### Refine

#### Document Type

- Conference Proceeding (18)
- Article (14)
- Patent (3)

#### Keywords

- Antenna arrays (1)
- BCH codes (1)
- Block codes (1)
- CONCATENATED codes (1)
- CONVOLUTION codes (1)
- Channel estimation (1)
- Concatenated codes (1)
- Data compression (2)
- Decoding (2)
- ERROR-correcting codes (1)

This work studies a wind noise reduction approach for communication applications in a car environment. An endfire array consisting of two microphones is considered as a substitute for an ordinary cardioid microphone capsule of the same size. Using the decomposition of the multichannel Wiener filter (MWF), a suitable beamformer and a single-channel post filter are derived. Due to the known array geometry and the location of the speech source, assumptions about the signal properties can be made to simplify the MWF beamformer and to estimate the speech and noise power spectral densities required for the post filter. Even for closely spaced microphones, the different signal properties at the microphones can be exploited to achieve a significant reduction of wind noise. The proposed beamformer approach results in an improved speech signal regarding the signal-to-noise-ratio and keeps the linear speech distortion low. The derived post filter shows equal performance compared to known approaches but reduces the effort for noise estimation.

Error correction coding based on soft-input decoding can significantly improve the reliability of non-volatile flash memories. This work proposes a soft-input decoder for generalized concatenated (GC) codes. GC codes are well suited for error correction in flash memories for high reliability data storage. We propose GC codes constructed from inner extended binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer Reed-Solomon codes. The extended BCH codes enable an efficient hard-input decoding. Furthermore, a low-complexity soft-input decoding method is proposed. This bit-flipping decoder uses a fixed number of test patterns and an algebraic decoder for soft-decoding. An acceptance criterion for the final candidate codeword is proposed. Combined with error and erasure decoding of the outer Reed-Solomon codes, this acceptance criterion can improve the decoding performance and reduce the decoding complexity. The presented simulation results show that the proposed bit-flipping decoder in combination with outer error and erasure decoding can outperform maximum likelihood decoding of the inner codes.

This work investigates soft input decoding for generalized concatenated (GC) codes. The GC codes are constructed from inner nested binary Bose-Chaudhuri-Hocquenghem (BCH)codes and outer Reed-Solomon (RS) codes. In order to enable soft input decoding for the inner BCH block codes, a sequential stack decoding algorithm is used. Ordinary stack decoding of binary block codes requires the complete trellis of the code.
In this work a representation of the block codes based on the trellises of supercodes is proposed in order to reduce the memory requirements for the representation of the BCH codes. Results for the decoding performance of the overall GC code are presented.
Furthermore, an efficient hardware implementation of the GC decoder is proposed.

Generalised concatenated (GC) codes are well suited for error correction in flash memories for high-reliability data storage. The GC codes are constructed from inner extended binary Bose–Chaudhuri–Hocquenghem (BCH) codes and outer Reed–Solomon codes. The extended BCH codes enable high-rate GC codes and low-complexity soft input decoding. This work proposes a decoder architecture for high-rate GC codes. For such codes, outer error and erasure decoding are mandatory. A pipelined decoder architecture is proposed that achieves a high data throughput with hard input decoding. In addition, a low-complexity soft input decoder is proposed. This soft decoding approach combines a bit-flipping strategy with algebraic decoding. The decoder components for the hard input decoding can be utilised which reduces the overhead for the soft input decoding. Nevertheless, the soft input decoding achieves a significant coding gain compared with hard input decoding.

This letter introduces signal constellations based on multiplicative groups of Eisenstein integers, i.e., hexagonal lattices. These sets of Eisenstein integers are proposed as signal constellations for generalized spatial modulation. The algebraic properties of the new constellations are investigated and a set partitioning technique is developed. This technique can be used to design coded modulation schemes over hexagonal lattices.

The Burrows–Wheeler transformation (BWT) is a reversible block sorting transform that is an integral part of many data compression algorithms. This work proposes a memory-efficient pipelined decoder for the BWT. In particular, the authors consider the limited context order BWT that has low memory requirements and enable fast encoding. However, the decoding of the limited context order BWT is typically much slower than the encoding. The proposed decoder pipeline provides a fast inverse BWT by splitting the decoding into several processing stages which are executed in parallel.

The multichannel Wiener filter (MWF) is a well-established noise reduction technique for speech processing. Most commonly, the speech component in a selected reference microphone is estimated. The choice of this reference microphone influences the broadband output signal-to-noise ratio (SNR) as well as the speech distortion. Recently, a generalized formulation for the MWF (G-MWF) was proposed that uses a weighted sum of the individual transfer functions from the speaker to the microphones to form a better speech reference resulting in an improved broadband output SNR. For the MWF, the influence of the phase reference is often neglected, because it has no impact on the narrow-band output SNR. The G-MWF allows an arbitrary choice of the phase reference especially in the context of spatially distributed microphones.
In this work, we demonstrate that the phase reference determines the overall transfer function and hence has an impact on both the speech distortion and the broadband output SNR. We propose two speech references that achieve a better signal-to-reverberation ratio (SRR) and an improvement in the broadband output SNR. Both proposed references are based on the phase of a delay-and-sum beamformer. Hence, the time-difference-of-arrival (TDOA) of the speech source is required to align the signals. The different techniques are compared in terms of SRR and SNR performance.

Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers is presented that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations.

Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations is presented. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations. In addition, we present multilevel code constructions for the new signal constellations.