Refine
Document Type
- Article (2)
- Conference Proceeding (1)
Language
- English (3)
Has Fulltext
- no (3)
Keywords
- Data Model (1)
- Expert systems (1)
- Hardware prototyping (1)
- Long-term care (1)
- Machine learning (1)
- Sensor data (1)
- Sleep (1)
- Smart-home (1)
- Survey systems (1)
Institute
This paper compares two popular scripting implementations for hardware prototyping: Python scripts exe- cut from User-Space and C-based Linux-Driver processes executed from Kernel-Space, which can provide information to researchers when considering one or another in their implementations. Conclusions exhibit that deploying software scripts in the kernel space makes it possible to grant a certain quality of sensor information using a Raspberry Pi without the need for advanced real-time operational systems.
Development of an expert system to overpass citizens technological barriers on smart home and living
(2023)
Adopting new technologies can be overwhelming, even for people with experience in the field. For the general public, learning about new implementations, releases, brands, and enhancements can cause them to lose interest. There is a clear need to create point sources and platforms that provide helpful information about the novel and smart technologies, assisting users, technicians, and providers with products and technologies. The purpose of these platforms is twofold, as they can gather and share information on interests common to manufacturers and vendors. This paper presents the ”Finde-Dein-SmartHome” tool. Developed in association with the Smart Home & Living competence center [5] to help users learn about, understand, and purchase available technologies that meet their home automation needs. This tool aims to lower the usability barrier and guide potential customers to clear their doubts about privacy and pricing. Communities can use the information provided by this tool to identify market trends that could eventually lower costs for providers and incentivize access to innovative home technologies and devices supporting long-term care.
Healthy and good sleep is a prerequisite for a rested mind and body. Both form the basis for physical and mental health. Healthy sleep is hindered by sleep disorders, the medically diagnosed frequency of which increases sharply from the age of 40. This chapter describes the formal specification of an on-course practical implementation for a non-invasive system based on biomedical signal processing to support the diagnosis and treatment of sleep-related diseases. The system aims to continuously monitor vital data during sleep in a patient’s home environment over long periods by using non-invasive technologies. At the center of the development is the MORPHEUS Box (MoBo), which consists of five main conceptualizations: the MoBo core, the MoBo-HW, the MoBo algorithm, the MoBo API, and the MoBo app. These synergistic elements aim to support the diagnosis and treatment of sleep-related diseases. Although there are related developments in individual aspects concerning the system, no comparative approach is known that gives a similar scope of functionality, deployment flexibility, extensibility, or the possibility to use multiple user groups. With the specification provided in this chapter, the MORPHEUS project sets a good platform, data model, and transmission strategies to bring an innovative proposal to measure sleep quality and detect sleep diseases from non-invasive sensors.