nach Integration von Praxisnähe im Mathematikunterricht mithilfe einer Smartphone-App, welche ausgewählte Themen in der Mathematik anhand von digitalen Bildern sichtbar macht, umgesetzt. Bei den ausgewählten Themen handelt es sich um (affin) lineare Abbildungen, Ableitungen in höheren Raumdimensionen und Potenzen von Komplexen Zahlen. Die Konzeptionierung des Lernobjekts erfolgte mit dem Design Based Research (DBR) Ansatz, welches im Basisprojekt des IBH-Labs „Seamless Learning“ konzipiert und entwickelt wurde.

We analyse the results of a finite element simulation of a macroscopic model, which describes the movement of a crowd, that is considered as a continuum. A new formulation based on the macroscopic model from Hughes [2] is given. We present a stable numerical algorithm by approximating with a viscosity solution. The fundamental setting is given by an arbitrary domain that can contain several obstacles, several entries and must have at least one exit. All pedestrians have the goal to leave the room as quickly as possible. Nobody prefers a particular exit.

Wer schon einmal dicht gedrängt vor der Konzertbühne stand kann sich die aussichtslose Lage, wenn die Stimmung kippt und Panik aufkommt, gut vorstellen. Es ist sehr wichtig, Räume und Events, die zeitweise von sehr vielen Menschen aufgesucht werden, so zu gestalten und zu planen, dass maximale Sicherheit gewährleistet ist. Damit eine öffentliche Veranstaltung reibungslos verläuft ist eine gründliche Planung, also ein qualitativ hochwertiges Crowd Management unabdingbar.

Deep neural networks (DNNs) are known for their high prediction performance, especially in perceptual tasks such as object recognition or autonomous driving. Still, DNNs are prone to yield unreliable predictions when encountering completely new situations without indicating their uncertainty. Bayesian variants of DNNs (BDNNs), such as MC dropout BDNNs, do provide uncertainty measures. However, BDNNs are slow during test time because they rely on a sampling approach. Here we present a single shot MC dropout approximation that preserves the advantages of BDNNs without being slower than a DNN. Our approach is to analytically approximate for each layer in a fully connected network the expected value and the variance of the MC dropout signal. We evaluate our approach on different benchmark datasets and a simulated toy example. We demonstrate that our single shot MC dropout approximation resembles the point estimate and the uncertainty estimate of the predictive distribution that is achieved with an MC approach, while being fast enough for real-time deployments of BDNNs.

Know when you don't know
(2018)

Deep convolutional neural networks show outstanding performance in image-based phenotype classification given that all existing phenotypes are presented during the training of the network. However, in real-world high-content screening (HCS) experiments, it is often impossible to know all phenotypes in advance. Moreover, novel phenotype discovery itself can be an HCS outcome of interest. This aspect of HCS is not yet covered by classical deep learning approaches. When presenting an image with a novel phenotype to a trained network, it fails to indicate a novelty discovery but assigns the image to a wrong phenotype. To tackle this problem and address the need for novelty detection, we use a recently developed Bayesian approach for deep neural networks called Monte Carlo (MC) dropout to define different uncertainty measures for each phenotype prediction. With real HCS data, we show that these uncertainty measures allow us to identify novel or unclear phenotypes. In addition, we also found that the MC dropout method results in a significant improvement of classification accuracy. The proposed procedure used in our HCS case study can be easily transferred to any existing network architecture and will be beneficial in terms of accuracy and novelty detection.

Probabilistic Deep Learning
(2020)

Probabilistic Deep Learning is a hands-on guide to the principles that support neural networks. Learn to improve network performance with the right distribution for different data types, and discover Bayesian variants that can state their own uncertainty to increase accuracy. This book provides easy-to-apply code and uses popular frameworks to keep you focused on practical applications.

Simon Grimm examines new multi-microphone signal processing strategies that aim to achieve noise reduction and dereverberation. Therefore, narrow-band signal enhancement approaches are combined with broad-band processing in terms of directivity based beamforming. Previously introduced formulations of the multichannel Wiener filter rely on the second order statistics of the speech and noise signals. The author analyses how additional knowledge about the location of a speaker as well as the microphone arrangement can be used to achieve further noise reduction and dereverberation.

Optical surface inspection: A novelty detection approach based on CNN-encoded texture features
(2018)

In inspection systems for textured surfaces, a reference texture is typically known before novel examples are inspected. Mostly, the reference is only available in a digital format. As a consequence, there is no dataset of defective examples available that could be used to train a classifier. We propose a texture model approach to novelty detection. The texture model uses features encoded by a convolutional neural network (CNN) trained on natural image data. The CNN activations represent the specific characteristics of the digital reference texture which are learned by a one-class classifier. We evaluate our novelty detector in a digital print inspection scenario. The inspection unit is based on a camera array and a flashing light illumination which allows for inline capturing of multichannel images at a high rate. In order to compare our results to manual inspection, we integrated our inspection unit into an industrial single-pass printing system.

At present, the majority of the proposed Deep Learning (DL) methods provide point predictions without quantifying the model's uncertainty. However, a quantification of the reliability of automated image analysis is essential, in particular in medicine when physicians rely on the results for making critical treatment decisions. In this work, we provide an entire framework to diagnose ischemic stroke patients incorporating Bayesian uncertainty into the analysis procedure. We present a Bayesian Convolutional Neural Network (CNN) yielding a probability for a stroke lesion on 2D Magnetic Resonance (MR) images with corresponding uncertainty information about the reliability of the prediction. For patient-level diagnoses, different aggregation methods are proposed and evaluated, which combine the individual image-level predictions. Those methods take advantage of the uncertainty in the image predictions and report model uncertainty at the patient-level. In a cohort of 511 patients, our Bayesian CNN achieved an accuracy of 95.33% at the image-level representing a significant improvement of 2% over a non-Bayesian counterpart. The best patient aggregation method yielded 95.89% of accuracy. Integrating uncertainty information about image predictions in aggregation models resulted in higher uncertainty measures to false patient classifications, which enabled to filter critical patient diagnoses that are supposed to be closer examined by a medical doctor. We therefore recommend using Bayesian approaches not only for improved image-level prediction and uncertainty estimation but also for the detection of uncertain aggregations at the patient-level.

The main challenge in Bayesian models is to determine the posterior for the model parameters. Already, in models with only one or few parameters, the analytical posterior can only be determined in special settings. In Bayesian neural networks, variational inference is widely used to approximate difficult-to-compute posteriors by variational distributions. Usually, Gaussians are used as variational distributions (Gaussian-VI) which limits the quality of the approximation due to their limited flexibility. Transformation models on the other hand are flexible enough to fit any distribution. Here we present transformation model-based variational inference (TM-VI) and demonstrate that it allows to accurately approximate complex posteriors in models with one parameter and also works in a mean-field fashion for multi-parameter models like neural networks.

Interpretability and uncertainty modeling are important key factors for medical applications. Moreover, data in medicine are often available as a combination of unstructured data like images and structured predictors like patient’s metadata. While deep learning models are state-of-the-art for image classification, the models are often referred to as ’black-box’, caused by the lack of interpretability. Moreover, DL models are often yielding point predictions and are too confident about the parameter estimation and outcome predictions.
On the other side with statistical regression models, it is possible to obtain interpretable predictor effects and capture parameter and model uncertainty based on the Bayesian approach. In this thesis, a publicly available melanoma dataset, consisting of skin lesions and patient’s age, is used to predict the melanoma types by using a semi-structured model, while interpretable components and model uncertainty is quantified. For Bayesian models, transformation model-based variational inference (TM-VI) method is used to determine the posterior distribution of the parameter. Several model constellations consisting of patient’s age and/or skin lesion were implemented and evaluated. Predictive performance was shown to be best by using a combined model of image and patient’s age, while providing the interpretable posterior distribution of the regression coefficient is possible. In addition, integrating uncertainty in image and tabular parts results in larger variability of the outputs corresponding to high uncertainty of the single model components.

Pascal Laube presents machine learning approaches for three key problems of reverse engineering of defective structured surfaces: parametrization of curves and surfaces, geometric primitive classification and inpainting of high-resolution textures. The proposed methods aim to improve the reconstruction quality while further automating the process. The contributions demonstrate that machine learning can be a viable part of the CAD reverse engineering pipeline.

Deep neural networks have been successfully applied to problems such as image segmentation, image super-resolution, coloration and image inpainting. In this work we propose the use of convolutional neural networks (CNN) for image inpainting of large regions in high-resolution textures. Due to limited computational resources processing high-resolution images with neural networks is still an open problem. Existing methods separate inpainting of global structure and the transfer of details, which leads to blurry results and loss of global coherence in the detail transfer step. Based on advances in texture synthesis using CNNs we propose patch-based image inpainting by a single network topology that is able to optimize for global as well as detail texture statistics. Our method is capable of filling large inpainting regions, oftentimes exceeding quality of comparable methods for images of high-resolution (2048x2048px). For reference patch look-up we propose to use the same summary statistics that are used in the inpainting process.

Knot placement for curve approximation is a well known and yet open problem in geometric modeling. Selecting knot values that yield good approximations is a challenging task, based largely on heuristics and user experience. More advanced approaches range from parametric averaging to genetic algorithms.
In this paper, we propose to use Support Vector Machines (SVMs) to determine suitable knot vectors for B-spline curve approximation. The SVMs are trained to identify locations in a sequential point cloud where knot placement will improve the approximation error. After the training phase, the SVM can assign, to each point set location, a so-called score. This score is based on geometric and differential geometric features of points. It measures the quality of each location to be used as knots in the subsequent approximation. From these scores, the final knot vector can be constructed exploring the topography of the score-vector without the need for iteration or optimization in the approximation process. Knot vectors computed with our approach outperform state of the art methods and yield tighter approximations.

In this paper we present a method using deep learning to compute parametrizations for B-spline curve approximation. Existing methods consider the computation of parametric values and a knot vector as separate problems. We propose to train interdependent deep neural networks to predict parametric values and knots. We show that it is possible to include B-spline curve approximation directly into the neural network architecture. The resulting parametrizations yield tight approximations and are able to outperform state-of-the-art methods.

We propose a novel end-to-end neural network architecture that, once trained, directly outputs a probabilistic clustering of a batch of input examples in one pass. It estimates a distribution over the number of clusters k, and for each 1≤k≤kmax, a distribution over the individual cluster assignment for each data point. The network is trained in advance in a supervised fashion on separate data to learn grouping by any perceptual similarity criterion based on pairwise labels (same/different group). It can then be applied to different data containing different groups. We demonstrate promising performance on high-dimensional data like images (COIL-100) and speech (TIMIT). We call this “learning to cluster” and show its conceptual difference to deep metric learning, semi-supervise clustering and other related approaches while having the advantage of performing learnable clustering fully end-to-end.