Refine
Document Type
- Conference Proceeding (9)
- Article (8)
- Part of a Book (1)
- Doctoral Thesis (1)
- Other Publications (1)
Keywords
Institute
Matrix methods for the computation of bounds for the range of a complex polynomial and its modulus over a rectangular region in the complex plane are presented. The approach relies on the expansion of the given polynomial into Bernstein polynomials. The results are extended to multivariate complex polynomials and rational functions.
The expansion of a given multivariate polynomial into Bernstein polynomials is considered. Matrix methods for the calculation of the Bernstein expansion of the product of two polynomials and of the Bernstein expansion of a polynomial from the expansion of one of its partial derivatives are provided which allow also a symbolic computation.
In this paper, multivariate polynomials in the Bernstein basis over a simplex (simplicial Bernstein representation) are considered. Two matrix methods for the computation of the polynomial coefficients with respect to the Bernstein basis, the so-called Bernstein coefficients, are presented. Also matrix methods for the calculation of the Bernstein coefficients over subsimplices generated by subdivision of the standard simplex are proposed and compared with the use of the de Casteljau algorithm. The evaluation of a multivariate polynomial in the power and in the Bernstein basis is considered as well. All the methods solely use matrix operations such as multiplication, transposition, and reshaping; some of them rely also on the bidiagonal factorization of the lower triangular Pascal matrix or the factorization of this matrix by a Toeplitz matrix. The latter one enables the use of the Fast Fourier Transform hereby reducing the amount of arithmetic operations.
In this paper, multivariate polynomials in the Bernstein basis over a box (tensorial Bernstein representation) are considered. A new matrix method for the computation of the polynomial coefficients with respect to the Bernstein basis, the so-called Bernstein coefficients, is presented and compared with existing methods. Also matrix methods for the calculation of the Bernstein coefficients over subboxes generated by subdivision of the original box are proposed. All the methods solely use matrix operations such as multiplication, transposition and reshaping; some of them rely on the bidiagonal factorization of the lower triangular Pascal matrix or the factorization of this matrix by a Toeplitz matrix. In the case that the coefficients of the polynomial are due to uncertainties and can be represented in the form of intervals it is shown that the developed methods can be extended to compute the set of the Bernstein coefficients of all members of the polynomial family.
Tests for speeding up the determination of the Bernstein enclosure of the range of a multivariate polynomial and a rational function over a box and a simplex are presented. In the polynomial case, this enclosure is the interval spanned by the minimum and the maximum of the Bernstein coefficients which are the coefficients of the polynomial with respect to the tensorial or simplicial Bernstein basis. The methods exploit monotonicity properties of the Bernstein coefficients of monomials as well as a recently developed matrix method for the computation of the Bernstein coefficients of a polynomial over a box.
In this paper totally nonnegative (positive) matrices are considered which are matrices having all their minors nonnegative (positve); the almost totally positive matrices form a class between the totally nonnegative matrices and the totally positive ones. An efficient determinantal test based on the Cauchon algorithm for checking a given matrix for falling in one of these three classes of matrices is applied to matrices which are related to roots of polynomials and poles of rational functions, specifically the Hankel matrix associated with the Laurent series at infinity of a rational function and matrices of Hurwitz type associated with polynomials. In both cases it is concluded from properties of one or two finite sections of the infinite matrix that the infinite matrix itself has these or related properties. Then the results are applied to derive a sufficient condition for the Hurwitz stability of an interval family of polynomials. Finally, interval problems for a subclass of the rational functions, viz. R-functions, are investigated. These problems include invariance of exclusively positive poles and exclusively negative roots in the presence of variation of the coefficients of the polynomials within given intervals.