Refine
Document Type
- Conference Proceeding (5)
- Report (1)
Has Fulltext
- no (6)
Keywords
- Aktorik (1)
- Alterungsbeständigkeit (1)
- Electromagnetic actuators (1)
- Fault diagnosis (1)
- Friction (1)
- Magnetantrieb (1)
- Parameter estimation (1)
- Zustandsüberwachung (1)
Institute
In this paper a manoeuvre based identification process and parameter analysis of a small unmanned surface vehicle (USV) is described. The objective is to identify unknown hydrodynamic and propulsion parameters in one step by means of a series of different manoeuvres. Methods on the basis of the Fisher information matrix are used for the quality analysis of the parameter estimates. Furthermore, a process for reduction of parameters is deployed. It is also shown that no thrust force measurements are required and the complete parameter set can be considered concurrently, avoiding the risk of suboptimal results when using a sequential approach.
Comparison and Identifiability Analysis of Friction Models for the Dither Motion of a Solenoid
(2018)
In this paper, the mechanical subsystem of a proportional solenoid excited by a dither signal is considered. The objective is to find a suitable friction model that reflects the characteristic mechanical properties of the dynamic system. Several different friction models from the literature are compared. The friction models are evaluated with respect to their accuracy as well as their practical identifiability, the latter being quantified based on the Fisher information matrix.
An approach for an adaptive position-dependent friction estimation for linear electromagnetic actuators with altered characteristics is proposed in this paper. The objective is to obtain a friction model that can be used to describe different stages of aging of magnetic actuators. It is compared to a classical Stribeck friction model by means of model fit, sensitivity, and parameter correlation. The identifiability of the parameters in the friction model is of special interest since the model is supposed to be used for diagnostic and prognostic purposes. A method based on the Fisher information matrix is employed to analyze the quality of the model structure and the parameter estimates.
One major realm of Condition Based Maintenance is finding features that reflect the current health state of the asset or component under observation. Most of the existing approaches are accompanied with high computational costs during the different feature processing phases making them infeasible in a real-world scenario. In this paper a feature generation method is evaluated compensating for two problems: (1) storing and handling large amounts of data and (2) computational complexity. Both aforementioned problems are existent e.g. when electromagnetic solenoids are artificially aged and health indicators have to be extracted or when multiple identical solenoids have to be monitored. To overcome those problems, Compressed Sensing (CS), a new research field that keeps constantly emerging into new applications, is employed. CS is a data compression technique allowing original signal reconstruction with far fewer samples than Shannon-Nyquist dictates, when some criteria are met. By applying this method to measured solenoid coil current, raw data vectors can be reduced to a way smaller set of samples that yet contain enough information for proper reconstruction. The obtained CS vector is also assumed to contain enough relevant information about solenoid degradation and faults, allowing CS samples to be used as input to fault detection or remaining useful life estimation routines. The paper gives some results demonstrating compression and reconstruction of coil current measurements and outlines the application of CS samples as condition monitoring data by determining deterioration and fault related features. Nevertheless, some unresolved issues regarding information loss during the compression stage, the design of the compression method itself and its influence on diagnostic/prognostic methods exist.