Refine
Year of publication
Document Type
- Conference Proceeding (24)
- Article (22)
- Part of a Book (1)
- Other Publications (1)
Keywords
- (Strict) sign-regularity (1)
- Bernstein coefficient (4)
- Bernstein coefficients (1)
- Bernstein function (1)
- Bernstein polynomial (7)
- Bernstein polynomials (1)
- Cauchon algorithm (6)
- Cauchon diagram (1)
- Cauchon matrix (1)
- Checkerboard ordering (4)
Institute
We consider classes of n-by-n sign regular matrices, i.e., of matrices with the property that all their minors of fixed order k have one specified sign or are allowed also to vanish, k = 1, ... ,n. If the sign is nonpositive for all k, such a matrix is called totally nonpositive. The application of the Cauchon algorithm to nonsingular totally nonpositive matrices is investigated and a new determinantal test for these matrices is derived. Also matrix intervals with respect to the checkerboard partial ordering are considered. This order is obtained from the usual entry-wise ordering on the set of the n-by-n matrices by reversing the inequality sign for each entry in a checkerboard fashion. For some classes of sign regular matrices it is shown that if the two bound matrices of such a matrix interval are both in the same class then all matrices lying between these two bound matrices are in the same class, too.
We consider classes of (Formula presented.)-by-(Formula presented.) sign regular matrices, i.e. of matrices with the property that all their minors of fixed order (Formula presented.) have one specified sign or are allowed also to vanish, (Formula presented.). If the sign is nonpositive for all (Formula presented.), such a matrix is called totally nonpositive. The application of the Cauchon algorithm to nonsingular totally nonpositive matrices is investigated and a new determinantal test for these matrices is derived. Also matrix intervals with respect to the checkerboard ordering are considered. This order is obtained from the usual entry-wise ordering on the set of the (Formula presented.)-by-(Formula presented.) matrices by reversing the inequality sign for each entry in a checkerboard fashion. For some classes of sign regular matrices, it is shown that if the two bound matrices of such a matrix interval are both in the same class then all matrices lying between these two bound matrices are in the same class, too.
In this paper, rectangular matrices whose minors of a given order have the same strict sign are considered and sufficient conditions for their recognition are presented. The results are extended to matrices whose minors of a given order have the same sign or are allowed to vanish. A matrix A is called oscillatory if all its minors are nonnegative and there exists a positive integer k such that A^k has all its minors positive. As a generalization, a new type of matrices, called oscillatory of a specific order, is introduced and some of their properties are investigated.
Matrix methods for the computation of bounds for the range of a complex polynomial and its modulus over a rectangular region in the complex plane are presented. The approach relies on the expansion of the given polynomial into Bernstein polynomials. The results are extended to multivariate complex polynomials and rational functions.
The class of square matrices of order n having a negative determinant and all their minors up to order n-1 nonnegative is considered. A characterization of these matrices is presented which provides an easy test based on the Cauchon algorithm for their recognition. Furthermore, the maximum allowable perturbation of the entry in position (2,2) such that the perturbed matrix remains in this class is given. Finally, it is shown that all matrices lying between two matrices of this class with respect to the checkerboard ordering are contained in this class, too.
Positive systems play an important role in systems and control theory and have found applications in multiagent systems, neural networks, systems biology, and more. Positive systems map the nonnegative orthant to itself (and also the non-positive orthant to itself). In other words, they map the set of vectors with zero sign variation to itself. In this article, discrete-time linear systems that map the set of vectors with up to k-1 sign variations to itself are introduced. For the special case k = 1 these reduce to discrete-time positive linear systems. Properties of these systems are analyzed using tools from the theory of sign-regular matrices. In particular, it is shown that almost every solution of such systems converges to the set of vectors with up to k-1 sign variations. It is also shown that these systems induce a positive dynamics of k-dimensional parallelotopes.
The expansion of a given multivariate polynomial into Bernstein polynomials is considered. Matrix methods for the calculation of the Bernstein expansion of the product of two polynomials and of the Bernstein expansion of a polynomial from the expansion of one of its partial derivatives are provided which allow also a symbolic computation.
A method is investigated by which tight bounds on the range of a multivariate rational function over a box can be computed. The approach relies on the expansion of the numerator and denominator polynomials in Bernstein polynomials. Convergence of the bounds to the range with respect to degree elevation of the Bernstein expansion, to the width of the box and to subdivision are proven and the inclusion isotonicity of the related enclosure function is shown.