### Refine

#### Document Type

- Conference Proceeding (24)
- Article (21)
- Part of a Book (1)
- Other Publications (1)

#### Keywords

- (Strict) sign-regularity (1)
- Bernstein coefficient (4)
- Bernstein coefficients (1)
- Bernstein function (1)
- Bernstein polynomial (7)
- Bernstein polynomials (1)
- Cauchon algorithm (6)
- Cauchon diagram (1)
- Cauchon matrix (1)
- Checkerboard ordering (4)

#### Institute

In this paper totally nonnegative (positive) matrices are considered which are matrices having all their minors nonnegative (positve); the almost totally positive matrices form a class between the totally nonnegative matrices and the totally positive ones. An efficient determinantal test based on the Cauchon algorithm for checking a given matrix for falling in one of these three classes of matrices is applied to matrices which are related to roots of polynomials and poles of rational functions, specifically the Hankel matrix associated with the Laurent series at infinity of a rational function and matrices of Hurwitz type associated with polynomials. In both cases it is concluded from properties of one or two finite sections of the infinite matrix that the infinite matrix itself has these or related properties. Then the results are applied to derive a sufficient condition for the Hurwitz stability of an interval family of polynomials. Finally, interval problems for a subclass of the rational functions, viz. R-functions, are investigated. These problems include invariance of exclusively positive poles and exclusively negative roots in the presence of variation of the coefficients of the polynomials within given intervals.

A real matrix is called totally nonnegative if all of its minors are nonnegative. In this paper, the minors are determined from which the maximum allowable entry perturbation of a totally nonnegative matrix can be found, such that the perturbed matrix remains totally nonnegative. Also, the total nonnegativity of the first and second subdirect sum of two totally nonnegative matrices is considered.

In this article, the collection of classes of matrices presented in [J. Garloff, M. Adm, ad J. Titi, A survey of classes of matrices possessing the interval property and related properties, Reliab. Comput. 22:1-14, 2016] is continued. That is, given an interval of matrices with respect to a certain partial order, it is desired to know whether a special property of the entire matrix interval can be inferred from some of its element matrices lying on the vertices of the matrix interval. The interval property of some matrix classes found in the literature is presented, and the interval property of further matrix classes including the ultrametric, the conditionally positive semidefinite, and the infinitely divisible matrices is given for the first time. For the inverse M-matrices the cardinality of the required set of vertex matrices known so far is significantly reduced.

The expansion of a given multivariate polynomial into Bernstein polynomials is considered. Matrix methods for the calculation of the Bernstein expansion of the product of two polynomials and of the Bernstein expansion of a polynomial from the expansion of one of its partial derivatives are provided which allow also a symbolic computation.

A real matrix is called totally nonnegative if all of its minors are nonnegative. In this paper the extended Perron complement of a principal submatrix in a matrix A is investigated. In extension of known results it is shown that if A is irreducible and totally nonnegative and the principal submatrix consists of some specified consecutive rows then the extended Perron complement is totally nonnegative. Also inequalities between minors of the extended Perron complement and the Schur complement are presented.

Positive systems play an important role in systems and control theory and have found applications in multiagent systems, neural networks, systems biology, and more. Positive systems map the nonnegative orthant to itself (and also the non-positive orthant to itself). In other words, they map the set of vectors with zero sign variation to itself. In this article, discrete-time linear systems that map the set of vectors with up to k-1 sign variations to itself are introduced. For the special case k = 1 these reduce to discrete-time positive linear systems. Properties of these systems are analyzed using tools from the theory of sign-regular matrices. In particular, it is shown that almost every solution of such systems converges to the set of vectors with up to k-1 sign variations. It is also shown that these systems induce a positive dynamics of k-dimensional parallelotopes.

In 1970, B.A. Asner, Jr., proved that for a real quasi-stable polynomial, i.e., a polynomial whose zeros lie in the closed left half-plane of the complex plane, its finite Hurwitz matrix is totally nonnegative, i.e., all its minors are nonnegative, and that the converse statement is not true. In this work, we explain this phenomenon in detail, and provide necessary and sufficient conditions for a real polynomial to have a totally nonnegative finite Hurwitz matrix.