### Refine

#### Document Type

- Conference Proceeding (36)
- Article (18)
- Patent (3)

#### Has Fulltext

- no (57)

#### Keywords

- Antenna arrays (1)
- BCH codes (1)
- Binary codes (1)
- Block codes (2)
- CONCATENATED codes (1)
- CONVOLUTION codes (1)
- Channel estimation (1)
- Codes over Gaussian integers (1)
- Computational complexity (1)
- Concatenated codes (1)

#### Institute

Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations is presented. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations. In addition, we present multilevel code constructions for the new signal constellations.

This paper proposes a pipelined decoder architecture for generalised concatenated (GC) codes. These codes are constructed from inner binary Bose-Chaudhuri-Hocquenghem (BCH) and outer Reed-Solomon codes. The decoding of the component codes is based on hard decision syndrome decoding algorithms. The concatenated code consists of several small BCH codes. This enables a hardware architecture where the decoding of the component codes is pipelined. A hardware implementation of a GC decoder is presented and the cell area, cycle counts as well as the timing constraints are investigated. The results are compared to a decoder for long BCH codes with similar error correction performance. In comparison, the pipelined GC decoder achieves a higher throughput and has lower area consumption.

Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers is presented that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations.

This contribution presents a data compression scheme for applications in non-volatile flash memories. The objective of the data compression algorithm is to reduce the amount of user data such that the redundancy of the error correction coding can be increased in order to improve the reliability of the data storage system. The data compression is performed on block level considering data blocks of 1 kilobyte. We present an encoder architecture that has low memory requirements and provides a fast data encoding.

This work proposes an efficient hardware Implementation of sequential stack decoding of binary block codes. The decoder can be applied for soft input decoding for generalized concatenated (GC) codes. The GC codes are constructed from inner nested binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer Reed-Solomon (RS) codes. In order to enable soft input decoding for the inner BCH block codes, a sequential stack decoding algorithm is used.

Flash-Speicher wurden ursprünglich als Speichermedium für Digitalkameras entwickelt, finden inzwischen aber in vielen Bereichen Anwendung.
Die in Konstanz ansässige Firma Hyperstone GmbH ist ein führender Anbieter von Flashcontrollern für Anwendungen mit erhöhten Anforderungen an Zuverlässigkeit und Datenintegrität. Bereits seit April 2011 kooperiert die Firma Hyperstone mit der HTWG Konstanz bei der Entwicklung von Fehlerkorrekturverfahren für einen zuverlässigen Einsatz von Flash-Speichern. Aufgrund der rasanten Entwicklung bei Flashspeicherbausteinen ist auch eine stetige Weiterentwicklung der Korrekturverfahren notwendig. Im Rahmen dieser Kooperation wurde inzwischen zwei Flashcontroller mit sehr leistungsfähiger Fehlerkorrektur entwickelt. Der folgende Artikel gibt Einblick in den Einsatz von Flash-Speichern und erläutert die Notwendigkeit für eine leistungsfähige Fehlerkorrektur.

This work investigates data compression algorithms for applications in non-volatile flash memories. The main goal of the data compression is to minimize the amount of user data such that the redundancy of the error correction coding can be increased and the reliability of the error correction can be improved. A compression algorithm is proposed that combines a modified move-to-front algorithm with Huffman coding. The proposed data compression algorithm has low complexity, but provides a compression gain comparable to the Lempel-Ziv-Welch algorithm.

This work investigates soft input decoding for generalized concatenated (GC) codes. The GC codes are constructed from inner nested binary Bose-Chaudhuri-Hocquenghem (BCH)codes and outer Reed-Solomon (RS) codes. In order to enable soft input decoding for the inner BCH block codes, a sequential stack decoding algorithm is used. Ordinary stack decoding of binary block codes requires the complete trellis of the code.
In this work a representation of the block codes based on the trellises of supercodes is proposed in order to reduce the memory requirements for the representation of the BCH codes. Results for the decoding performance of the overall GC code are presented.
Furthermore, an efficient hardware implementation of the GC decoder is proposed.

In this paper we propose a method to determine the active speaker for each time-frequency point in the noisy signals of a microphone array. This detection is based on a statistical model where the speech signals as well as noise signals are assumed to be multivariate Gaussian random variables in the Fourier domain. Based on this model we derive a maximum-likelihood detector for the active speaker. The decision is based on the a posteriori signal to noise ratio (SNR) of a speaker dependent max-SNR beamformer.

This letter introduces signal constellations based on multiplicative groups of Eisenstein integers, i.e., hexagonal lattices. These sets of Eisenstein integers are proposed as signal constellations for generalized spatial modulation. The algebraic properties of the new constellations are investigated and a set partitioning technique is developed. This technique can be used to design coded modulation schemes over hexagonal lattices.

This paper studies suitable models for the identification of nonlinear acoustic systems. A cascaded structure of nonlinear filters is proposed that contains several parallel branches, consisting of polynomial functions followed by a linear filter for each order of nonlinearity. The second order of nonlinearity is additionally modelled with a parallel branch, containing a Volterra filter. These are followed by a long linear FIR filter that is able to model the room acoustics. The model is applied to the identification of a tube power amplifier feeding a guitar loudspeaker cabinet in an acoustic room. The adaptive identification is performed by the normalized least mean square (NLMS) algorithm. Compared with a generalized polynomial Hammerstein (GPH) model, the accuracy in modelling the dedicated real world system can be improved to a greater extend than increasing the order of nonlinearity in the GPH model.

The multichannel Wiener filter (MWF) is a well-established noise reduction technique for speech processing. Most commonly, the speech component in a selected reference microphone is estimated. The choice of this reference microphone influences the broadband output signal-to-noise ratio (SNR) as well as the speech distortion. Recently, a generalized formulation for the MWF (G-MWF) was proposed that uses a weighted sum of the individual transfer functions from the speaker to the microphones to form a better speech reference resulting in an improved broadband output SNR. For the MWF, the influence of the phase reference is often neglected, because it has no impact on the narrow-band output SNR. The G-MWF allows an arbitrary choice of the phase reference especially in the context of spatially distributed microphones.
In this work, we demonstrate that the phase reference determines the overall transfer function and hence has an impact on both the speech distortion and the broadband output SNR. We propose two speech references that achieve a better signal-to-reverberation ratio (SRR) and an improvement in the broadband output SNR. Both proposed references are based on the phase of a delay-and-sum beamformer. Hence, the time-difference-of-arrival (TDOA) of the speech source is required to align the signals. The different techniques are compared in terms of SRR and SNR performance.

This paper proposes a soft input decoding algorithm and a decoder architecture for generalized concatenated (GC) codes. The GC codes are constructed from inner nested binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer Reed-Solomon codes. In order to enable soft input decoding for the inner BCH block codes, a sequential stack decoding algorithm is used. Ordinary stack decoding of binary block codes requires the complete trellis of the code. In this paper, a representation of the block codes based on the trellises of supercodes is proposed in order to reduce the memory requirements for the representation of the BCH codes. This enables an efficient hardware implementation. The results for the decoding performance of the overall GC code are presented. Furthermore, a hardware architecture of the GC decoder is proposed. The proposed decoder is well suited for applications that require very low residual error rates.

This work studies a wind noise reduction approach for communication applications in a car environment. An endfire array consisting of two microphones is considered as a substitute for an ordinary cardioid microphone capsule of the same size. Using the decomposition of the multichannel Wiener filter (MWF), a suitable beamformer and a single-channel post filter are derived. Due to the known array geometry and the location of the speech source, assumptions about the signal properties can be made to simplify the MWF beamformer and to estimate the speech and noise power spectral densities required for the post filter. Even for closely spaced microphones, the different signal properties at the microphones can be exploited to achieve a significant reduction of wind noise. The proposed beamformer approach results in an improved speech signal regarding the signal-to-noise-ratio and keeps the linear speech distortion low. The derived post filter shows equal performance compared to known approaches but reduces the effort for noise estimation.

Generalised concatenated (GC) codes are well suited for error correction in flash memories for high-reliability data storage. The GC codes are constructed from inner extended binary Bose–Chaudhuri–Hocquenghem (BCH) codes and outer Reed–Solomon codes. The extended BCH codes enable high-rate GC codes and low-complexity soft input decoding. This work proposes a decoder architecture for high-rate GC codes. For such codes, outer error and erasure decoding are mandatory. A pipelined decoder architecture is proposed that achieves a high data throughput with hard input decoding. In addition, a low-complexity soft input decoder is proposed. This soft decoding approach combines a bit-flipping strategy with algebraic decoding. The decoder components for the hard input decoding can be utilised which reduces the overhead for the soft input decoding. Nevertheless, the soft input decoding achieves a significant coding gain compared with hard input decoding.

Error correction coding based on soft-input decoding can significantly improve the reliability of non-volatile flash memories. This work proposes a soft-input decoder for generalized concatenated (GC) codes. GC codes are well suited for error correction in flash memories for high reliability data storage. We propose GC codes constructed from inner extended binary Bose-Chaudhuri-Hocquenghem (BCH) codes and outer Reed-Solomon codes. The extended BCH codes enable an efficient hard-input decoding. Furthermore, a low-complexity soft-input decoding method is proposed. This bit-flipping decoder uses a fixed number of test patterns and an algebraic decoder for soft-decoding. An acceptance criterion for the final candidate codeword is proposed. Combined with error and erasure decoding of the outer Reed-Solomon codes, this acceptance criterion can improve the decoding performance and reduce the decoding complexity. The presented simulation results show that the proposed bit-flipping decoder in combination with outer error and erasure decoding can outperform maximum likelihood decoding of the inner codes.

The introduction of multiple-level cell (MLC) and triple-level cell (TLC) technologies reduced the reliability of flash memories significantly compared with single-level cell flash. With MLC and TLC flash cells, the error probability varies for the different states. Hence, asymmetric models are required to characterize the flash channel, e.g., the binary asymmetric channel (BAC). This contribution presents a combined channel and source coding approach improving the reliability of MLC and TLC flash memories. With flash memories data compression has to be performed on block level considering short-data blocks. We present a coding scheme suitable for blocks of 1 kB of data. The objective of the data compression algorithm is to reduce the amount of user data such that the redundancy of the error correction coding can be increased in order to improve the reliability of the data storage system. Moreover, data compression can be utilized to exploit the asymmetry of the channel to reduce the error probability. With redundant data, the proposed combined coding scheme results in a significant improvement of the program/erase cycling endurance and the data retention time of flash memories.

The Burrows–Wheeler transformation (BWT) is a reversible block sorting transform that is an integral part of many data compression algorithms. This work proposes a memory-efficient pipelined decoder for the BWT. In particular, the authors consider the limited context order BWT that has low memory requirements and enable fast encoding. However, the decoding of the limited context order BWT is typically much slower than the encoding. The proposed decoder pipeline provides a fast inverse BWT by splitting the decoding into several processing stages which are executed in parallel.

Generalized concatenated (GC) codes with soft-input decoding were recently proposed for error correction in flash memories. This work proposes a soft-input decoder for GC codes that is based on a low-complexity bit-flipping procedure. This bit-flipping decoder uses a fixed number of test patterns and an algebraic decoder for soft-input decoding. An acceptance criterion for the final candidate codeword is proposed. Combined with error and erasure decoding of the outer Reed-Solomon codes, this bit-flipping decoder can improve the decoding performance and reduce the decoding complexity compared to the previously proposed sequential decoding. The bit-flipping decoder achieves a decoding performance similar to a maximum likelihood decoder for the inner codes.