Refine
Document Type
- Conference Proceeding (9)
- Article (6)
Language
- English (15)
Keywords
- Binary codes (1)
- Block codes (1)
- Capacity (1)
- Channel capacity (1)
- Channel coding (1)
- Channel estimation (2)
- Computational complexity (1)
- Concatenated codes (2)
- Data retention time (1)
- Decoding (1)
Institute
The reliability of flash memories suffers from various error causes. Program/erase cycles, read disturb, and cell to cell interference impact the threshold voltages and cause bit errors during the read process. Hence, error correction is required to ensure reliable data storage. In this work, we investigate the bit-labeling of triple level cell (TLC) memories. This labeling determines the page capacities and the latency of the read process. The page capacity defines the redundancy that is required for error correction coding. Typically, Gray codes are used to encode the cell state such that the codes of adjacent states differ in a single digit. These Gray codes minimize the latency for random access reads but cannot balance the page capacities. Based on measured voltage distributions, we investigate the page capacities and propose a labeling that provides a better rate balancing than Gray labeling.
Soft-input decoding of concatenated codes based on the Plotkin construction and BCH component codes
(2020)
Low latency communication requires soft-input decoding of binary block codes with small to medium block lengths.
In this work, we consider generalized multiple concatenated (GMC) codes based on the Plotkin construction. These codes are similar to Reed-Muller (RM) codes. In contrast to RM codes, BCH codes are employed as component codes. This leads to improved code parameters. Moreover, a decoding algorithm is proposed that exploits the recursive structure of the concatenation. This algorithm enables efficient soft-input decoding of binary block codes with small to medium lengths. The proposed codes and their decoding achieve significant performance gains compared with RM codes and recursive GMC decoding.
The performance and reliability of non-volatile NAND flash memories deteriorate as the number of program/erase cycles grows. The reliability also suffers from cell to cell interference, long data retention time, and read disturb. These processes effect the read threshold voltages. The aging of the cells causes voltage shifts which lead to high bit error rates (BER) with fixed pre-defined read thresholds. This work proposes two methods that aim on minimizing the BER by adjusting the read thresholds. Both methods utilize the number of errors detected in the codeword of an error correction code. It is demonstrated that the observed number of errors is a good measure for the voltage shifts and is utilized for the initial calibration of the read thresholds. The second approach is a gradual channel estimation method that utilizes the asymmetrical error probabilities for the one-to-zero and zero-to-one errors that are caused by threshold calibration errors. Both methods are investigated utilizing the mutual information between the optimal read voltage and the measured error values.
Numerical results obtained from flash measurements show that these methods reduce the BER of NAND flash memories significantly.
Error correction coding for optical communication and storage requires high rate codes that enable high data throughput and low residual errors. Recently, different concatenated coding schemes were proposed that are based on binary BCH codes with low error correcting capabilities. In this work, low-complexity hard- and soft-input decoding methods for such codes are investigated. We propose three concepts to reduce the complexity of the decoder. For the algebraic decoding we demonstrate that Peterson's algorithm can be more efficient than the Berlekamp-Massey algorithm for single, double, and triple error correcting BCH codes. We propose an inversion-less version of Peterson's algorithm and a corresponding decoding architecture. Furthermore, we propose a decoding approach that combines algebraic hard-input decoding with soft-input bit-flipping decoding. An acceptance criterion is utilized to determine the reliability of the estimated codewords. For many received codewords the stopping criterion indicates that the hard-decoding result is sufficiently reliable, and the costly soft-input decoding can be omitted. To reduce the memory size for the soft-values, we propose a bit-flipping decoder that stores only the positions and soft-values of a small number of code symbols. This method significantly reduces the memory requirements and has little adverse effect on the decoding performance.
The encoding of antenna patterns with generalized spatial modulation as well as other index modulation techniques require w-out-of-n encoding where all binary vectors of length n have the same weight w. This constant-weight property cannot be obtained by conventional linear coding schemes. In this work, we propose a new class of constant-weight codes that result from the concatenation of convolutional codes with constant-weight block codes. These constant-weight convolutional codes are nonlinear binary trellis codes that can be decoded with the Viterbi algorithm. Some constructed constant-weight convolutional codes are optimum free distance codes. Simulation results demonstrate that the decoding performance with Viterbi decoding is close to the performance of the best-known linear codes. Similarly, simulation results for spatial modulation with a simple on-off keying show a significant coding gain with the proposed coded index modulation scheme.
List decoding for concatenated codes based on the Plotkin construction with BCH component codes
(2021)
Reed-Muller codes are a popular code family based on the Plotkin construction. Recently, these codes have regained some interest due to their close relation to polar codes and their low-complexity decoding. We consider a similar code family, i.e., the Plotkin concatenation with binary BCH component codes. This construction is more flexible regarding the attainable code parameters. In this work, we consider a list-based decoding algorithm for the Plotkin concatenation with BCH component codes. The proposed list decoding leads to a significant coding gain with only a small increase in computational complexity. Simulation results demonstrate that the Plotkin concatenation with the proposed decoding achieves near maximum likelihood decoding performance. This coding scheme can outperform polar codes for moderate code lengths.
In this work, we investigate a hybrid decoding approach that combines algebraic hard-input decoding of binary block codes with soft-input decoding. In particular, an acceptance criterion is proposed which determines the reliability of a candidate codeword. For many received codewords the stopping criterion indicates that the hard-decoding result is sufficiently reliable, and the costly soft-input decoding can be omitted. The proposed acceptance criterion significantly reduces the decoding complexity. For simulations we combine the algebraic hard-input decoding with ordered statistics decoding, which enables near maximum likelihood soft-input decoding for codes of small to medium block lengths.
Automotive computing applications like AI databases, ADAS, and advanced infotainment systems have a huge need for persistent memory. This trend requires NAND flash memories designed for extreme automotive environments. However, the error probability of NAND flash memories has increased in recent years due to higher memory density and production tolerances. Hence, strong error correction coding is needed to meet automotive storage requirements. Many errors can be corrected by soft decoding algorithms. However, soft decoding is very resource-intensive and should be avoided when possible. NAND flash memories are organized in pages, and the error correction codes are usually encoded page-wise to reduce the latency of random reads. This page-wise encoding does not reach the maximum achievable capacity. Reading soft information increases the channel capacity but at the cost of higher latency and power consumption. In this work, we consider cell-wise encoding, which also increases the capacity compared to page-wise encoding. We analyze the cell-wise processing of data in triple-level cell (TLC) NAND flash and show the performance gain when using Low-Density Parity-Check (LDPC) codes. In addition, we investigate a coding approach with page-wise encoding and cell-wise reading.
Large persistent memory is crucial for many applications in embedded systems and automotive computing like AI databases, ADAS, and cutting-edge infotainment systems. Such applications require reliable NAND flash memories made for harsh automotive conditions. However, due to high memory densities and production tolerances, the error probability of NAND flash memories has risen. As the number of program/erase cycles and the data retention times increase, non-volatile NAND flash memories' performance and dependability suffer. The read reference voltages of the flash cells vary due to these aging processes. In this work, we consider the issue of reference voltage adaption. The considered estimation procedure uses shallow neural networks to estimate the read reference voltages for different life-cycle conditions with the help of histogram measurements. We demonstrate that the training data for the neural networks can be enhanced by using shifted histograms, i.e., a training of the neural networks is possible based on a few measurements of some extreme points used as training data. The trained neural networks generalize well for other life-cycle conditions.
Mutual Information Analysis for Generalized Spatial Modulation Systems With Multilevel Coding
(2022)
Generalized Spatial Modulation (GSM) enables a trade-off between very high spectral efficiencies and low hardware costs for massive MIMO systems. This is achieved by transmitting information via the selection of active antennas from a set of available antennas besides the transmission of conventional data symbols. GSM systems have been investigated concerning various aspects like suitable signal constellations, efficient detection algorithms, hardware implementations, spatial precoding, and error control coding. On the other hand, determining the capacity of GSM is challenging because no closed-form expressions have been found so far. This paper investigates the mutual information for different GSM variants. We consider a multilevel coding approach, where the antenna selection and IQ modulation are encoded independently. Combined with multistage decoding, such an approach enables low-complexity capacity-achieving coded modulation. The influence of the data symbols on the mutual information is illuminated. We analyze the portions of mutual information related to antenna selection and the IQ modulation processes which depend on the GSM variant and the signal constellation. Moreover, the potential of spatial modulation for massive MIMO systems with many transmit antennas is investigated. Especially in systems with many transmit antennas much information can be conveyed by antenna selection.