Refine
Document Type
- Conference Proceeding (3)
- Article (1)
Language
- English (4)
Keywords
- Ballistocardiography (1)
- Butterworth filter (1)
- Early mobilization (1)
- Exergaming (1)
- FSR sensors (1)
- Gamification (2)
- Heart rate (2)
- Long-term care (1)
- Polysomnography (PSG) (1)
- Respiration rate (1)
Institute
Gamification is one of the recognized methods of motivating people in various life processes, and it has spread to many spheres of life, including healthcare. This article proposes a system design for long-term care patients using the method mentioned. The proposed system aims to increase patient engagement in the treatment and rehabilitation process via gamification. Literature research on available and earlier proposed systems was conducted to develop a suited system design. The primary target group includes bedridden patients and a sedentary lifestyle (predominantly lying in bed). One of the main criteria for selecting a suitable option was its contactless realization for the mentioned target groups in long-term care cases. As a result, we developed the system design for hardware and software that could prevent bedsores and other health problems from occurring because of low activity. The proposed design can be tested in hospitals, nursing homes, and rehabilitation centers.
Nowadays, the importance of early active patient mobilization in the recovery and rehabilitation phase has increased significantly. One way to involve patients in the treatment is a gamification-like approach, which is one of the methods of motivation in various life processes. This article shows a system prototype for patients who require physical activity because of active early mobilization after medical interventions or during illness. Bedridden patients and people with a sedentary lifestyle (predominantly lying in bed) are also potential users. The main idea for the concept was non-contact system implementation for the patients making them feel effortless during its usage. The system consists of three related parts: hardware, software, and game application. To test the relevance and coherence of the system, it was used by 35 people. The participants were asked to play a video game requiring them to make body movements while lying down. Then they were asked to take part in a small survey to evaluate the system's usability. As a result, we offer a prototype consisting of hardware and software parts that can increase and diversify physical activity during active early mobilization of patients and prevent the occurrence of possible health problems due to predominantly low activity. The proposed design can be possibly implemented in hospitals, rehabilitation centers, and even at home.
Sleep analysis using a Polysomnography system is difficult and expensive. That is why we suggest a non-invasive and unobtrusive measurement. Very few people want the cables or devices attached to their bodies during sleep. The proposed approach is to implement a monitoring system, so the subject is not bothered. As a result, the idea is a non-invasive monitoring system based on detecting pressure distribution. This system should be able to measure the pressure differences that occur during a single heartbeat and during breathing through the mattress. The system consists of two blocks signal acquisition and signal processing. This whole technology should be economical to be affordable enough for every user. As a result, preprocessed data is obtained for further detailed analysis using different filters for heartbeat and respiration detection. In the initial stage of filtration, Butterworth filters are used.
Sleep disorders can impact daily life, affecting physical, emotional, and cognitive well-being. Due to the time-consuming, highly obtrusive, and expensive nature of using the standard approaches such as polysomnography, it is of great interest to develop a noninvasive and unobtrusive in-home sleep monitoring system that can reliably and accurately measure cardiorespiratory parameters while causing minimal discomfort to the user’s sleep. We developed a low-cost Out of Center Sleep Testing (OCST) system with low complexity to measure cardiorespiratory parameters. We tested and validated two force-sensitive resistor strip sensors under the bed mattress covering the thoracic and abdominal regions. Twenty subjects were recruited, including 12 males and 8 females. The ballistocardiogram signal was processed using the 4th smooth level of the discrete wavelet transform and the 2nd order of the Butterworth bandpass filter to measure the heart rate and respiration rate, respectively. We reached a total error (concerning the reference sensors) of 3.24 beats per minute and 2.32 rates for heart rate and respiration rate, respectively. For males and females, heart rate errors were 3.47 and 2.68, and respiration rate errors were 2.32 and 2.33, respectively. We developed and verified the reliability and applicability of the system. It showed a minor dependency on sleeping positions, one of the major cumbersome sleep measurements. We identified the sensor under the thoracic region as the optimal configuration for cardiorespiratory measurement. Although testing the system with healthy subjects and regular patterns of cardiorespiratory parameters showed promising results, further investigation is required with the bandwidth frequency and validation of the system with larger groups of subjects, including patients.