The Industrial Internet of Things (IIoT) will leverage on wireless network technologies to integrate in a seamless manner Cyber-Physical Systems into existing information systems. In this context, the 6TiSCH architecture, proposed by IETF, represents the current leading standardization effort to enable timed and reliable data communication within IPv6 networks for industrial applications. In wireless networks, Link Quality Estimation (LQE) is a crucial task to select the best routes for data forwarding, regardless of unpredictable time varying conditions. Although, many solutions for LQE have been proposed in literature, the majority of them are not designed specifically for 6TiSCH networks. In this paper, we analyze the performance of existing LQE strategies on 6TiSCH networks.
First, we run a set of simulations to measure the performance of one existing LQE strategy in 6TiSCH. Our simulations show that such strategy can result in measurements with low accuracy due to the 6TiSCH default timeslot allocation strategy. Consequently, we propose an extension of the 6TiSCH Minimal Configuration that allocates specific timeslots for the transmission of probing messages to mitigate the problem. The proposed methodology is demonstrated to effectively reduce the LQE error.
The IETF, concerned with the evolution of the Internet architecture, nowadays also looks into industrial automation processes. The contributions of a variety of IETF activities, initiated during the last ten years, enable now the replacement of proprietary standards by an open standardized protocol stack. This stack, denoted in the following as 6TiSCH-stack, is tailored for industrial internet of things (IIoTs). The suitability of 6TiSCH-stack for Industry 4.0 is yet to explore. In this paper, we identify four challenges that, in our opinion, may delay or hinder its adoption. As a prime example of that, we focus on the initial 6TiSCHnetwork
formation, highlighting the shortcomings of the default procedure and introducing our current work for a fast and reliable formation of dense network.