### Refine

#### Document Type

- Conference Proceeding (26)
- Article (15)
- Patent (3)

#### Keywords

- Antenna arrays (1)
- BCH codes (1)
- Block codes (1)
- CONCATENATED codes (1)
- CONVOLUTION codes (1)
- Channel estimation (1)
- Concatenated codes (1)
- Data compression (2)
- Decoding (2)
- ERROR-correcting codes (1)
- Error correction (1)
- Error correction codes (2)
- Flash memories (3)
- Huffman codes (1)
- Integrated circuit reliability (1)
- Lattices (1)
- MEMS microphones (1)
- MIMO (1)
- MVDR beamforming (1)
- Multichannel Wiener filter (1)
- REED-Solomon codes (1)
- Redundancy (2)
- Signal detection (1)
- Spatial modulation (1)
- Speech signal processing (1)
- Sprachakustik (1)
- Sprachverarbeitung (1)
- TURBO codes (1)
- Wind noise reduction (1)
- algebraic codes (1)
- binary codes (1)
- block codes (1)
- concatenated codes (1)
- modulation coding (1)
- sequential decoding (1)

Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations is presented. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations. In addition, we present multilevel code constructions for the new signal constellations.

This paper proposes a pipelined decoder architecture for generalised concatenated (GC) codes. These codes are constructed from inner binary Bose-Chaudhuri-Hocquenghem (BCH) and outer Reed-Solomon codes. The decoding of the component codes is based on hard decision syndrome decoding algorithms. The concatenated code consists of several small BCH codes. This enables a hardware architecture where the decoding of the component codes is pipelined. A hardware implementation of a GC decoder is presented and the cell area, cycle counts as well as the timing constraints are investigated. The results are compared to a decoder for long BCH codes with similar error correction performance. In comparison, the pipelined GC decoder achieves a higher throughput and has lower area consumption.

This work investigates data compression algorithms for applications in non-volatile flash memories. The main goal of the data compression is to minimize the amount of user data such that the redundancy of the error correction coding can be increased and the reliability of the error correction can be improved. A compression algorithm is proposed that combines a modified move-to-front algorithm with Huffman coding. The proposed data compression algorithm has low complexity, but provides a compression gain comparable to the Lempel-Ziv-Welch algorithm.

This paper studies suitable models for the identification of nonlinear acoustic systems. A cascaded structure of nonlinear filters is proposed that contains several parallel branches, consisting of polynomial functions followed by a linear filter for each order of nonlinearity. The second order of nonlinearity is additionally modelled with a parallel branch, containing a Volterra filter. These are followed by a long linear FIR filter that is able to model the room acoustics. The model is applied to the identification of a tube power amplifier feeding a guitar loudspeaker cabinet in an acoustic room. The adaptive identification is performed by the normalized least mean square (NLMS) algorithm. Compared with a generalized polynomial Hammerstein (GPH) model, the accuracy in modelling the dedicated real world system can be improved to a greater extend than increasing the order of nonlinearity in the GPH model.

The multichannel Wiener filter (MWF) is a well-established noise reduction technique for speech processing. Most commonly, the speech component in a selected reference microphone is estimated. The choice of this reference microphone influences the broadband output signal-to-noise ratio (SNR) as well as the speech distortion. Recently, a generalized formulation for the MWF (G-MWF) was proposed that uses a weighted sum of the individual transfer functions from the speaker to the microphones to form a better speech reference resulting in an improved broadband output SNR. For the MWF, the influence of the phase reference is often neglected, because it has no impact on the narrow-band output SNR. The G-MWF allows an arbitrary choice of the phase reference especially in the context of spatially distributed microphones.
In this work, we demonstrate that the phase reference determines the overall transfer function and hence has an impact on both the speech distortion and the broadband output SNR. We propose two speech references that achieve a better signal-to-reverberation ratio (SRR) and an improvement in the broadband output SNR. Both proposed references are based on the phase of a delay-and-sum beamformer. Hence, the time-difference-of-arrival (TDOA) of the speech source is required to align the signals. The different techniques are compared in terms of SRR and SNR performance.

In this paper we propose a method to determine the active speaker for each time-frequency point in the noisy signals of a microphone array. This detection is based on a statistical model where the speech signals as well as noise signals are assumed to be multivariate Gaussian random variables in the Fourier domain. Based on this model we derive a maximum-likelihood detector for the active speaker. The decision is based on the a posteriori signal to noise ratio (SNR) of a speaker dependent max-SNR beamformer.

This letter introduces signal constellations based on multiplicative groups of Eisenstein integers, i.e., hexagonal lattices. These sets of Eisenstein integers are proposed as signal constellations for generalized spatial modulation. The algebraic properties of the new constellations are investigated and a set partitioning technique is developed. This technique can be used to design coded modulation schemes over hexagonal lattices.

This work investigates soft input decoding for generalized concatenated (GC) codes. The GC codes are constructed from inner nested binary Bose-Chaudhuri-Hocquenghem (BCH)codes and outer Reed-Solomon (RS) codes. In order to enable soft input decoding for the inner BCH block codes, a sequential stack decoding algorithm is used. Ordinary stack decoding of binary block codes requires the complete trellis of the code.
In this work a representation of the block codes based on the trellises of supercodes is proposed in order to reduce the memory requirements for the representation of the BCH codes. Results for the decoding performance of the overall GC code are presented.
Furthermore, an efficient hardware implementation of the GC decoder is proposed.

Codes over quotient rings of Lipschitz integers have recently attracted some attention. This work investigates the performance of Lipschitz integer constellations for transmission over the AWGN channel by means of the constellation figure of merit. A construction of sets of Lipschitz integers is presented that leads to a better constellation figure of merit compared to ordinary Lipschitz integer constellations. In particular, it is demonstrated that the concept of set partitioning can be applied to quotient rings of Lipschitz integers where the number of elements is not a prime number. It is shown that it is always possible to partition such quotient rings into additive subgroups in a manner that the minimum Euclidean distance of each subgroup is strictly larger than in the original set. The resulting signal constellations have a better performance for transmission over an additive white Gaussian noise channel compared to Gaussian integer constellations and to ordinary Lipschitz integer constellations.