Refine
Document Type
- Conference Proceeding (2)
- Article (1)
Language
- English (3)
Keywords
- Deep learning (1)
- Defect detection (1)
- Image novelty detection (2)
- Independent component analysis (1)
- Mean-shift (2)
Institute
The detection of anomalous or novel images given a training dataset of only clean reference data (inliers) is an important task in computer vision. We propose a new shallow approach that represents both inlier and outlier images as ensembles of patches, which allows us to effectively detect novelties as mean shifts between reference data and outliers with the Hotelling T2 test. Since mean-shift can only be detected when the outlier ensemble is sufficiently separate from the typical set of the inlier distribution, this typical set acts as a blind spot for novelty detection. We therefore minimize its estimated size as our selection rule for critical hyperparameters, such as, e.g., the size of the patches is crucial. To showcase the capabilities of our approach, we compare results with classical and deep learning methods on the popular datasets MNIST and CIFAR-10, and demonstrate its real-world applicability in a large-scale industrial inspection scenario.
Image novelty detection is a repeating task in computer vision and describes the detection of anomalous images based on a training dataset consisting solely of normal reference data. It has been found that, in particular, neural networks are well-suited for the task. Our approach first transforms the training and test images into ensembles of patches, which enables the assessment of mean-shifts between normal data and outliers. As mean-shifts are only detectable when the outlier ensemble and inlier distribution are spatially separate from each other, a rich feature space, such as a pre-trained neural network, needs to be chosen to represent the extracted patches. For mean-shift estimation, the Hotelling T2 test is used. The size of the patches turned out to be a crucial hyperparameter that needs additional domain knowledge about the spatial size of the expected anomalies (local vs. global). This also affects model selection and the chosen feature space, as commonly used Convolutional Neural Networks or Vision Image Transformers have very different receptive field sizes. To showcase the state-of-the-art capabilities of our approach, we compare results with classical and deep learning methods on the popular dataset CIFAR-10, and demonstrate its real-world applicability in a large-scale industrial inspection scenario using the MVTec dataset. Because of the inexpensive design, our method can be implemented by a single additional 2D-convolution and pooling layer and allows particularly fast prediction times while being very data-efficient.
Incremental one-class learning using regularized null-space training for industrial defect detection
(2024)
One-class incremental learning is a special case of class-incremental learning, where only a single novel class is incrementally added to an existing classifier instead of multiple classes. This case is relevant in industrial defect detection scenarios, where novel defects usually appear during operation. Existing rolled-out classifiers must be updated incrementally in this scenario with only a few novel examples. In addition, it is often required that the base classifier must not be altered due to approval and warranty restrictions. While simple finetuning often gives the best performance across old and new classes, it comes with the drawback of potentially losing performance on the base classes (catastrophic forgetting [1]). Simple prototype approaches [2] work without changing existing weights and perform very well when the classes are well separated but fail dramatically when not. In theory, null-space training (NSCL) [3] should retain the basis classifier entirely, as parameter updates are restricted to the null space of the network with respect to existing classes. However, as we show, this technique promotes overfitting in the case of one-class incremental learning. In our experiments, we found that unconstrained weight growth in null space is the underlying issue, leading us to propose a regularization term (R-NSCL) that penalizes the magnitude of amplification. The regularization term is added to the standard classification loss and stabilizes null-space training in the one-class scenario by counteracting overfitting. We test the method’s capabilities on two industrial datasets, namely AITEX and MVTec, and compare the performance to state-of-the-art algorithms for class-incremental learning.