### Refine

#### Document Type

- Conference Proceeding (27)
- Article (6)
- Report (2)
- Part of a Book (1)

#### Keywords

- Actuators (2)
- Aerobic fermentation (1)
- Aktorik (1)
- Alterungsbeständigkeit (1)
- Collision avoidance (1)
- Continuous-discrete time observer (1)
- Correlation analysis (1)
- DO control (1)
- Data compression algorithms (1)
- Differential flatness (1)

A semilinear distributed parameter approach for solenoid valve control including saturation effects
(2015)

In this paper a semilinear parabolic PDE for the control of solenoid valves is presented. The distributed parameter model of the cylinder becomes nonlinear by the inclusion of saturation effects due to the material's B/H-curve. A flatness based solution of the semilinear PDE is shown as well as a convergence proof of its series solution. By numerical simulation results the adaptability of the approach is demonstrated, and differences between the linear and the nonlinear case are discussed. The major contribution of this paper is the inclusion of saturation effects into the magnetic field governing linear diffusion equation, and the development of a flatness based solution for the resulting semilinear PDE as an extension of previous works [1] and [2].

The improvement of collision avoidance for vessels in close range encounter situations is an important topic for maritime traffic safety. Typical approaches generate evasive trajectories or optimise the trajectories of all involved vessels. Such a collision avoidance system has to produce evasive manoeuvres that do not confuse other navigators. To achieve this behaviour, a probabilistic obstacle handling based on information from a radar sensor with target tracking, that considers measurement and tracking uncertainties is proposed. A grid based path search algorithm, that takes the information from the probabilistic obstacle handling into account, is then used to generate evasive trajectories. The proposed algorithms have been tested and verified in a simulated environment for inland waters.

Motion safety for vessels
(2015)

The improvement of collision avoidance for vessels in close range encounter situations is an important topic for maritime traffic safety. Typical approaches generate evasive trajectories or optimise the trajectories of all involved vessels. The idea of this work is to validate these trajectories related to guaranteed motion safety, which means that it is not sufficient for a trajectory to be collision-free, but it must additionally ensure that an evasive manoeuvre is performable at any time. An approach using the distance and the evolution of the distance to the other vessels is proposed. The concept of Inevitable Collision States (ICS) is adopted to identify the states for which no evasive manoeuvre exist. Furthermore, it is implemented into a collision avoidance system for recreational crafts to demonstrate the performance.

Knowing the position of the spool in a solenoid valve, without using costly position sensors, is of considerable interest in a lot of industrial applications. In this paper, the problem of position estimation based on state observers for fast-switching solenoids, with sole use of simple voltage and current measurements, is investigated. Due to the short spool traveling time in fast-switching valves, convergence of the observer errors has to be achieved very fast. Moreover, the observer has to be robust against modeling uncertainties and parameter variations. Therefore, different state observer approaches are investigated, and compared to each other regarding possible uncertainties. The investigation covers a High-Gain-Observer approach, a combined High-Gain Sliding-Mode-Observer approach, both based on extended linearization, and a nonlinear Sliding-Mode-Observer based on equivalent output injection. The results are discussed by means of numerical simulations for all approaches, and finally physical experiments on a valve-mock-up are thoroughly discussed for the nonlinear Sliding-Mode-Observer.

The method of signal injection is investigated for position estimation of proportional solenoid valves. A simple observer is proposed to estimate a position-dependent parameter, i.e. the eddy current resistance, from which the position is calculated analytically. Therefore, the relationship of position and impedance in the case of sinusoidal excitation is accurately described by consideration of classical electrodynamics. The observer approach is compared with a standard identification method, and evaluated by practical experiments on an off-the-shelf proportional solenoid valve.

In this paper, a gain-scheduled nonlinear control structure is proposed for a surface vessel, which takes advantage of extended linearisation techniques. Thereby, an accurate tracking of desired trajectories can be guaranteed that contributes to a safe and reliable water transport. The PI state feedback control is extended by a feedforward control based on an inverse system model. To achieve an accurate trajectory tracking, however, an observer-based disturbance compensation is necessary: external disturbances by cross currents or wind forces in lateral direction and wave-induced measurement disturbances are estimated by a nonlinear observer and used for a compensation. The efficiency and the achieved tracking performance are shown by simulation results using a validated model of the ship Korona at the HTWG Konstanz, Germany. Here, both tracking behaviour and rejection of disturbance forces in lateral direction are considered.

Sliding-mode observation with iterative parameter adaption for fast-switching solenoid valves
(2016)

Control of the armature motion of fast-switching solenoid valves is highly desired to reduce noise emission and wear of material. For feedback control, information of the current position and velocity of the armature are necessary. In mass production applications, however, position sensors are unavailable due to cost and fabrication reasons. Thus, position estimation by measuring merely electrical quantities is a key enabler for advanced control, and, hence, for efficient and robust operation of digital valves in advanced hydraulic applications. The work presented here addresses the problem of state estimation, i.e., position and velocity of the armature, by sole use of electrical measurements. The considered devices typically exhibit nonlinear and very fast dynamics, which makes observer design a challenging task. In view of the presence of parameter uncertainty and possible modeling inaccuracy, the robustness properties of sliding mode observation techniques are deployed here. The focus is on error convergence in the presence of several sources for modeling uncertainty and inaccuracy. Furthermore, the cyclic operation of switching solenoids is exploited to iteratively correct a critical parameter by taking into account the norm of the observation error of past switching cycles of the process. A thorough discussion on real-world experimental results highlights the usefulness of the proposed state observation approach.