### Refine

This work introduces new signal constellations based on Eisenstein integers, i.e., the hexagonal lattice. These sets of Eisenstein integers have a cardinality which is an integer power of three. They are proposed as signal constellations for representation in the equivalent complex baseband model, especially for applications like physical-layer network coding or MIMO transmission where the constellation is required to be a subset of a lattice. It is shown that these constellations form additive groups where the addition over the complex plane corresponds to the addition with carry over ternary Galois fields. A ternary set partitioning is derived that enables multilevel coding based on ternary error-correcting codes. In the subsets, this partitioning achieves a gain of 4.77 dB, which results from an increased minimum squared Euclidean distance of the signal points. Furthermore, the constellation-constrained capacities over the AWGN channel and the related level capacities in case of ternary multilevel coding are investigated. Simulation results for multilevel coding based on ternary LDPC codes are presented which show that a performance close to the constellation-constrained capacities can be achieved.

It is well known that signal constellations which are based on a hexagonal grid, so-called Eisenstein constellations, exhibit a performance gain over conventional QAM ones. This benefit is realized by a packing and shaping gain of the Eisenstein (hexagonal) integers in comparison to the Gaussian (complex) integers. Such constellations are especially relevant in transmission schemes that utilize lattice structures, e.g., in MIMO communications. However, for coded modulation, the straightforward approach is to combine Eisenstein constellations with ternary channel codes. In this paper, a multilevel-coding approach is proposed where encoding and multistage decoding can directly be performed with state-of-the-art binary channel codes. An associated mapping and a binary set partitioning are derived. The performance of the proposed approach is contrasted to classical multilevel coding over QAM constellations. To this end, both the single-user AWGN scenario and the (multiuser) MIMO broadcast scenario using lattice-reduction-aided preequalization are considered. Results obtained from numerical simulations with LDPC codes complement the theoretical aspects.

This work proposes a suboptimal detection algorithm for generalized multistream spatial modulation. Many suboptimal detection algorithms for spatial modulation use two-stage detection schemes where the set of active antennas is detected in the first stage and the transmitted symbols in the second stage. For multistream spatial modulation with large signal constellations the second detection step typically dominates the detection complexity. With the proposed detection scheme, the modified Gaussian approximation method is used for detecting the antenna pattern. In order to reduce the complexity for detecting the signal points, we propose a combined equalization and list decoding approach. Simulation results demonstrate that the new algorithm achieves near-maximum-likelihood performance with small list sizes. It significantly reduces the complexity when compared with conventional two-stage detection schemes.