Refine
Document Type
- Conference Proceeding (462) (remove)
Language
- English (328)
- German (133)
- Multiple languages (1)
Keywords
- 3D ship detection (1)
- AAL (1)
- Abrasive grain material (1)
- Academic german (1)
- Accelerometers (1)
- Accessible Tourism (1)
- Actions (1)
- Activity monitoring (1)
- Actuators (2)
- Adaptive (1)
Institute
- Fakultät Bauingenieurwesen (6)
- Fakultät Elektrotechnik und Informationstechnik (7)
- Fakultät Informatik (40)
- Fakultät Maschinenbau (7)
- Fakultät Wirtschafts-, Kultur- und Rechtswissenschaften (3)
- Institut für Angewandte Forschung - IAF (7)
- Institut für Optische Systeme - IOS (13)
- Institut für Strategische Innovation und Technologiemanagement - IST (14)
- Institut für Systemdynamik - ISD (29)
- Institut für Werkstoffsystemtechnik Konstanz - WIK (4)
The magneto-mechanical behavior of magnetic shape memory (MSM) materials has been investigated by means of different simulation and modeling approaches by several research groups. The target of this paper is to simulate actuators driven by MSM alloys and to understand the MSM element behavior during actuation, which shall lead to an increased performance of the actuator. It is shown that internal and external stresses should be taken into consideration using numerical computation tools for magnetic fields in an efficient way.
The binary asymmetric channel (BAC) is a model for the error characterization of multi-level cell (MLC) flash memories. This contribution presents a joint channel and source coding approach improving the reliability of MLC flash memories. The objective of the data compression algorithm is to reduce the amount of user data such that the redundancy of the error correction coding can be increased in order to improve the reliability of the data storage system. Moreover, data compression can be utilized to exploit the asymmetry of the channel to reduce the error probability. With MLC flash memories data compression has to be performed on block level considering short data blocks. We present a coding scheme suitable for blocks of 1 kilobyte of data.
One major realm of Condition Based Maintenance is finding features that reflect the current health state of the asset or component under observation. Most of the existing approaches are accompanied with high computational costs during the different feature processing phases making them infeasible in a real-world scenario. In this paper a feature generation method is evaluated compensating for two problems: (1) storing and handling large amounts of data and (2) computational complexity. Both aforementioned problems are existent e.g. when electromagnetic solenoids are artificially aged and health indicators have to be extracted or when multiple identical solenoids have to be monitored. To overcome those problems, Compressed Sensing (CS), a new research field that keeps constantly emerging into new applications, is employed. CS is a data compression technique allowing original signal reconstruction with far fewer samples than Shannon-Nyquist dictates, when some criteria are met. By applying this method to measured solenoid coil current, raw data vectors can be reduced to a way smaller set of samples that yet contain enough information for proper reconstruction. The obtained CS vector is also assumed to contain enough relevant information about solenoid degradation and faults, allowing CS samples to be used as input to fault detection or remaining useful life estimation routines. The paper gives some results demonstrating compression and reconstruction of coil current measurements and outlines the application of CS samples as condition monitoring data by determining deterioration and fault related features. Nevertheless, some unresolved issues regarding information loss during the compression stage, the design of the compression method itself and its influence on diagnostic/prognostic methods exist.
This paper describes an early lumping approach for generating a mathematical model of the heating process of a moving dual-layer substrate. The heat is supplied by convection and nonlinearly distributed over the whole considered spatial extend of the substrate. Using CFD simulations as a reference, two different modelling approaches have been investigated in order to achieve the most suitable model type. It is shown that due to the possibility of using the transition matrix for time discretization, an equivalent circuit model achieves superior results when compared to the Crank-Nicolson method. In order to maintain a constant sampling time for the in-visioned-control strategies, the effect of variable speed is transformed into a system description, where the state vector has constant length but a variable number of non-zero entries. The handling of the variable transport speed during the heating process is considered as the main contribution of this work. The result is a model, suitable for being used in future control strategies.
Online-based business models, such as shopping platforms, have added new possibilities for consumers over the last two decades. Aside from basic differences to other distribution channels, customer reviews on such platforms have become a powerful tool, which bestows an additional source for gaining transparency to consumers. Related research has, for the most part, been labelled under the term electronic word-of-mouth (eWOM). An approach, providing a theoretical basis for this phenomenon, will be provided here. The approach is mainly based on work in the field of consumer culture theory (CCT) and on the concept of co-creation. The work of several authors in these streams of research is used to construct a culturally informed resource-based theory, as advocated by Arnould & Thompson and Algesheimer & Gurâu.
This contribution presents a data compression scheme for applications in non-volatile flash memories. The objective of the data compression algorithm is to reduce the amount of user data such that the redundancy of the error correction coding can be increased in order to improve the reliability of the data storage system. The data compression is performed on block level considering data blocks of 1 kilobyte. We present an encoder architecture that has low memory requirements and provides a fast data encoding.
This work proposes a decoder implementation for high-rate generalized concatenated (GC) codes. The proposed codes are well suited for error correction in flash memories for high reliability data storage. The GC codes are constructed from inner extended binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer Reed-Solomon (RS) codes. The extended BCH codes enable high-rate GC codes. Moreover, the decoder can take advantage of soft information. For the first three levels of inner codes we propose an optional Chase soft decoder. In this work, the code construction is explained and a decoder architecture is presented. Furthermore, area and throughput results are discussed.
This paper presents the implementation of deep learning methods for sleep stage detection by using three signals that can be measured in a non-invasive way: heartbeat signal, respiratory signal, and movement signal. Since signals are measurements taken during the time, the problem is seen as time-series data classification. Deep learning methods are chosen to solve the problem are convolutional neural network and long-short term memory network. Input data is structured as a time-series sequence of mentioned signals that represent 30 seconds epoch, which is a standard interval for sleep analysis. The records used belong to the overall 23 subjects, which are divided into two subsets. Records from 18 subjects were used for training the data and from 5 subjects for testing the data. For detecting four sleep stages: REM (Rapid Eye Movement), Wake, Light sleep (Stage 1 and Stage 2), and Deep sleep (Stage 3 and Stage 4), the accuracy of the model is 55%, and F1 score is 44%. For five stages: REM, Stage 1, Stage 2, Deep sleep (Stage 3 and 4), and Wake, the model gives an accuracy of 40% and F1 score of 37%.
Modeling a suitable birth density is a challenge when using Bernoulli filters such as the Labeled Multi-Bernoulli (LMB) filter. The birth density of newborn targets is unknown in most applications, but must be given as a prior to the filter. Usually the birth density stays unchanged or is designed based on the measurements from previous time steps.
In this paper, we assume that the true initial state of new objects is normally distributed. The expected value and covariance of the underlying density are unknown parameters. Using the estimated multi-object state of the LMB and the Rauch-Tung-Striebel (RTS) recursion, these parameters are recursively estimated and adapted after a target is detected.
The main contribution of this paper is an algorithm to estimate the parameters of the birth density and its integration into the LMB framework. Monte Carlo simulations are used to evaluate the detection driven adaptive birth density in two scenarios. The approach can also be applied to filters that are able to estimate trajectories.
Error correction coding (ECC) for optical communication and persistent storage systems require high rate codes that enable high data throughput and low residual errors. Recently, different concatenated coding schemes were proposed that are based on binary Bose-Chaudhuri-Hocquenghem (BCH) codes that have low error correcting capabilities. Commonly, hardware implementations for BCH decoding are based on the Berlekamp-Massey algorithm (BMA). However, for single, double, and triple error correcting BCH codes, Peterson's algorithm can be more efficient than the BMA. The known hardware architectures of Peterson's algorithm require Galois field inversion. This inversion dominates the hardware complexity and limits the decoding speed. This work proposes an inversion-less version of Peterson's algorithm. Moreover, a decoding architecture is presented that is faster than decoders that employ inversion or the fully parallel BMA at a comparable circuit size.
Observer-based self sensing for digital (on–off) single-coil solenoid valves is investigated. Self sensing refers to the case where merely the driving signals used to energize the actuator (voltage and coil current) are available to obtain estimates of both the position and velocity. A novel observer approach for estimating the position and velocity from the driving signals is presented, where the dynamics of the mechanical subsystem can be neglected in the model. Both the effect of eddy currents and saturation effects are taken into account in the observer model. Practical experimental results are shown and the new method is compared with a full-order sliding mode observer.
Cardiovascular diseases are directly or indirectly responsible for up to 38.5% of all deaths in Germany and thus represent the most frequent cause of death. At present, heart diseases are mainly discovered by chance during routine visits to the doctor or when acute symptoms occur. However, there is no practical method to proactively detect diseases or abnormalities of the heart in the daily environment and to take preventive measures for the person concerned. Long-term ECG devices, as currently used by physicians, are simply too expensive, impractical, and not widely available for everyday use. This work aims to develop an ECG device suitable for everyday use that can be worn directly on the body. For this purpose, an already existing hardware platform will be analyzed, and the corresponding potential for improvement will be identified. A precise picture of the existing data quality is obtained by metrological examination, and corresponding requirements are defined. Based on these identified optimization potentials, a new ECG device is developed. The revised ECG device is characterized by a high integration density and combines all components directly on one board except the battery and the ECG electrodes. The compact design allows the device to be attached directly to the chest. An integrated microcontroller allows digital signal processing without the need for an additional computer. Central features of the evaluation are a peak detection for detecting R-peaks and a calculation of the current heart rate based on the RR interval. To ensure the validity of the detected R-peaks, a model of the anatomical conditions is used. Thus, unrealistic RR-intervals can be excluded. The wireless interface allows continuous transmission of the calculated heart rate. Following the development of hardware and software, the results are verified, and appropriate conclusions about the data quality are drawn. As a result, a very compact and wearable ECG device with different wireless technologies, data storage, and evaluation of RR intervals was developed. Some tests yelled runtimes up to 24 hours with wireless Lan activated and streaming.
We propose and apply a requirements engineering approach that focuses on security and privacy properties and takes into account various stakeholder interests. The proposed methodology facilitates the integration of security and privacy by design into the requirements engineering process. Thus, specific, detailed security and privacy requirements can be implemented from the very beginning of a software project. The method is applied to an exemplary application scenario in the logistics industry. The approach includes the application of threat and risk rating methodologies, a technique to derive technical requirements from legal texts, as well as a matching process to avoid duplication and accumulate all essential requirements.
A semilinear distributed parameter approach for solenoid valve control including saturation effects
(2015)
In this paper a semilinear parabolic PDE for the control of solenoid valves is presented. The distributed parameter model of the cylinder becomes nonlinear by the inclusion of saturation effects due to the material's B/H-curve. A flatness based solution of the semilinear PDE is shown as well as a convergence proof of its series solution. By numerical simulation results the adaptability of the approach is demonstrated, and differences between the linear and the nonlinear case are discussed. The major contribution of this paper is the inclusion of saturation effects into the magnetic field governing linear diffusion equation, and the development of a flatness based solution for the resulting semilinear PDE as an extension of previous works [1] and [2].
Sleep quality and in general, behavior in bed can be detected using a sleep state analysis. These results can help a subject to regulate sleep and recognize different sleeping disorders. In this work, a sensor grid for pressure and movement detection supporting sleep phase analysis is proposed. In comparison to the leading standard measuring system, which is Polysomnography (PSG), the system proposed in this project is a non-invasive sleep monitoring device. For continuous analysis or home use, the PSG or wearable Actigraphy devices tends to be uncomfortable. Besides this fact, they are also very expensive. The system represented in this work classifies respiration and body movement with only one type of sensor and also in a non-invasive way. The sensor used is a pressure sensor. This sensor is low cost and can be used for commercial proposes. The system was tested by carrying out an experiment that recorded the sleep process of a subject. These recordings showed the potential for classification of breathing rate and body movements. Although previous researches show the use of pressure sensors in recognizing posture and breathing, they have been mostly used by positioning the sensors between the mattress and bedsheet. This project however, shows an innovative way to position the sensors under the mattress.
Creating cages that enclose a 3D-model of some sort is part of many preprocessing pipelines in computational geometry. Creating a cage of preferably lower resolution than the original model is of special interest when performing an operation on the original model might be to costly. The desired operation can be applied to the cage first and then transferred to the enclosed model. With this paper the authors present a short survey of recent and well known methods for cage computation.
The authors would like to give the reader an insight in common methods and their differences.
Generalized concatenated (GC) codes with soft-input decoding were recently proposed for error correction in flash memories. This work proposes a soft-input decoder for GC codes that is based on a low-complexity bit-flipping procedure. This bit-flipping decoder uses a fixed number of test patterns and an algebraic decoder for soft-input decoding. An acceptance criterion for the final candidate codeword is proposed. Combined with error and erasure decoding of the outer Reed-Solomon codes, this bit-flipping decoder can improve the decoding performance and reduce the decoding complexity compared to the previously proposed sequential decoding. The bit-flipping decoder achieves a decoding performance similar to a maximum likelihood decoder for the inner codes.
We present a 3d-laser-scan simulation in virtual
reality for creating synthetic scans of CAD models. Consisting of
the virtual reality head-mounted display Oculus Rift and the
motion controller Razer Hydra our system can be used like
common hand-held 3d laser scanners. It supports scanning of
triangular meshes as well as b-spline tensor product surfaces
based on high performance ray-casting algorithms. While point
clouds of known scanning simulations are missing the man-made
structure, our approach overcomes this problem by imitating
real scanning scenarios. Calculation speed, interactivity and the
resulting realistic point clouds are the benefits of this system.
The investigation of stress requires to distinguish between stress caused by physical activity and stress that is caused by psychosocial factors. The behaviour of the heart in response to stress and physical activity is very similar in case the set of monitored parameters is reduced to one. Currently, the differentiation remains difficult and methods which only use the heart rate are not able to differentiate between stress and physical activity, without using additional sensor data input. The approach focusses on methods which generate signals providing characteristics that are useful for detecting stress, physical activity, no activity and relaxation.
When designing drying processes for sensitive biological foodstuffs like fruit or vegetables, energy and time efficiency as well as product quality are gaining more and more importance. These all are greatly influenced by the different drying parameters (e.g. air temperature, air velocity and dew point temperature) in the process. In sterilization of food products the cooking value is widely used as a cross-link between these parameters. In a similar way, the so-called cumulated thermal load (CTL) was introduced for drying processes. This was possible because most quality changes mainly depend on drying air temperature and drying time. In a first approach, the CTL was therefore defined as the time integral of the surface temperature of agricultural products. When conducting experiments with mangoes and pineapples, however, it was found that the CTL as it was used had to be adjusted to a more practical form. So the definition of the CTL was improved and the behaviour of the adjusted CTL (CTLad) was investigated in the drying of pineapples and mangoes. On the basis of these experiments and the work that had been done on the cooking value, it was found, that more optimization on the CTLad had to be done to be able to compare a great variety of different products as well as different quality parameters.
An approach for an adaptive position-dependent friction estimation for linear electromagnetic actuators with altered characteristics is proposed in this paper. The objective is to obtain a friction model that can be used to describe different stages of aging of magnetic actuators. It is compared to a classical Stribeck friction model by means of model fit, sensitivity, and parameter correlation. The identifiability of the parameters in the friction model is of special interest since the model is supposed to be used for diagnostic and prognostic purposes. A method based on the Fisher information matrix is employed to analyze the quality of the model structure and the parameter estimates.
The Lempel-Ziv-Welch (LZW) algorithm is an important dictionary-based data compression approach that is used in many communication and storage systems. The parallel dictionary LZW (PDLZW) algorithm speeds up the LZW encoding by using multiple dictionaries. The PDLZW algorithm applies different dictionaries to store strings of different lengths, where each dictionary stores only strings of the same length. This simplifies the parallel search in the dictionaries for hardware implementations. The compression gain of the PDLZW depends on the partitioning of the address space, i.e. on the sizes of the parallel dictionaries. However, there is no universal partitioning that is optimal for all data sources. This work proposes an address space partitioning technique that optimizes the compression rate of the PDLZW using a Markov model for the data. Numerical results for address spaces with 512, 1024, and 2048 entries demonstrate that the proposed partitioning improves the performance of the PDLZW compared with the original proposal.
Successful project management (PM), as one of the most important key competences in the western-oriented working world, is mainly influenced by experience and social skills. As a direct impact on PM training, the degree of practice and reality is crucial for the application of lessons learned in a challenging everyday work life. This work presents a recursive approach that adapts well-known principles of PM itself for PM training. Over three years, we have developed a concept and an integrated software system that support our PM university courses. Stepwise, it transfers theoretical PM knowledge into realistic project phases by automatically adjusting to the individual learning progress. Our study reveals predictors such as degrees of collaboration or weekend work as vital aspects in the PM training progress. The chosen granularity of project phases with variances in different dimensions makes our model a canonical incarnation of seamless learning.
The business plan is one of the most frequently available artifacts to innovation intermediaries of technology-based ventures' presentations in their early stages [1]–[4]. Agreement on the evaluations of venturing projects based on the business plans highly depends on the individual perspective of the readers [5], [6]. One reason is that little empirical proof exists for descriptions in business plans that suggest survival of early-stage technology ventures [7]–[9]. We identified descriptions of transaction relations [10]–[13] as an anchor of the snapshot model business plan to business reality [13]. In the early-stage, surviving ventures are building transaction relations to human resources, financial resources, and suppliers on the input side, and customers on the output side of the business towards a stronger ego-centric value network [10]–[13]. We conceptualized a multidimensional measurement instrument that evaluates the maturity of this ego-centric value networks based on the transaction relations of different strength levels that are described in business plans of early-stage technology ventures [13]. In this paper, the research design and the instrument are purified to achieve high agreement in the evaluation of business plans [14]–[16]. As a result, we present an overall research design that can reach acceptable quality for quantitative research. The paper so contributes to the literature on business analysis in the early-stage of technology-based ventures and the research technique of content analysis.
In this work, we investigate a hybrid decoding approach that combines algebraic hard-input decoding of binary block codes with soft-input decoding. In particular, an acceptance criterion is proposed which determines the reliability of a candidate codeword. For many received codewords the stopping criterion indicates that the hard-decoding result is sufficiently reliable, and the costly soft-input decoding can be omitted. The proposed acceptance criterion significantly reduces the decoding complexity. For simulations we combine the algebraic hard-input decoding with ordered statistics decoding, which enables near maximum likelihood soft-input decoding for codes of small to medium block lengths.
This work proposes an efficient hardware Implementation of sequential stack decoding of binary block codes. The decoder can be applied for soft input decoding for generalized concatenated (GC) codes. The GC codes are constructed from inner nested binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer Reed-Solomon (RS) codes. In order to enable soft input decoding for the inner BCH block codes, a sequential stack decoding algorithm is used.
Many resource-constrained systems still rely on symmetric cryptography for verification and authentication. Asymmetric cryptographic systems provide higher security levels, but are very computational intensive. Hence, embedded systems can benefit from hardware assistance, i.e., coprocessors optimized for the required public key operations. In this work, we propose an elliptic curve cryptographic coprocessors design for resource-constrained systems. Many such coprocessor designs consider only special (Solinas) prime fields, which enable a low-complexity modulo arithmetic. Other implementations support arbitrary prime curves using the Montgomery reduction. These implementations typically require more time for the point multiplication. We present a coprocessor design that has low area requirements and enables a trade-off between performance and flexibility. The point multiplication can be performed either using a fast arithmetic based on Solinas primes or using a slower, but flexible Montgomery modular arithmetic.
Business models (BM) are the logic of a firm on how to create, deliver and capture value. Business model innovation (BMI) is essential to organisations for keeping competitive advantage. However, the existence of barriers to BMI can impact the success of a corporate strategic alignment. Previous research has examined the internal barriers to business model innovation, however there is a lack of research on the potential external barriers that could potentially inhibit business model innovation. Drawn from an in-depth case study in a German medium size engineering company in the equestrian sports industry, we explore both internal and external barriers to business model innovation. BMI is defined as any change in one or more of the nine building blocks of the Business Model Canvas; customer segment, value propositions, channels, customer relation, revenue streams, key resources, key activities, key partners, cost structure [1]. Our results show that barriers to business model innovation can be overcome by the deployment of organisational learning mechanisms and the development of an open network capability.
The paper investigates an innovative actuator combination based on the magnetic shape memory technology. The actuator is composed of an electromagnet, which is activated to produce motion, and a magnetic shape memory element, which is used passively to yield multistability, i.e. the possibility of holding a position without input power. Based on the experimental open-loop frequency characterization of the actuator, a position controller is developed and tested in several experiments.
This work is a study about a comparison of survey tools and it should help developers in selecting a suited tool for application in an AAL environment. The first step was to identify the basic required functionality of the survey tools used for AAL technologies and to compare these tools by their functionality and assignments. The comparative study was derived from the data obtained, previous literature studies and further technical data. A list of requirements was stated and ordered in terms of relevance to the target application domain. With the help of an integrated assessment method, the calculation of a generalized estimate value was performed and the result is explained. Finally, the planned application of this tool in a running project is explained.
Present demographic change and a growing population of elderly people leads to new medical needs. Meeting these with state of the art technology is as a consequence a rapidly growing market. So this work is aimed at taking modern concepts of mobile and sensor technology and putting them in a medical context. By measuring a user’s vital signs on sensors which are processed on a Android smartphone, the target system is able to determine the current health state of the user and to visualize gathered information. The system also includes a weather forecasting functionality, which alerts the user on possibly dangerous future meteorological events. All information are collected centrally and distributed to users based on their location. Further, the system can correlate the client-side measurement of vital signs with a server-side weather history. This enables personalized forecasting for each user individually. Finally, a portable and affordable application was developed that continuously monitors the health status by many vital sensors, all united on a common smartphone.
The first part of this work shows the development and application of a new material system using high strength duplex stainless steel wires as net material with environmentally compatible antifouling properties for off-shore fish farm cages. Current net materials from textiles (polyamide) shall be partially replaced by high strength duplex stainless steel in order to have a more environmentally compatible system which meets the more severe mechanical loads (waves, storms, predatores (sharks, seals)). With a new antifouling strategy current issues like reduced ecological damage (e.g. due to copper disposal), lower maintenance costs (e.g. cleaning) and reduced durability shall be resolved.
High strength steel wires are also widely used in geological protection systems, for example rockfall protection or slope stabilisation. Normally hot-dip galvanised carbon steel is used in this case. But in highly corrosive environments like coastal areas, volcanic areas or mines for example, other solutions with a high corrosion resistance and sufficient mechanical properties are necessary. Protection systems made of high strength duplex stainless steel wires enable a significantly longer service life of the portection systems and therefore a higher level of security.