We present an alternative approach to grid management in low voltage grids by the use of artificial intelligence. The developed decision support system is based on an artificial neural network (ANN). Due to the fast reaction time of our system, real time grid management will be possible. Remote controllable switches and tap changers in transformer stations are used to actively manage the grid infrastructure. The algorithm can support the distribution system operators to keep the grid in a safe state at any time. Its functionality is demonstrated by a case study using a virtual test grid. The ANN achieves a prediction rate of around 90% for the different grid management strategies. By considering the four most likely solutions proposed by the ANN, the prediction rate increases to 98.8%, with a 0.1 second increase in the running time of the model.
We present an innovative decision support system (DSS) for distribution system operators (DSO) based on an artificial neural network (ANN). A trained ANN has the ability to recognize problem patterns and to propose solutions that can be implemented directly in real time grid management. The principle functionality of this ANN based optimizer has been demonstrated by means of a simple virtual electrical grid. For this grid, the trained ANN predicted the solution minimizing the total line power dissipation in 98 percent of the cases considered. In 99 percent of the cases, a valid solution in compliance with the specified operating conditions was found. First ANN tests on a more realistic grid, calibrated with household load measurements, revealed a prediction rate between 88 and 90 percent depending on the optimization criteria. This approach promises a faster, more cost-efficient and potentially secure method to support distribution system operators in grid management.
Summary of the 8th Workshop on Metallization and Interconnection for Crystalline Silicon Solar Cells
(2019)
This article gives a summary of the 8th Metallization and Interconnection workshop and attempts to place each contribution in the appropriate context. The field of metallization and interconnection continues to progress at a very fast pace. Several printing techniques can now achieve linewidths below 20 μm. Screen printing is more than ever the dominating metallization technology in the industry, with finger widths of 45 μm in routine mass production and values below 20 μm in the lab. Plating technology is also being improved, particularly through the development of lower cost patterning techniques. Interconnection technology is changing fast, with introduction in mass production of multiwire and shingled cells technologies. New models and characterization techniques are being introduced to study and understand in detail these new interconnection technologies.
In this paper, we propose a novel method for real-time control of electric distribution grids with a limited number of measurements. The method copes with the changing grid behaviour caused by the increasing number of renewable energies and electric vehicles. Three AI based models are used. Firstly, a probabilistic forecasting estimates possible scenarios at unobserved grid nodes. Secondly, a state estimation is used to detect grid congestion. Finally, a grid control suggests multiple possible solutions for the detected problem. The best countermeasures are then detected by evaluating the systems stability for the next time-step.
Summary of the 9th workshop on metallization and interconnection for crystalline silicon solar cells
(2021)
The 9th edition of the Workshop on Metallization and Interconnection for Crystalline Silicon Solar Cells was held as an online event but nevertheless reached the workshop goals of knowledge sharing and networking. The technology of screen-printed contacts of high temperature pastes continues its fast progress enabled by better understanding of the phenomena taking place during printing and firing, and progress in materials. Great improvements were also achieved in low temperature paste printing and plated metallization. In the field of interconnection, progress was reported on multiwire approaches, electrically conductive adhesives and on foil-based approaches. Common to many contributions at the workshop was the use of advanced laser processes to improve performance or throughput.
Das hier vorgestellte Netzoptimierungstool kann dem Verteilnetzbetreiber bei einem Störfall im Netz in Echtzeit eine Lösung zur Steuerung seiner Betriebsmittel vorschlagen. Dadurch kann das bestehende Netz optimal genutzt werden und ein kostenintensiver Netzausbau im Mittel- und Niederspannungsnetz verringert oder sogar verhindert werden. Als Grundlage für den Netzoptimierer dient ein künstliches neuronales Netz (KNN). Zum Training des KNN wurden Störfälle generiert, die auf reellen Erzeugungs- und Lastprofilen aus dem CoSSMic-Projekt basieren [1]. Für jeden Störfall wurde aus allen möglichen und sinnvollen Netzkonfigurationen eine optimierte Netztopologie anhand von Lastflussberechnungen ermittelt. Durch die Variation der Stufenschalter der Transformatoren und der Stellungen aller installierten Schalter im Netz wurde berechnet, wie der Stromfluss gelenkt werden muss, damit keines der Betriebsmittel die zulässigen Belastungsgrenzen mehr überschreitet. Für ein virtuelles Testnetz konnte mit einem trainierten KNN zu 90 Prozent die optimale Lösung des jeweiligen Störfalls erkannt werden. Durch die Anwendung der N-Best Methode konnte die Vorhersagewahrscheinlichkeit auf annähernd 99 Prozent erhöht werden.
This paper summarizes the trends in metallization and interconnection technology in the eyes of the participants of the 8th Metallization and Interconnection Workshop. Participants were asked in a questionnaire to share their view on the future development of metallization technology, the kind of metal used for front side metallization and the future development of interconnection technology. The continuous improvement of the screen-printing technology is reflected in the high expected percentage share decreasing from 88% in three years to still 70% in ten years. The dominating front side metal in the view of the participants will be silver with an expected percentage share of nearly 70% in 2029. Regarding interconnection technologies, the experts of the workshop expect new technologies to gain significant technology shares faster. Whereas in three years soldering on busbars is expected to dominate with a percentage share of 71% it will drop in ten years to 35% in the eyes of the participants. Multiwire and shingling technologies are seen to have the highest potential with expected percentage shares of 33% (multiwire) and 16% (shingling) in ten years.
Transfer of Logistics Optimizations to Material Flow Resource Optimizations using Quantum Computing
(2024)
The complexity of industrial logistics and manufacturing processes increases constantly. As a key enabling technology of the upcoming decades, quantum computing is expected to play a crucial role in solving arising combinatorial optimization problems superior to traditional approaches. This study analyzes the current progress of quantum optimization applications in the logistics sector and aims to transfer an existing vehicle routing use case to a newly conceptualized matrix production use case regarding resource-efficient material flows. The simulation of the originating simple model is executed on a local circuit-based quantum simulator that emulates the behavior of real quantum hardware. Using a QAOA algorithm for problem-solving, optimal results have been achieved for all simulated scenarios. The theoretical material flow model is based on multiple assumptions and was created for testing reasons exclusively. For a realistic practical application, the model must therefore first be adapted and extended to include additional features.
The efficient and reliable operation of power grids is of great importance for ensuring a stable and uninterrupted supply of electricity. Traditional grid operation techniques have faced challenges due to the increasing integration of renewable energy sources and fluctuating demand patterns caused by the electrification of the heat and mobility sector. This paper presents a novel application of convolutional neural networks in grid operation, utilising their capabilities to recognise fault patterns and finding solutions. Different input data arrangements were investigated to reflect the relationships between neighbouring nodes as imposed by the grid topology. As disturbances we consider voltage deviations exceeding 3% of the nominal voltage or transformer and line overloads. To counteract, we use tab position changes of the transformer stations as well as remote controllable switches installed in the grid. The algorithms are trained and tested on a virtual grid based on real measurement data. Our models show excellent results with test accuracy of up to 99.06% in detecting disturbances in the grid and suggest a suitable solution without performing time-consuming load flow calculations. The proposed approach holds significant potential to address the challenges associated with modern grid operation, paving the way for more efficient and sustainable energy systems.