Refine
Document Type
- Conference Proceeding (9)
- Article (4)
Language
- English (13)
Keywords
- Accelerometer (3)
- Accelerometer sensor (2)
- BCG signal (1)
- Ballistocardiography (3)
- Cardiac activity (1)
- Cardiorespiratory parameters (2)
- Contactless Measurement (1)
- Contactless measurement (4)
- Contactless technologies (1)
- Early mobilization (1)
Institute
Sleep is essential to physical and mental health. However, the traditional approach to sleep analysis—polysomnography (PSG)—is intrusive and expensive. Therefore, there is great interest in the development of non-contact, non-invasive, and non-intrusive sleep monitoring systems and technologies that can reliably and accurately measure cardiorespiratory parameters with minimal impact on the patient. This has led to the development of other relevant approaches, which are characterised, for example, by the fact that they allow greater freedom of movement and do not require direct contact with the body, i.e., they are non-contact. This systematic review discusses the relevant methods and technologies for non-contact monitoring of cardiorespiratory activity during sleep. Taking into account the current state of the art in non-intrusive technologies, we can identify the methods of non-intrusive monitoring of cardiac and respiratory activity, the technologies and types of sensors used, and the possible physiological parameters available for analysis. To do this, we conducted a literature review and summarised current research on the use of non-contact technologies for non-intrusive monitoring of cardiac and respiratory activity. The inclusion and exclusion criteria for the selection of publications were established prior to the start of the search. Publications were assessed using one main question and several specific questions. We obtained 3774 unique articles from four literature databases (Web of Science, IEEE Xplore, PubMed, and Scopus) and checked them for relevance, resulting in 54 articles that were analysed in a structured way using terminology. The result was 15 different types of sensors and devices (e.g., radar, temperature sensors, motion sensors, cameras) that can be installed in hospital wards and departments or in the environment. The ability to detect heart rate, respiratory rate, and sleep disorders such as apnoea was among the characteristics examined to investigate the overall effectiveness of the systems and technologies considered for cardiorespiratory monitoring. In addition, the advantages and disadvantages of the considered systems and technologies were identified by answering the identified research questions. The results obtained allow us to determine the current trends and the vector of development of medical technologies in sleep medicine for future researchers and research.
Gamification is one of the recognized methods of motivating people in various life processes, and it has spread to many spheres of life, including healthcare. This article proposes a system design for long-term care patients using the method mentioned. The proposed system aims to increase patient engagement in the treatment and rehabilitation process via gamification. Literature research on available and earlier proposed systems was conducted to develop a suited system design. The primary target group includes bedridden patients and a sedentary lifestyle (predominantly lying in bed). One of the main criteria for selecting a suitable option was its contactless realization for the mentioned target groups in long-term care cases. As a result, we developed the system design for hardware and software that could prevent bedsores and other health problems from occurring because of low activity. The proposed design can be tested in hospitals, nursing homes, and rehabilitation centers.
Nowadays, the importance of early active patient mobilization in the recovery and rehabilitation phase has increased significantly. One way to involve patients in the treatment is a gamification-like approach, which is one of the methods of motivation in various life processes. This article shows a system prototype for patients who require physical activity because of active early mobilization after medical interventions or during illness. Bedridden patients and people with a sedentary lifestyle (predominantly lying in bed) are also potential users. The main idea for the concept was non-contact system implementation for the patients making them feel effortless during its usage. The system consists of three related parts: hardware, software, and game application. To test the relevance and coherence of the system, it was used by 35 people. The participants were asked to play a video game requiring them to make body movements while lying down. Then they were asked to take part in a small survey to evaluate the system's usability. As a result, we offer a prototype consisting of hardware and software parts that can increase and diversify physical activity during active early mobilization of patients and prevent the occurrence of possible health problems due to predominantly low activity. The proposed design can be possibly implemented in hospitals, rehabilitation centers, and even at home.
Determination of accelerometer sensor position for respiration rate detection: Initial research
(2022)
Continuous monitoring of a patient's vital signs is essential in many chronic illnesses. The respiratory rate (RR) is one of the vital signs indicating breathing diseases. This article proposes the initial investigation for determining the accelerometric sensor position of a non-invasive and unobtrusive respiratory rate monitoring system. This research aims to determine the sensor position in relation to the patient, which can provide the most accurate values of the mentioned physiological parameter. In order to achieve the result, the particular system setup, including a mechanical sensor holder construction was used. The breathing signals from 5 participants were analyzed corresponding to the relaxed state. The main criterion for selecting a suitable sensor position was each patient's average acceleration amplitude excursion, which corresponds to the respiratory signal. As a result, we provided one more defined important parameter for the considered system, which was not determined before.
The respiratory rate is a vital sign indicating breathing illness. It is necessary to analyze the mechanical oscillations of the patient's body arising from chest movements. An inappropriate holder on which the sensor is mounted, or an inappropriate sensor position is some of the external factors which should be minimized during signal registration. This paper considers using a non-invasive device placed under the bed mattress and evaluates the respiratory rate. The aim of the work is the development of an accelerometer sensor holder for this system. The normal and deep breathing signals were analyzed, corresponding to the relaxed state and when taking deep breaths. The evaluation criterion for the holder's model is its influence on the patient's respiratory signal amplitude for each state. As a result, we offer a non-invasive system of respiratory rate detection, including the mechanical component providing the most accurate values of mentioned respiratory rate.
Sleep is extremely important for physical and mental health. Although polysomnography is an established approach in sleep analysis, it is quite intrusive and expensive. Consequently, developing a non-invasive and non-intrusive home sleep monitoring system with minimal influence on patients, that can reliably and accurately measure cardiorespiratory parameters, is of great interest. The aim of this study is to validate a non-invasive and unobtrusive cardiorespiratory parameter monitoring system based on an accelerometer sensor. This system includes a special holder to install the system under the bed mattress. The additional aim is to determine the optimum relative system position (in relation to the subject) at which the most accurate and precise values of measured parameters could be achieved. The data were collected from 23 subjects (13 males and 10 females). The obtained ballistocardiogram signal was sequentially processed using a sixth-order Butterworth bandpass filter and a moving average filter. As a result, an average error (compared to reference values) of 2.24 beats per minute for heart rate and 1.52 breaths per minute for respiratory rate was achieved, regardless of the subject’s sleep position. For males and females, the errors were 2.28 bpm and 2.19 bpm for heart rate and 1.41 rpm and 1.30 rpm for respiratory rate. We determined that placing the sensor and system at chest level is the preferred configuration for cardiorespiratory measurement. Further studies of the system’s performance in larger groups of subjects are required, despite the promising results of the current tests in healthy subjects.
Accurate monitoring of a patient's heart rate is a key element in the medical observation and health monitoring. In particular, its importance extends to the identification of sleep-related disorders. Various methods have been established that involve sensor-based recording of physiological signals followed by automated examination and analysis. This study attempts to evaluate the efficacy of a non-invasive HR monitoring framework based on an accelerometer sensor specifically during sleep. To achieve this goal, the motion induced by thoracic movements during cardiac contractions is captured by a device installed under the mattress. Signal filtering techniques and heart rate estimation using the symlets6 wavelet are part of the implemented computational framework described in this article. Subsequent analysis indicates the potential applicability of this system in the prognostic domain, with an average error margin of approximately 3 beats per minute. The results obtained represent a promising advancement in non-invasive heart rate monitoring during sleep, with potential implications for improved diagnosis and management of cardiovascular and sleep-related disorders.
Sleep is an essential part of human existence, as we are in this state for approximately a third of our lives. Sleep disorders are common conditions that can affect many aspects of life. Sleep disorders are diagnosed in special laboratories with a polysomnography system, a costly procedure requiring much effort for the patient. Several systems have been proposed to address this situation, including performing the examination and analysis at the patient's home, using sensors to detect physiological signals automatically analysed by algorithms. This work aims to evaluate the use of a contactless respiratory recording system based on an accelerometer sensor in sleep apnea detection. For this purpose, an installation mounted under the bed mattress records the oscillations caused by the chest movements during the breathing process. The presented processing algorithm performs filtering of the obtained signals and determines the apnea events presence. The performance of the developed system and algorithm of apnea event detection (average values of accuracy, specificity and sensitivity are 94.6%, 95.3%, and 93.7% respectively) confirms the suitability of the proposed method and system for further ambulatory and in-home use.
Evaluation of a Contactless Accelerometer Sensor System for Heart Rate Monitoring During Sleep
(2024)
The monitoring of a patient's heart rate (HR) is critical in the diagnosis of diseases. In the detection of sleep disorders, it also plays an important role. Several techniques have been proposed, including using sensors to record physiological signals that are automatically examined and analysed. This work aims to evaluate using a contactless HR monitoring system based on an accelerometer sensor during sleep. For this purpose, the oscillations caused by chest movements during heart contractions are recorded by an installation mounted under the bed mattress. The processing algorithm presented in this paper filters the signals and determines the HR. As a result, an average error of about 5 bpm has been documented, i.e., the system can be considered to be used for the forecasted domain.
Sleep disorders can impact daily life, affecting physical, emotional, and cognitive well-being. Due to the time-consuming, highly obtrusive, and expensive nature of using the standard approaches such as polysomnography, it is of great interest to develop a noninvasive and unobtrusive in-home sleep monitoring system that can reliably and accurately measure cardiorespiratory parameters while causing minimal discomfort to the user’s sleep. We developed a low-cost Out of Center Sleep Testing (OCST) system with low complexity to measure cardiorespiratory parameters. We tested and validated two force-sensitive resistor strip sensors under the bed mattress covering the thoracic and abdominal regions. Twenty subjects were recruited, including 12 males and 8 females. The ballistocardiogram signal was processed using the 4th smooth level of the discrete wavelet transform and the 2nd order of the Butterworth bandpass filter to measure the heart rate and respiration rate, respectively. We reached a total error (concerning the reference sensors) of 3.24 beats per minute and 2.32 rates for heart rate and respiration rate, respectively. For males and females, heart rate errors were 3.47 and 2.68, and respiration rate errors were 2.32 and 2.33, respectively. We developed and verified the reliability and applicability of the system. It showed a minor dependency on sleeping positions, one of the major cumbersome sleep measurements. We identified the sensor under the thoracic region as the optimal configuration for cardiorespiratory measurement. Although testing the system with healthy subjects and regular patterns of cardiorespiratory parameters showed promising results, further investigation is required with the bandwidth frequency and validation of the system with larger groups of subjects, including patients.