Refine
Document Type
- Conference Proceeding (7)
- Article (3)
Language
- English (10)
Keywords
- BCG signal (1)
- Ballistocardiography (1)
- Body Position (1)
- Butterworth filter (1)
- Cardiorespiratory parameters (2)
- Early mobilization (1)
- Elastic domes (1)
- Exergaming (1)
- FSR Sensors (1)
- FSR sensors (3)
Institute
Gamification is one of the recognized methods of motivating people in various life processes, and it has spread to many spheres of life, including healthcare. This article proposes a system design for long-term care patients using the method mentioned. The proposed system aims to increase patient engagement in the treatment and rehabilitation process via gamification. Literature research on available and earlier proposed systems was conducted to develop a suited system design. The primary target group includes bedridden patients and a sedentary lifestyle (predominantly lying in bed). One of the main criteria for selecting a suitable option was its contactless realization for the mentioned target groups in long-term care cases. As a result, we developed the system design for hardware and software that could prevent bedsores and other health problems from occurring because of low activity. The proposed design can be tested in hospitals, nursing homes, and rehabilitation centers.
Measuring cardiorespiratory parameters in sleep, using non-contact sensors and the Ballistocardiography technique has received much attention due to the low-cost, unobtrusive, and non-invasive method. Designing a user-friendly, simple-to-use, and easy-to-deployment preserving less errorprone remains open and challenging due to the complex morphology of the signal. In this work, using four forcesensitive resistor sensors, we conducted a study by designing four distributions of sensors, in order to simplify the complexity of the system by identifying the region of interest for heartbeat and respiration measurement. The sensors are deployed under the mattress and attached to the bed frame without any interference with the subjects. The four distributions are combined in two linear horizontal, one linear vertical, and one square, covering the influencing region in cardiorespiratory activities. We recruited 4 subjects and acquired data in four regular sleeping positions, each for a duration of 80 seconds. The signal processing was performed using discrete wavelet transform bior 3.9 and smooth level of 4 as well as bandpass filtering. The results indicate that we have achieved the mean absolute error of 2.35 and 4.34 for respiration and heartbeat, respectively. The results recommend the efficiency of a triangleshaped structure of three sensors for measuring heartbeat and respiration parameters in all four regular sleeping positions.
This study investigates the application of Force Sensing Resistor (FSR) sensors and machine learning algorithms for non-invasive body position monitoring during sleep. Although reliable, traditional methods like Polysomnography (PSG) are invasive and unsuited for extended home-based monitoring. Our approach utilizes FSR sensors placed beneath the mattress to detect body positions effectively. We employed machine learning techniques, specifically Random Forest (RF), K-Nearest Neighbors (KNN), and XGBoost algorithms, to analyze the sensor data. The models were trained and tested using data from a controlled study with 15 subjects assuming various sleep positions. The performance of these models was evaluated based on accuracy and confusion matrices. The results indicate XGBoost as the most effective model for this application, followed by RF and KNN, offering promising avenues for home-based sleep monitoring systems.
Sleep is a multi-dimensional influencing factor on physical health, cognitive function, emotional well-being, mental health, daily performance, and productivity. The barriers such as time-consuming, invasiveness, and expense have caused a gradual shift in sleep monitoring from traditional and standard in-lab approach, e. g., polysomnography (PSG) to unobtrusive and noninvasive in-home sleep monitoring, yet further improvement is required. Despite an increasing interest in fiberoptic-based methods for cardiorespiratory estimation, the traditional mechanical-based sensors consist of force-sensitive resistors (FSR), lead zirconate titanate piezoelectric (PZT), and accelerometers yet serve as the dominant approach. The part of popularity lies in reducing the system’s complexity, expense, easy maintenance, and user-friendliness. However, care must be taken regarding the performance of such sensors with respect to accuracy and calibration.
Nowadays, the importance of early active patient mobilization in the recovery and rehabilitation phase has increased significantly. One way to involve patients in the treatment is a gamification-like approach, which is one of the methods of motivation in various life processes. This article shows a system prototype for patients who require physical activity because of active early mobilization after medical interventions or during illness. Bedridden patients and people with a sedentary lifestyle (predominantly lying in bed) are also potential users. The main idea for the concept was non-contact system implementation for the patients making them feel effortless during its usage. The system consists of three related parts: hardware, software, and game application. To test the relevance and coherence of the system, it was used by 35 people. The participants were asked to play a video game requiring them to make body movements while lying down. Then they were asked to take part in a small survey to evaluate the system's usability. As a result, we offer a prototype consisting of hardware and software parts that can increase and diversify physical activity during active early mobilization of patients and prevent the occurrence of possible health problems due to predominantly low activity. The proposed design can be possibly implemented in hospitals, rehabilitation centers, and even at home.
Sleep analysis using a Polysomnography system is difficult and expensive. That is why we suggest a non-invasive and unobtrusive measurement. Very few people want the cables or devices attached to their bodies during sleep. The proposed approach is to implement a monitoring system, so the subject is not bothered. As a result, the idea is a non-invasive monitoring system based on detecting pressure distribution. This system should be able to measure the pressure differences that occur during a single heartbeat and during breathing through the mattress. The system consists of two blocks signal acquisition and signal processing. This whole technology should be economical to be affordable enough for every user. As a result, preprocessed data is obtained for further detailed analysis using different filters for heartbeat and respiration detection. In the initial stage of filtration, Butterworth filters are used.
Sleep disorders can impact daily life, affecting physical, emotional, and cognitive well-being. Due to the time-consuming, highly obtrusive, and expensive nature of using the standard approaches such as polysomnography, it is of great interest to develop a noninvasive and unobtrusive in-home sleep monitoring system that can reliably and accurately measure cardiorespiratory parameters while causing minimal discomfort to the user’s sleep. We developed a low-cost Out of Center Sleep Testing (OCST) system with low complexity to measure cardiorespiratory parameters. We tested and validated two force-sensitive resistor strip sensors under the bed mattress covering the thoracic and abdominal regions. Twenty subjects were recruited, including 12 males and 8 females. The ballistocardiogram signal was processed using the 4th smooth level of the discrete wavelet transform and the 2nd order of the Butterworth bandpass filter to measure the heart rate and respiration rate, respectively. We reached a total error (concerning the reference sensors) of 3.24 beats per minute and 2.32 rates for heart rate and respiration rate, respectively. For males and females, heart rate errors were 3.47 and 2.68, and respiration rate errors were 2.32 and 2.33, respectively. We developed and verified the reliability and applicability of the system. It showed a minor dependency on sleeping positions, one of the major cumbersome sleep measurements. We identified the sensor under the thoracic region as the optimal configuration for cardiorespiratory measurement. Although testing the system with healthy subjects and regular patterns of cardiorespiratory parameters showed promising results, further investigation is required with the bandwidth frequency and validation of the system with larger groups of subjects, including patients.
Monitoring heart rate and breathing is essential in understanding the physiological processes for sleep analysis. Polysomnography (PSG) system have traditionally been used for sleep monitoring, but alternative methods can help to make sleep monitoring more portable in someone's home. This study conducted a series of experiments to investigate the use of pressure sensors placed under the bed as an alternative to PSG for monitoring heart rate and breathing during sleep. The following sets of experiments involved the addition of small rubber domes - transparent and black - that were glued to the pressure sensor. The resulting data were compared with the PSG system to determine the accuracy of the pressure sensor readings. The study found that the pressure sensor provided reliable data for extracting heart rate and respiration rate, with mean absolute errors (MAE) of 2.32 and 3.24 for respiration and heart rate, respectively. However, the addition of small rubber hemispheres did not significantly improve the accuracy of the readings, with MAEs of 2.3 bpm and 7.56 breaths per minute for respiration rate and heart rate, respectively. The findings of this study suggest that pressure sensors placed under the bed may serve as a viable alternative to traditional PSG systems for monitoring heart rate and breathing during sleep. These sensors provide a more comfortable and non-invasive method of sleep monitoring. However, the addition of small rubber domes did not significantly enhance the accuracy of the readings, indicating that it may not be a worthwhile addition to the pressure sensor system.
Non-invasive sleep monitoring holds significant promise for enhancing healthcare by offering insights into sleep quality and patterns. In this context, accurate detection of body position is crucial, as it provides essential information for diagnosing and understanding the causes of various sleep disorders, including sleep apnea. The aim of this work is to develop an efficient system for sleep position detection using a minimal number of FSR (Force Sensitive Resistor) sensors and advanced machine learning techniques. A hardware setup was developed incorporating 3 FSR sensors, on-board signal processing for frequency boundary filtering and gain adjustment, an ADC (Analog-to-digital converter), and a computing unit for data processing. The collected data was then cleaned and structured before applying various machine learning models, including Logistic Regression, Random Forest Classifier, Support Vector Classifier (SVC), K-Nearest Neighbors (KNN), and XGBoost. An experiment with 15 subjects in 4 different sleeping positions was conducted to evaluate the system. The SVC demonstrated notable performance with a test accuracy of 64%. Analysis of the results identified areas for future improvement, including better differentiation between similar positions. The study highlights the feasibility of using FSR sensors and machine learning for effective sleep position detection. However, further research is needed to improve accuracy and explore more advanced techniques. Future efforts will aim to integrate this approach into a comprehensive, unobtrusive sleep monitoring system, contributing to better healthcare services.