Refine
Document Type
- Article (7)
- Conference Proceeding (6)
- Preprint (2)
- Book (1)
- Part of a Book (1)
Language
- English (17)
Keywords
- Bayesian convolutional neural networks (1)
- Bayesian neural network (1)
- Classification (1)
- Deep Learning (2)
- Deep learning (5)
- Distributional regression (3)
- Generative modeling (1)
- Imaging (1)
- Interpretability (1)
- Ischemic stroke (1)
Institute
Outcomes with a natural order commonly occur in prediction problems and often the available input data are a mixture of complex data like images and tabular predictors. Deep Learning (DL) models are state-of-the-art for image classification tasks but frequently treat ordinal outcomes as unordered and lack interpretability. In contrast, classical ordinal regression models consider the outcome’s order and yield interpretable predictor effects but are limited to tabular data. We present ordinal neural network transformation models (ontrams), which unite DL with classical ordinal regression approaches. ontrams are a special case of transformation models and trade off flexibility and interpretability by additively decomposing the transformation function into terms for image and tabular data using jointly trained neural networks. The performance of the most flexible ontram is by definition equivalent to a standard multi-class DL model trained with cross-entropy while being faster in training when facing ordinal outcomes. Lastly, we discuss how to interpret model components for both tabular and image data on two publicly available datasets.
Probabilistic Deep Learning
(2020)
Probabilistic Deep Learning is a hands-on guide to the principles that support neural networks. Learn to improve network performance with the right distribution for different data types, and discover Bayesian variants that can state their own uncertainty to increase accuracy. This book provides easy-to-apply code and uses popular frameworks to keep you focused on practical applications.
Rheumatoid arthritis is an autoimmune disease that causes chronic inflammation of synovial joints, often resulting in irreversible structural damage. The activity of the disease is evaluated by clinical examinations, laboratory tests, and patient self-assessment. The long-term course of the disease is assessed with radiographs of hands and feet. The evaluation of the X-ray images performed by trained medical staff requires several minutes per patient. We demonstrate that deep convolutional neural networks can be leveraged for a fully automated, fast, and reproducible scoring of X-ray images of patients with rheumatoid arthritis. A comparison of the predictions of different human experts and our deep learning system shows that there is no significant difference in the performance of human experts and our deep learning model.
Probabilistic Short-Term Low-Voltage Load Forecasting using Bernstein-Polynomial Normalizing Flows
(2021)
The transition to a fully renewable energy grid requires better forecasting of demand at the low-voltage level. However, high fluctuations and increasing electrification cause huge forecast errors with traditional point estimates. Probabilistic load forecasts take future uncertainties into account and thus enables various applications in low-carbon energy systems. We propose an approach for flexible conditional density forecasting of short-term load based on Bernstein-Polynomial Normalizing Flows where a neural network controls the parameters of the flow. In an empirical study with 363 smart meter customers, our density predictions compare favorably against Gaussian and Gaussian mixture densities and also outperform a non-parametric approach based on the pinball loss for 24h-ahead load forecasting for two different neural network architectures.
Deep neural networks (DNNs) are known for their high prediction performance, especially in perceptual tasks such as object recognition or autonomous driving. Still, DNNs are prone to yield unreliable predictions when encountering completely new situations without indicating their uncertainty. Bayesian variants of DNNs (BDNNs), such as MC dropout BDNNs, do provide uncertainty measures. However, BDNNs are slow during test time because they rely on a sampling approach. Here we present a single shot MC dropout approximation that preserves the advantages of BDNNs without being slower than a DNN. Our approach is to analytically approximate for each layer in a fully connected network the expected value and the variance of the MC dropout signal. We evaluate our approach on different benchmark datasets and a simulated toy example. We demonstrate that our single shot MC dropout approximation resembles the point estimate and the uncertainty estimate of the predictive distribution that is achieved with an MC approach, while being fast enough for real-time deployments of BDNNs.
The main challenge in Bayesian models is to determine the posterior for the model parameters. Already, in models with only one or few parameters, the analytical posterior can only be determined in special settings. In Bayesian neural networks, variational inference is widely used to approximate difficult-to-compute posteriors by variational distributions. Usually, Gaussians are used as variational distributions (Gaussian-VI) which limits the quality of the approximation due to their limited flexibility. Transformation models on the other hand are flexible enough to fit any distribution. Here we present transformation model-based variational inference (TM-VI) and demonstrate that it allows to accurately approximate complex posteriors in models with one parameter and also works in a mean-field fashion for multi-parameter models like neural networks.
Know when you don't know
(2018)
Deep convolutional neural networks show outstanding performance in image-based phenotype classification given that all existing phenotypes are presented during the training of the network. However, in real-world high-content screening (HCS) experiments, it is often impossible to know all phenotypes in advance. Moreover, novel phenotype discovery itself can be an HCS outcome of interest. This aspect of HCS is not yet covered by classical deep learning approaches. When presenting an image with a novel phenotype to a trained network, it fails to indicate a novelty discovery but assigns the image to a wrong phenotype. To tackle this problem and address the need for novelty detection, we use a recently developed Bayesian approach for deep neural networks called Monte Carlo (MC) dropout to define different uncertainty measures for each phenotype prediction. With real HCS data, we show that these uncertainty measures allow us to identify novel or unclear phenotypes. In addition, we also found that the MC dropout method results in a significant improvement of classification accuracy. The proposed procedure used in our HCS case study can be easily transferred to any existing network architecture and will be beneficial in terms of accuracy and novelty detection.