Refine
Document Type
- Conference Proceeding (9)
- Article (4)
Language
- English (13)
Keywords
- 1D-CNN (1)
- AHI (1)
- Apnea detection (1)
- Artificial intelligence models (1)
- Assisted living (1)
- Assistive systems (1)
- Automatic sleep assessment (1)
- Biomedical time series (1)
- Deep Learning (1)
- Deep learning (2)
Institute
This work is a study about a comparison of survey tools and it should help developers in selecting a suited tool for application in an AAL environment. The first step was to identify the basic required functionality of the survey tools used for AAL technologies and to compare these tools by their functionality and assignments. The comparative study was derived from the data obtained, previous literature studies and further technical data. A list of requirements was stated and ordered in terms of relevance to the target application domain. With the help of an integrated assessment method, the calculation of a generalized estimate value was performed and the result is explained. Finally, the planned application of this tool in a running project is explained.
The digital twin concept has been widely known for asset monitoring in the industry for a long time. A clear example is the automotive industry. Recently, there has also been significant interest in the application of digital twins in healthcare, especially in genomics in what is known as precision medicine. This work focuses on another medical speciality where digital twins can be applied, sleep medicine. However, there is still great controversy about the fundamentals that constitute digital twins, such as what this concept is based on and how it can be included in healthcare effectively and sustainably. This article reviews digital twins and their role so far in what is known as personalized medicine. In addition, a series of steps will be exposed for a possible implementation of a digital twin for a patient suffering from sleep disorders. For this, artificial intelligence techniques, clinical data management, and possible solutions for explaining the results derived from artificial intelligence models will be addressed.
Home health applications have evolved over the last few decades. Assistive systems such as a data platform in connection with health devices can allow for health-related data to be automatically transmitted to a database. However, there remain significant challenges concerning intermodular communication. Central among them is the challenge of achieving interoperability, the ability of devices to communicate and share data with each other. A major goal of this project was to extend an existing data platform (COMES®) and establish working interoperability by connecting assistive devices with differing approaches. We describe this process for a sleep monitoring and a physical exercise device. Furthermore, we aimed to test this setup and the implementation with a data platform in both a laboratory and an in-home setting with 11 elderly participants. The platform modification was realized, and the relevant changes were made so that the incoming data could be processed by the data platform, as well as visually displayed in real-time. Data was recorded by the respective device and transmitted into the data server with minor disruptions. Our observations affirmed that difficulties and data loss are far more likely to occur with increasing technical complexity, in the event of instable internet connection, or when the device setup requires (elderly) subjects to take specific steps for proper functioning. We emphasize the importance for tests and evaluations of home health technologies in real-life circumstances.
The use of deep learning models with medical data is becoming more widespread. However, although numerous models have shown high accuracy in medical-related tasks, such as medical image recognition (e.g. radiographs), there are still many problems with seeing these models operating in a real healthcare environment. This article presents a series of basic requirements that must be taken into account when developing deep learning models for biomedical time series classification tasks, with the aim of facilitating the subsequent production of the models in healthcare. These requirements range from the correct collection of data, to the existing techniques for a correct explanation of the results obtained by the models. This is due to the fact that one of the main reasons why the use of deep learning models is not more widespread in healthcare settings is their lack of clarity when it comes to explaining decision making.
oday many scientific works are using deep learning algorithms and time series, which can detect physiological events of interest. In sleep medicine, this is particularly relevant in detecting sleep apnea, specifically in detecting obstructive sleep apnea events. Deep learning algorithms with different architectures are used to achieve decent results in accuracy, sensitivity, etc. Although there are models that can reliably determine apnea and hypopnea events, another essential aspect to consider is the explainability of these models, i.e., why a model makes a particular decision. Another critical factor is how these deep learning models determine how severe obstructive sleep apnea is in patients based on the apnea-hypopnea index (AHI). Deep learning models trained by two approaches for AHI determination are exposed in this work. Approaches vary depending on the data format the models are fed: full-time series and window-based time series.
Introduction. Despite its high accuracy, polysomnography (PSG) has several drawbacks for diagnosing obstructive sleep apnea (OSA). Consequently, multiple portable monitors (PMs) have been proposed. Objective. This systematic review aims to investigate the current literature to analyze the sets of physiological parameters captured by a PM to select the minimum number of such physiological signals while maintaining accurate results in OSA detection. Methods. Inclusion and exclusion criteria for the selection of publications were established prior to the search. The evaluation of the publications was made based on one central question and several specific questions. Results. The abilities to detect hypopneas, sleep time, or awakenings were some of the features studied to investigate the full functionality of the PMs to select the most relevant set of physiological signals. Based on the physiological parameters collected (one to six), the PMs were classified into sets according to the level of evidence. The advantages and the disadvantages of each possible set of signals were explained by answering the research questions proposed in the methods. Conclusions. The minimum number of physiological signals detected by PMs for the detection of OSA depends mainly on the purpose and context of the sleep study. The set of three physiological signals showed the best results in the detection of OSA.
The scoring of sleep stages is one of the essential tasks in sleep analysis. Since a manual procedure requires considerable human and financial resources, and incorporates some subjectivity, an automated approach could result in several advantages. There have been many developments in this area, and in order to provide a comprehensive overview, it is essential to review relevant recent works and summarise the characteristics of the approaches, which is the main aim of this article. To achieve it, we examined articles published between 2018 and 2022 that dealt with the automated scoring of sleep stages. In the final selection for in-depth analysis, 125 articles were included after reviewing a total of 515 publications. The results revealed that automatic scoring demonstrates good quality (with Cohen's kappa up to over 0.80 and accuracy up to over 90%) in analysing EEG/EEG + EOG + EMG signals. At the same time, it should be noted that there has been no breakthrough in the quality of results using these signals in recent years. Systems involving other signals that could potentially be acquired more conveniently for the user (e.g. respiratory, cardiac or movement signals) remain more challenging in the implementation with a high level of reliability but have considerable innovation capability. In general, automatic sleep stage scoring has excellent potential to assist medical professionals while providing an objective assessment.
Background: Polysomnography (PSG) is the gold standard for detecting obstructive sleep apnea (OSA). However, this technique has many disadvantages when using it outside the hospital or for daily use. Portable monitors (PMs) aim to streamline the OSA detection process through deep learning (DL).
Materials and methods: We studied how to detect OSA events and calculate the apnea-hypopnea index (AHI) by using deep learning models that aim to be implemented on PMs. Several deep learning models are presented after being trained on polysomnography data from the National Sleep Research Resource (NSRR) repository. The best hyperparameters for the DL architecture are presented. In addition, emphasis is focused on model explainability techniques, concretely on Gradient-weighted Class Activation Mapping (Grad-CAM).
Results: The results for the best DL model are presented and analyzed. The interpretability of the DL model is also analyzed by studying the regions of the signals that are most relevant for the model to make the decision. The model that yields the best result is a one-dimensional convolutional neural network (1D-CNN) with 84.3% accuracy.
Conclusion: The use of PMs using machine learning techniques for detecting OSA events still has a long way to go. However, our method for developing explainable DL models demonstrates that PMs appear to be a promising alternative to PSG in the future for the detection of obstructive apnea events and the automatic calculation of AHI.
The massive use of patient data for the training of artificial intelligence algorithms is common nowadays in medicine. In this scientific work, a statistical analysis of one of the most used datasets for the training of artificial intelligence models for the detection of sleep disorders is performed: sleep health heart study 2. This study focuses on determining whether the gender and age of the patients have a relevant influence to consider working with differentiated datasets based on these variables for the training of artificial intelligence models.
The development of automatic solutions for the detection of physiological events of interest is booming. Improvements in the collection and storage of large amounts of healthcare data allow access to these data faster and more efficiently. This fact means that the development of artificial intelligence models for the detection and monitoring of a large number of pathologies is becoming increasingly common in the medical field. In particular, developing deep learning models for detecting obstructive apnea (OSA) events is at the forefront. Numerous scientific studies focus on the architecture of the models and the results that these models can provide in terms of OSA classification and Apnea-Hypopnea-Index (AHI) calculation. However, little focus is put on other aspects of great relevance that are crucial for the training and performance of the models. Among these aspects can be found the set of physiological signals used and the preprocessing tasks prior to model training. This paper covers the essential requirements that must be considered before training the deep learning model for obstructive sleep apnea detection, in addition to covering solutions that currently exist in the scientific literature by analyzing the preprocessing tasks prior to training.