### Refine

#### Document Type

- Conference Proceeding (9)
- Article (6)
- Doctoral Thesis (1)
- Other Publications (1)

#### Keywords

Bernstein polynomials on a simplex V are considered. The expansion of a given polynomial p into these polynomials provides bounds for range of p over V. Bounds for the range of a rational function over V can easily be obtained from the Bernstein expansions of the numerator and denominator polynomials of this function. In this paper it is shown that these bounds converge monotonically and linearly to the range of the rational function if the degree of the Bernstein expansion is elevated. If V is subdivided then the convergence is quadratic with respect to the maximum of the diameters of the subsimplices.

This paper considers intervals of real matrices with respect to partial orders and the problem to infer from some exposed matrices lying on the boundary of such an interval that all real matrices taken from the interval possess a certain property. In many cases such a property requires that the chosen matrices have an identically signed inverse. We also briefly survey related problems, e.g., the invariance of matrix properties under entry-wise perturbations.

In this paper, multivariate polynomials in the Bernstein basis over a box (tensorial Bernstein representation) are considered. A new matrix method for the computation of the polynomial coefficients with respect to the Bernstein basis, the so-called Bernstein coefficients, is presented and compared with existing methods. Also matrix methods for the calculation of the Bernstein coefficients over subboxes generated by subdivision of the original box are proposed. All the methods solely use matrix operations such as multiplication, transposition and reshaping; some of them rely on the bidiagonal factorization of the lower triangular Pascal matrix or the factorization of this matrix by a Toeplitz matrix. In the case that the coefficients of the polynomial are due to uncertainties and can be represented in the form of intervals it is shown that the developed methods can be extended to compute the set of the Bernstein coefficients of all members of the polynomial family.