Refine
Document Type
- Conference Proceeding (9)
- Article (7)
- Doctoral Thesis (1)
- Other Publications (1)
Keywords
Institute
This paper considers intervals of real matrices with respect to partial orders and the problem to infer from some exposed matrices lying on the boundary of such an interval that all real matrices taken from the interval possess a certain property. In many cases such a property requires that the chosen matrices have an identically signed inverse. We also briefly survey related problems, e.g., the invariance of matrix properties under entry-wise perturbations.
Bernstein polynomials on a simplex V are considered. The expansion of a given polynomial p into these polynomials provides bounds for range of p over V. Bounds for the range of a rational function over V can easily be obtained from the Bernstein expansions of the numerator and denominator polynomials of this function. In this paper it is shown that these bounds converge monotonically and linearly to the range of the rational function if the degree of the Bernstein expansion is elevated. If V is subdivided then the convergence is quadratic with respect to the maximum of the diameters of the subsimplices.
This paper considers intervals of real matrices with respect to partial orders and the problem to infer from some exposed matrices lying on the boundary of such an interval that all real matrices taken from the interval possess a certain property. In many cases such a property requires that the chosen matrices have an identically signed inverse. We also briefly survey related problems, e.g., the invariance of matrix properties under entry-wise perturbations.